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Abstract

A sequence of C?-connected nested subdivision rings of polynomial degree bi-4 can be made to follow a guide surface and completed
by a tiny finite cap to serve as a refinable surface representation for design and analysis [1]. This raises the question, both of academic
and practical interest, how much and at what cost to surface quality can the efficiency be improved by lowering the number of rings
and/or the polynomial degree.

In a systematic exploration, a new bi-4 construction is discovered that requires half the number of surface rings but matches the
quality of [1]. For this surface quality, numerous trials indicate that this number of surface rings is minimal and that the degree can
not be reduced. Bi-3 constructions have inferior highlight line distributions — although the best of the new bi-3 constructions visibly
improve on Catmull-Clark subdivision and its curvature-bounded variants.

Keywords: subdivision surfaces, highlight line distribution, rapid contraction, guided subdivision, curvature-bounded, bi-quartics,

bi-cubics

1. Introduction

Recently, progress has been made towards creating subdivi-
sion surfaces with good highlight line distributions and low de-
gree. [2] defined a sequence of C? bi-5 surface rings of the same
formal smoothness as Catmull-Clark but with much better high-
light line distribution. [3] replaced the three bi-3 patches per sec-
tor of each Catmull-Clark subdivision ring by three 2 X 2 macro-
patches of degree bi-4. This paper shows that the improved sur-
face quality and curvature boundedness can be achieved with just
one patch and double the speed. This reduction in the number
of patches represents an 8-fold gain in efficiency over the ear-
lier constructions. New improved techniques also generate bi-3
subdivision surfaces with bounded curvature at the extraordinary
point, good highlight line distribution and twice the contraction
of Catmull-Clark. By contrast, curvature bounded subdivision
schemes in the literature contract, especially for high valences,
much slower than Catmull-Clark.

A second motivation for devising a new generation of sub-
division surfaces is to provide surfaces with C* transitions (as
opposed to G* transitions based on reparameterization, such as
[4, 15]). C* transitions simplify basic geometry processing op-
erations including texturing, path tracing, engineering analysis,
localized geometric modification, etc.. For example, introducing
localized geometric detail on a G* surface is non-trivial whereas
C? guided subdivision surface rings support nested refinement
by knot insertion. Fixing a maximal expected refinement level
as suggested in [1] avoids the main drawback of the subdivision
approach for engineering analysis: the infinite sequence of sub-
division rings that requires careful estimates to compute approx-
imate integrals of derivatives. The suggestion of [1] is to stop
subdivision after a few rings and fill the gap with a tiny, but well-
behaved G* cap that is not expected to be refined for the appli-
cation at hand. Fig. 1 and Fig. 3 show how capped subdivision
enables localized design.

Tensor-product bicubic splines are widely used to represent
higher-quality surfaces due to their curvature continuity and their
ability to model inflections as well as subtle convex shapes.
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Knot insertion, the origin of subdivision, provides a means to
lay down the basic shape and to follow up with modification
of detail. Catmull-Clark subdivision [5] was developed to ex-
tend these advantages to irregular layout where multiple other
than four polynomial surface pieces meet at a point. Due to
their simple C? transitions almost everywhere, these surfaces
lend themselves also for modeling functions on surfaces, e.g.
for isogeometric computations [6, 7]. However, it is well-
understood that Catmull-Clark surfaces have visible shape de-
ficiencies, e.g. pinched highlight lines near high-valent vertices
(see e.g. Fig. 3b).
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Figure 1: Input polyhedron (a) with extraordinary nodes of valence 10. (b)
Layout of multi-sided macro-patches. (c) Embossed features taking advantage of
refinability. (d) 8 layers forming the green surface in (b) with a contraction speed
of Catmull-Clark (CC) subdivision, completed by a tiny red cap. (e) 4 layers at
twice the contraction rate.
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Figure 2: § Zp

:= CK-sequence of subdivision rings of degree bi-d using p patches per sector. § indicates double the contraction speed. (fop row) Surface layout: the

polynomial pieces of one sector of one subdivision ring are highlighted. (bottom row) The corresponding highlight lines near the extraordinary point. (a) Bi-3 curvature
bounded scheme § of [8]. (b) Bi-3 with contraction speed of Catmull-Clark subdivision. (c,d,e) Double contraction speed. (c) Bi-3 with 12 patches per sector. (d) Bi-3
with three 3x3 patches per sector, i.e. 27 patches of unequal size (cf. Fig. 4c). (e) Bi-4 with 3 patches per sector (Si 5 and S}1 5 are visually alike).
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Figure 3:  Valence 10 input from Fig. 1. (a,b) Embossed features: at every
refinement, the same coeflicients within each sector are (left) displaced in the
normal direction or (right) rotated. (b,c) highlight lines of Catmull-Clark surface
vs bi-4 (§ 42"3 and §}L3 are visually alike).
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Figure 4: Layout of subdivision rings for S ’a‘,p and § (’;p. $ indicates double the
contraction speed of S. (a) Three patches per sector as for Catmull-Clark sub-
division surfaces. (b) Three 2 X 2 macro-patches = 12 patches. (c) Three 3 x 3
macro-patches = 27 patches. (d) One 2 X 2 macro-patch and two 2 X 1 macro-

patches = 8 patches.

To highlight the contribution of this paper, Fig. la displays
new subdivision-plus-cap surfaces for an input mesh with ex-
traordinary nodes of valence 10. This mesh is extreme in that
it has no 4 x4 submesh suitable for interpretation as a control net
of a bicubic spline patch. We chose this high-valence mesh to ex-
pose more starkly otherwise subtle differences between various
options. For the input mesh in Fig. 1a, Fig. 2a shows the layout
(top) and highlight line distribution (bottom) of Sabin’s pioneer-
ing bounded curvature subdivision [8]. Note the extremely slow
approach to the extraordinary point, a behaviour shared by later
improvements in [9, 10]. The new guided subdivision schemes
can even double the contraction speed compared the Catmull-

Clark subdivision and so reduce the number of rings before ap-
plying the final cap. And all but one subdivision in Fig. 2 are C?
except at extraordinary point. At the extraordinary point they are
C' and curvature bounded. Guided bi-3 subdivision clearly im-
proves on Catmull-Clark subdivision and its curvature-bounded
variants. But even finely-partitioned bi-3 macro-patches yield a
less regular highlight line distribution than the bi-4 construction.
For example, the 2 X 2 macro-patches of degree bi-3 and the con-
traction speed of Catmull-Clark subdivision perform poorer than
single bi-4 patches with the more challenging and efficient dou-
ble contraction speed.

The good highlight line distribution is due to the guided ap-
proach that decouples differential smoothness from shape: the
subdivision surfaces closely follow a shape of an on-the-fly con-
structed guide. The guided approach stabilizes the C? subdivi-
sion sequence to allow for accelerated contraction even for rings
consisting of a patchwork of thin and small patches Fig. 2c.d,e.

To summarize, the contributions of this paper are:

— A new class of low-degree, smooth, accelerated guided sub-
division algorithms with good highlight line distribution.
Acceleration means fewer patches.

— Subdivision-plus-cap hybrid surfaces consisting of several
subdivision rings and a tiny cap. The hybrid surfaces are
almost everywhere parametrically C>. They are everywhere
smooth.

— A systematic comparison of tuned bi-3, new guided bi-3 and
new guided bi-4 guided subdivision schemes.

Overview. Section 2 lays out the setup, operators and techni-
cal preliminaries and presents a synopsis of guided subdivision.
Section 3 defines the crucial guide sampling mechanism. Sec-
tion 4 and Section S present families of subdivision schemes of
degree bi-4 and bi-3 respectively. Section 6 explains the cap con-
struction (not a focus here). Section 7 compares the subdivision
surfaces in more detail and Section 8 places the observations in
a larger context.



2. Definitions and Setup

2.1. A B-spline-like control net for irregular layout

(a) c-net extended by 1 layer (b) bi-3 ring + tensor-border

Figure 5: B-spline-like irregular control net and its tensor-border. (a) Extended
c-net for n = 5. (b) Schema of and its tensor-border (mesh of BB-
coefficients) of degree 3 and depth 2. The tensor-border is the input for the rapid
surface construction.

We consider as input a network of quadrilateral facets, quads
for short. Nodes where four quads meet are regular, else irregu-
lar. We assume that each irregular node is surrounded by at least
one layer of regular nodes. Fig. 5a shows the c-net (bullets) of an
isolated node of valence n = 5. The c-net consists of the irregu-
lar node plus 6n nodes forming two layers of quads surrounding
it. Typically a third layer is added for evaluation of local shape
(yielding the green surface in Fig. 5b). This allows assessing the
highlight line distribution [11] across the transition which is as
important as the internal quality of the cap.

Each 4 X 4 sub-grid of nodes is interpreted as the B-spline
control points of a bicubic tensor-product spline surface. Ex-
cept at the irregular node, well-known formulas can be applied
to convert the B-spline form to Bernstein-Bézier form (see e.g.
[12, 13]). The tensor-product Bernstein-Bézier (BB) form of bi-
degree d is

d d
pawv) = > > py BB,
i=0 j=0

(u,v) € J:=[0..1]%, where B(t) := (Z)(l —1)d7kfk

are the Bernstein polynomials of degree d and p, ; are the BB co-

efficients. Fig. 5b also shows the C? prolongation of this surface
ring, i.e. Hermite data represented as a grid (black) of bi-3 BB-
coeflicients. Specifically, the BB-coefficients p;;, i = 0,...,3,
j=0,...,2, represent Hermite data of order 2 along one bound-
ary curve v = 0. We call these data tcc. More generally, in the
remainder of this paper we refer to second-order Hermite data of
degree d > 3 along the loop of boundary curves as t.

2.2. Corner jet constructor and related operators

We will construct the tensor-product patches and tensor-
borders with the help of corner jet constructors in BB-form.
A corner jet constructor [f]¢ expresses, at a corner of domain
square [0..1]%, the expansion of a function f of order 2 in both u
and v directions in BB-form of bi-degree d. That is, [ f 14 outputs
3 x 3 BB-coefficients (see Fig. 6a,b). (This geometric interpreta-
tion of the BB-form is one of the main reasons for its wide-spread
use.) Fig. 6¢c displays four corner jets [f]* merged to form a bi-4

patch by averaging the overlapping BB-coefficients. Fig. 6d il-
lustrates the analogous assembly of an L-shaped sector of tensor-
border of degree 4 by applying and averaging a jet constructor
Lf 1* at three corners.
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Figure 6: (a) Hermite data as partial derivatives converted to (b) BB-form. (c) A
patch of degree bi-4. (d) L-shaped sector of the tensor-border t of degree 4.

Fig. 7 illustrates BB-to-B-extrapolation: a bi-3 B-spline con-
trol point (marked as e) is defined as a weighted average of inner
BB-coefficients (marked as circles). The weights 8; := ﬁ for
a knot sequence #; in u are the ratios of adjacent knot intervals
Ai_; and A;. The analogous weights for v are 8 ;. The extrapo-
lation will be used to construct local B-spline control nets when
the inner BB-coefficients do not belong to C?-connected patches.
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Figure 7: BB-to-B-extrapolation: a B-spline control point e derived from the
inner BB-coefficients o of a bicubic Bézier patch.

Several steps of the surface construction use a simple rule.
Consider two curve segments in BB-form of the same degree
and whose consecutive domain intervals have the ratioo : 1 — 0.
The two segments join C? at their common end-point (marked as
a big bullet in Fig. 8) if and only if the BB-coefficients immedi-
ately to its left and right (small circles indicated by |) are defined
as a weighted average of the bullets with the displayed weights,
where

1
ey = B ,61.—2(1_0_),
and &;,i = 0, 1,2 are obtained from e;_; by replacing o by 1 — 0.
We call this averaging the C2-rule.

Fig. 8b displays the weights for the left circled BB-coefficient
in case of equal lengths, i.e. o := % (the right BB-coefficient is
defined by the mirrored formula). We refer to this special case as
symmetric C2-rule.

er:=1—-¢y—ey, (D)
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Figure 8: (a) General and (b) symmetric C? rule.
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Figure 9: Cc? joining cubics bf, i=0,...3,s=0,1,2, defined over the intervals

of lengths A;, where 2—(‘) =1, 2—? =p.

In bi-3 constructions with 3 X 3 macro-patches we use the ar-
rangement of three C2-connected cubics displayed in Fig. 9. The
BB-coeflicients b?, bl.z, i = 1,2 (small bullets in Fig. 9) uniquely
define three C? joining cubics b’, b!, b%:

I
b =5 (A0 + A B+ 39T+ (1 + A)b] — b3

by :=bJ, b} := 2b] — b), b, := 4bJ — 4bJ + bY; (2)

1
b} :=m(,8b§ +b7), b} :=b} .

For 8 := 1 we call this assignment CS2-rule(1), for 5 := i CS2-
rule(%).

2.3. The guide surface g

Since the guided subdivision surfaces follow the shape of a
guide surface, its quality is of paramount importance. Among
several choices of good quality, we select the G! bi-5 guide g
derived in [14]. For completeness and to motivate the reparame-
terizations and the eigen-structure of the resulting guided subdi-
vision process, we reproduce its main points below.

Maps of total degree d We will use maps b” of total degree
d whose domain is a regular n-gon D composed from n equal
triangles with a common vertex O at the origin. Fig. 10a shows
one such triangle with sides defined by /; = 0, i = 0,1,2. Each
linear barycentric coordinate function /; is equal to 1 at the vertex
opposite to /; = 0. On the triangle we define a map b of total
degree d in Bernstein-Bézier form as

d\,.
b= Z bijBly. ks, Bf_’ikzz(ijk)lol{l’g. 3)
i+ j+k=d

Fig. 10b labels the BB-coefficients rotationally symmetric. Let
C = Cos 27” Pieces on adjacent sectors b* and b**! join

0 : s+1 — .
Cif bylii0=baiop  i=0..d @)
1: s+1 _ N s
Cif byl =-bgyi +2¢b, 0, ®)
+2(1-0by 11> =l
2 s+1 _ RS s
Coif byl 5y =byn; 0 —4Ch, (©6)

+4c™b)_ o — 40 —0b)_, 1

+ 8c(1 - C)bjl—i+l,0,i—l +4(1- C)zbfl—i+2,0,i—2’

across the sector boundary between patch s and patch s+ 1 (mod-
ulo n), s € {0,1,...,n — 1}. The six BB-coefficients b?jk (in-
dicated as red bullets in Fig. 10) define a quadratic expansion
q at the central point b200' This local expansion is propagated
to the neighboring sectors by repeatedly enforcing Eq. (4) for
i=0,1,2, Eq. (5)fori = 1,2 and Eq. (6) for i = 2. That is,
the b?jk define a unique quadratic expansion of the C' map b* at
b200' The 6 red bullets are unrestricted by C? continuity at the
central point and 6n black bullets are unrestricted by C! conti-
nuity between sectors. The BB-coefficients forming the vertices
of the gold triangles in each sector are unrestricted due to their
distances from the sector boundary.

lh=0

(a) domain

Figure 10: (a) Domain of total degree d map. (b) The n = 5 sectors of the
C! map b? of total degree d = 5. The ’light red” shaded region indicates the
quadratic expansion at the center. The BB-coefficients that remain unrestricted
when enforcing C! constraints are marked as black and red bullets; the ’gold’
underlaid BB-coefficients do not affect C! continuity between sectors.

Linear shear map L

We denote by L the linear shear that maps a unit square to the
unit parallelogram with opening angle 27” as illustrated Fig. 11.
To increase the flexibility of b* we set for each sector

g:=b%oL.

Figure 11: Increasing the flexibility of b via linear shear L.

Then, see Fig. 11, along the sector boundary the gray-
underlaid BB-coefficients of the C! map b” determine the corre-
sponding gray-underlaid BB-coefficients of G' map g. But while
each sector of b* has only three coefficients not influencing C'!
continuity between sectors, each sector of g has 16 coefficients
(magenta bullets) that do not influence G' continuity of g. These
coeflicients provide valuable extra degrees of freedom. There-
fore the guide g has a total of 16n + 6n + 6 = 22n + 6 degrees
of freedom. These are set as the least-squares solution as in [15].
The result is efficiently stored as a matrix expressing the guide’s
BB-coefficients in terms of the input c-net.

2.4. Synopsis of Guided Subdivision
The idea of guided subdivision [16] is to separate shape find-
ing from the mathematical smoothness constraints of the final
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Figure 12: Guide and subdivision. (a) The extended c-net defines a bi-3 surface
ring (b) and the guide (c). The guide does not precisely match the surface ring.
(d) Overlay of surfaces. (e) Gold ring derived from (b) and (c), then cyan from
gold ring and (c), etc..

output surface. In the guided approach, one first decides the
shape. The guide and shape are based on the surrounding sur-
face ring Fig. 12b. The guide surface Fig. 12c need neither be
smooth everywhere nor exactly match the surrounding surface
Fig. 12d. Guided subdivision then uses the flexibility of the se-
quence of subdivision rings (see Fig. 13) to smoothly connected
to the surrounding surface and between rings while absorbing ex-
tra degrees of freedom by closely approximating the guide shape
Fig. 12e. [1] focuses on the trade-off between shape and com-
plexity for increased smoothness between the rings at standard
contraction rates. Bi-3 surfaces are not considered. Extremely
fast contractions, at the cost of surface rings higher polynomial
degree, were introduce in [2]. The guided approach has also
been used to improve the visible shape of singularly parameter-
ized surfaces [14]. Just like the proposed subdivision surfaces,
singularly parameterized surfaces facilitate adaptive refinement
and (isoparametric) analysis on surfaces. However, such surfaces
have pinched highlight line distributions near the singularity, vis-
ible under zoom.

Figure 13: (left) Subdivision surface built from (right) a sequence of contracting
surface rings

3. Characteristic parameterizations for sampling the guide g

The subdominant eigenvalue of bi-3 adjustable speed subdivi-
sion [KP09] with ’speed’ parameter o € (0..1) and 6 := 1 — o
is

Ay = %((1 + c)o-2 +20 + o-\/(l +c)(1 +c)a? +45), (1)

For o := % adjustable speed subdivision coincides with Catmull-
Clark subdivision.

(a) o =% (CO)

(b) o:
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Figure 14: (a,b) yo; (c,d) corresponding ¥o-.

Fig. 14a,b display characteristic maps y, for one sector and
n = 5. Fig. 14c,d display the corresponding characteristic tensor-
borders ¥, of degree 3 and depth 2. In the classical analysis of
Catmull-Clark subdivision these tensor-borders are not empha-
sized since the maps y, already contain the key analytic infor-
mation. In guided subdivision, however, the tensor-borders .
are in the forefront. The gray underlaid BB-coefficients of y.
are the result of splitting ¥, in the ratio o : & (see Fig. 14b).
We consider normalized maps and tensor-borders where the cor-
ner BB-coefficients (marked as diamond in Fig. 14a) are at the
distance 1 from the red center. While different o result in dif-
ferent maps y.-, their tensor-borders ¥, although slightly differ-
ent, look alike. This allows switching to a well-behaved rapidly
contracting guided subdivision with o := % for input tcc where

(b)

Figure 15: (a) One sector of the transformed characteristic tensor-border; (b)
scaled sampling. The origin is marked red.
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Figure 16: C? corrected tensor border f.

We jet-sample the guide g with 7" := L' o ¥ in each sector
at the locations marked as crosses in Fig. 15a. The contracting
guided rings are formed from jets [g . ,?D]d, r=1,...,1, for
fixed o7; [ is a maximal anticipated refinement level. Computing
[g o (AFD)]? is equivalent to linearly mapping S : [0..1]* —
[0..4]? and sampling (g o S) o ¥; Fig. 15b shows ¢~ and its
scaled copy A¢". DeCasteljau’s algorithm at u = 1 = v yields
the BB-coefficients of g o S as the affine combinations of BB-
coefficients of g. These are tabulated as an affine 6> x 62 map
(matrix). Jet-sampling symbolic input with {5 at the locations
marked as crosses in Fig. 15a yields three pre-calculated 9 x 62
affine maps that express the BB-coefficients of 3 X 3 corner jets
as affine combinations of BB-coefficients of a sector of guide g
for an intermediate step of guided subdivision.
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Figure 17: Construction of C? bi-4 surfaces.

4. Biquartic guided surfaces

In this section, we denote by t” the tensor-border assembled as
in Fig. 6d, from jets [g o (A”¢7)]*. Since the sectors of the guide
g are G' connected, the sectors of t” are C' connected. Applying
the C2-rule joins the sectors C2. The C? tensor-border is called
1", Fig. 16 (1" is also used for variants when constructing S 42"3 be-

low). We choose o := % as contraction speed, i.e. twice the speed
of Catmull-Clark-subdivision. As introduced in Fig. 2, we ab-
breviate as § f,p a Ck-sequence of subdivision rings of degree bi-d

using p patches per sector. S indicates double the contraction
speed.

Sig: For the patch layout of the bi-4 rings displayed in
Fig. 2e, the BB-coefficients of ring x” marked as gray bullets
in Fig. 17a are the split C?> prolongation of x'~'. If r = 0,
the gray bullets represent a degree-raised and split input tensor-
border tec. The circled BB-coefficients of t"*! of Fig. 17b are set
to those marked as black bullets in Fig. 17a. Then every second
BB-coefficient (marked as big hollow square in Fig. 17a) is deter-
mined via the general C2-rule from the nearest BB-coefficients
marked as black and gray bullets. BB-coefficients marked as

small hollow squares are determined with the help of data from
adjacent sectors via the symmetric C2-rule. This automatically
provides the C? prolongation for the next ring of Sﬁ 3

r+1

(a) C! case
fr+l
-1/4
3/4
= 3/4
r
t -1/4
(b) C? case

Figure 18: Construction of bi-4 surfaces: (a) C' (b) C> made uniform by choos-
ingo := %
S}m: With the same layout as for § 3’3 the dark-gray under-
laid BB-coeflicients of x” (bottom,left in Fig. 18a) represent the
split tensor-border t. If r = 0, they represent the degree-raised
and split input tensor-border tcc. The light-gray underlaid BB-
coefficients extend t*! backwards so that X" joins C! with £"+!.
We call these surfaces §41t,3'

Si 8 We can join consecutive rings C> by increasing the
number of patches. As displayed in Fig. 18b, dark-gray underlaid
BB-coefficients of X" match the tensor-border t” (tc¢ for r = 0)
and the light-gray underlaid BB-coefficients extend ! back-
wards so that X" joins C? with t*!. In the stencil of Fig. 18b,
right, the smaller bullets determine the boundary BB-coefficient
(big black bullet). The symmetric C2-rule then determines the
hollow squares. The resulting two once-split patches and the 2x2
corner patch per sector of X are now joined C? and each macro-
patch is internally C3.

Implementation.. Simple formulas define the BB-coeflicients of
the bi-4 rings in terms of the tensor-border {, i.e. splitting {,
C'/C? prolongation and applying the stencil of Fig. 18b. The
tensor-border £, too, is defined by simple formulas in terms of t:
for § 3‘3 the C2-rules and splitting the previous t; for § 41L3 and § 42‘!8
the symmetric C2-rule. Therefore only the part of t used to define
tis tabulated as a 6 x 6% matrix for $ 2’3 and a 12 x 6> matrix for

S 41&3 and § 42t,8‘ In summary, we tabulate the guide, de Casteljau’s

splitting of one sector and the linear sampling process so that the
algorithm reduces to matrix operations.
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Eigen-structure and continuity.. Starting with the ring x°, S,
and § i ¢ inherit the ‘eigen-structure’ of the guide g and are cur-

vature bounded C! (see the Appendix).

The C? bi-4 splines S 421,3 are less local in that the black BB-
coefficients sampled from t¢c impact all subsequent rings. Since
the construction is guided this ’traveling’ data does not nega-
tively affect the shape of the surfaces. But it does affect the al-
gebraic structure: the surfaces does not inherit the guide’s eigen-
structure. Nevertheless, the second part of the Appendix shows
that these surfaces are C' and have bounded curvature at the ex-
traordinary point.

5. Bicubic guided surfaces

For comparison with the bi-4 surfaces of Section 4, we explore
three bicubic constructions that are C? except at the extraordinary
point where they are C! and curvature bounded. Fig. 19 shows
the split macro-patches: 2x2 and 3% 3, uniform and non-uniform.

] ]

(2) S%,lz (©) S§,27

Figure 19: One refinement step of a sector of bi-3 rings with (a) regular speed S
and (b) double speed S . Ring x” dark-gray, ring x"*! light-gray.

For the first two constructions below we use the corner jet con-

structors [g o (1"*! )2':')]3 restricted to half the domain (i.e. scaled
by 1/2), see Fig. 23a. Here A is the subdominant eigenvalue of the
subdivision (with Catmull-Clark speed in Fig. 20a,b and double
speed in Fig. 20c,d). Using BB-to-B-extrapolation, averaged at
overlapping locations as shown in Fig. 23b yields control points
B" marked as black disks in Fig. 20a,c. (B" is key to keeping the
contracting rings X', r = 0, 1, ... close to the guide.)
S35, Choosing o := § yields %~ of Catmull-Clark-
subdivision and 8 = 8 = 1 in the BB-to-B-extrapolation of Fig. 7.
Fig. 19a shows the refinement. When r = 0 the gray bullets A°
in Fig. 20a represent the twice-refined input c-net. Together with
B, they define the ring x° that joins C? with the input data tcc.
Refining A° U B yields the gray bullets A' in Fig. 20b); together
with B! they define x'. Repeating the process, A" and B" define
x"; and x” and x"*! are C?-joined.

§2,,:  Combinatorially the construction is identical to 2 ..
However now A and ¢ correspond to subdivision with param-
eter o = %. The parameters 8 and 5 of the BB-B conversion

result from the local knot sequences displayed in Fig. 20c; due
to symmetry with respect to the sector-diagonal the formulas are
alike for u and v and due to rotational symmetry for all sectors.
Fig. 20d shows the red inserted knots to obtain the refined (light-
gray) B-spline control points.

Sg,m: Let t” be the tensor-border of degree 5 assembled from

jets [go (A" ¥)1° (see Fig. 21a) and T its C? correction as in Sec-
tion 4, Scaling to 1/3 at the domain corners and re-represented in
bi-3 form, yields the three 3 X 3 arrangements of BB-coefficients
marked as bullets in Fig. 21b. Applying to each layer of BB-
coefficients CS2-rule(1) yields a piecewise C? tensor-border t’.
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Figure 20: (a,c): The B-spline control points A” U B” of x" (dark-gray in Fig. 19)
are refined to form A™! of ring x"*! (light-gray in Fig. 19). If r = O then the
light-gray bullets represent part of the twice-refined input c-net that defines an
appropriately split input tensor-border tcc. (b,d): A™! (light-gray bullets) are
determined from A” U B” by refinement. B'+! (black bullets) drive the refinement
based on the guide g.

This " is split first at the black tick marks then at the red tick
marks in Fig. 21c,d. The different ratios yield t", respectively
t". The constructions of x” from 3 X 3 macro-patches in Fig. 22

®

(a) t" (b)

(c) t @ t

Figure 21: (a) Sampled tensor-border t” of degree 5 (b,c,d) piecewise C? tensor-
borders of degree 3.

are similar: the light-gray underlaid part of x” is defined by C2-
connection to the tensor-border t'*!. When o := % the dark-gray
part of X" is a tensor-border t" while for o := 3, it is {". The
macro-patches adjacent to sector separating lines are completed
from their boundaries (dark- and light-gray) by CS2 — rule(1)
when o := { and CS2 - rule(}) when o := 2. The inner macro-
patch is obtained by tensoring the CS2-rule(1) when o := % and

the CS2-rule(}) when o := 3.
5.1. Implementation

The main novelty compared to standard bi-3 subdivision is the
computation of the B". The corresponding formulas are tabulated
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Figure 22: Construction of the rings x".
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Figure 23: (a) The sampled bi-3 corner jets after scaling (scaled re-sampling).
(b) Averaging B-spline control points.

for one sector for each scheme and valence n. For S 3’12 and § %,12
the formulas for the ’inner’ B-spline control points ,
-cyan, -blue and -cyan-blue bullets and for two
points of each the sector separating line (cyan and blue B-spline
control points before averaging) are collected in a 8 X 6> ma-
trix that expresses the 8 points as affine combinations of the BB-
coeflicients of one sector of the guide g. (4 of the pre-calculated
points are subsequently averaged.)
Since the BB-coefficients marked as o in Fig. 21b can be ob-
tained by the symmetric C2-rule (using BB-coefficients of adja-
cent t sectors), for S %)27 and § ;27 we pre-calculate (the 18 black

circles of) t as a matrix of size 18 x 6. In summary, we tabulate
the guide, refinement of one sector by de Casteljau’s algorithm
and the last-mentioned control points so that the algorithm re-
duces to matrix multiplication.

6. The central caps

Since applications rarely require more than 6 refinement steps,
we complete the presented guided subdivision surfaces by a cap
that does not compromise the good highlight line distribution of
the main surface, even under magnification. We call this cap tiny
since it fills a hole left after s subdivision steps and s is the max-
imal refinement needed for a given application. For low valence
and double speed the radius of an enclosing sphere is approx-
imately 47° times the radius of the sphere enclosing the initial
hole. The tiny cap also samples the guide via a reparameteriza-
tion that determines the cap’s structure.

Fig. 24 shows the layout of bi-3 and bi-4 caps: each sector
is covered by a 2 x 2 or 3 x 3 macro-patch, internally C' and
G'-connected to the adjacent macro-patches. The caps have a
well-defined curvature at the central point. But while the bi-4
cap is C'-connected to the last guided ring, the bi-3 cap formally
is only CP-connected to the main surface. As [17] showed C°

continuity does not prevent high surface quality. Indeed, experi-
ments indicate that a slight deviation from C' continuity is likely
necessary for high quality finite bicubic surfaces. Various for-
mally G' finite bicubic constructions lead to far worse outcomes.

(a) bi-4 cap

(b) 2 X2 bi-3 cap

(¢) 3 x3bi-3 cap

Figure 24: The gray underlaid BB-coefficients are involved into G! join of adja-
cent sectors. The green underlaid BB-coefficients are involved into C° (bi-3) and
C! (bi-4) join to main body of a surface.

7. Examples and Comparisons

In this section we compare the new guided subdivision sur-
faces with classical Catmull-Clark-subdivision [5], as well as its
curvature-bounded variant [8]. The comparisons confirm that
both Catmull-Clark and [8] subdivision surfaces have problem-
atic highlight line distributions. For Catmull-Clark we observe
the typical pinching of highlight lines near irregularities. Tuned
curvature-bounded variants such as [9, 18, 19] are aimed at im-
proving the limit shape not the shape of the larger neighborhood.
Their characteristic maps hint at slow convergence and artifacts
in the larger neighborhood.

Of the published guided subdivision algorithms, we only com-
pare to one with singularly parameterized caps [14] since for
[16, 3] the differences in highlight line distributions and cur-
vature are minor. Compared to [16, 3] the advantages of new
approach are efficiency and suitability for engineering analysis.
Increased stencil complexity is the price all guided subdivision
algorithms pay for increase surface quality.

In all examples the input bi-3 ring is green and the quality is
measured by the designer-preferred standard of highlight lines
[11]. Fig. 25 and Fig. 26 compare bi-cubic constructions to
Sabin’s scheme for low-valence input n = 3,5. Despite fewer
rings, guided subdivision has a better highlight line distribution.
Fig. 27 additionally looks at Gauss curvature. Fig. 27g shows the
last guided ring and the cap of § ‘2‘!3. To be able to compare, we

generate additional rings Fig. 27e for the slower S%,IZ and many
more rings to make the remaining hole sufficiently small to dis-
play the surface of [8].

- MR

@n=3c () [8] @ S35,
net

(c) layout

Figure 25: (a) Input c-net. (b) The highlight lines [8] surface show shape artifacts
similar to Catmull-Clark-subdivision. (c,d) Structure and highlight lines of S % 2
four guided rings + tiny red bi-3 cap.

Fig. 28 shows how bicubic constructions are more sensitive to
inter-ring smoothness than biquartics. While the bi-4 surfaces
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Figure 26: (a) Input net (classical two-beam corner). (b) While the limit is better
than that of Catmull-Clark-surfaces, [8] neglects the transition ring. This results
in poor highlight line distribution. (c) Layout and highlight lines of S %,12 with six
guided rings + tiny red bi-3 cap.
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Figure 27: (a) Input c-net. (b) Structure of o := % surfaces: three guided rings
+ tiny red cap. (c,d) Highlight lines on last two rings + cap. bottom row: Gauss
curvature.

§}5 and 87 ; (respectively C' and C?) are visually indistinguish-
able, a C! bi-3 construction (analogous to § }13) with 3 patches

per sector is clearly inferior to the C? construction § ;27 using 27
patches.

Compared to our constructions, the algorithm in [14] (see
Fig. 29c¢,d) requires additional pre-calculation and storage since
its last two rings are special. To hide the singular parameteriza-
tion of the surface cap, the algorithm in [14] generates several bi-
3 guided rings contracting at the standard Catmull-Clark-speed
Fig. 29d. At the expected maximal refinement, the highlight line
distribution appears visually artifact-free Fig. 29¢. Only extreme
zoom reveals slight oscillations Fig. 29d compared to the new
degree 3 variant Fig. 29e. Fig. 30 shows that guided subdivision
copes well with complex geometry and high valence.

8. Discussion: C! vs C?, bi-3 vs bi-4

Sampling a locally reparameterized guide of good shape yields
high quality refinable surfaces of low degree, namely the bicubic
and biquartic C? subdivision surfaces whose limit at the extraor-
dinary point is C' and curvature bounded. The highlight lines
of the new C! bi-4 subdivision surfaces are difficult to distin-
guish from their C? counterparts; and completing the subdivision
by tiny G'-C' bi-4, respectively or G'-C° bi-3 caps preserves
the quality even under zoom. This observation agrees with [20]
where it was pointed out that since curvature behaviour is not
central to many practical measures of surface quality, the strin-
gent requirements for curvature continuity can be relaxed. The
extra freedom can be used to improve practical measures.

(c) Catmull-Clark
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Figure 28: (a) Input c-net, n = 7. (b) 0 := %, four rings + red tiny cap. (bottom
row) Highlight lines of the last three rings + cap of (c) C! bi-3, (3 patches per
sector); (d) C2 bi-3, 3 x 3 macro-patches; (e) C' bi-4, (3 patches per sector).

Compared to pre-existing bi-3 subdivision algorithms the
highlight line distribution of the new bi-3 guided constructions
is clearly better. This may be due to several reasons. First, tun-
ing conventional subdivision (varying input parameters) is aimed
at improving only the limit behaviour without consideration of
the neighborhood. Second, guided subdivision focuses on shape
without concern of the mathematical properties of the limit —
since the analytical properties of the limit are a priori known
from subdivision theory [21]. Third, unlike algebraic tuning,
guide sampling is geometrically predictable. This includes the
desirable control over the contraction speed.

Some applications, for example implementing iso-geometric
engineering analysis, favor a uniform degree throughout. For
these purposes, the new degree bi-3 surface constructions rep-
resent a step forward. However, the experiments indicate that
smoothly connected bi-3 B-spline surfaces are more constrained
in multi-sided configurations; and the systematic comparison in
this paper shows that even 3 X 3 macro-patches of degree bi-3 fail
to match the quality of a single bi-4 patch. This is especially true
when the convergence is accelerated to reduce the overall number
of patches. Bi-4 surfaces yield both simpler algorithms and better
highlight line distributions. C' and C? guided bi-4 surfaces are
remarkably similar: the highlight lines of $3, and §} ;, shown in
Fig. 2e, are visually indistinguishable. By contrast, in bi-3 subdi-
vision, replacing C? (hence 27 patches per sector, cf. Fig. 4c, 2d)
with C'-connected rings (hence 3 patches) drastically decreases
surface quality (see Fig. 28).

9. Conclusion

A side-by-side comparison, showed that multi-sided holes can
be filled by polynomial rings of degree bi-4 with good highlight
line distribution quality even when the number of rings is de-
creased by increasing the ‘contraction speed’. Extensive exper-
iments show double-speed contraction to typically be the max-
imal speed to retain good shape. = Moreover, when reducing
the formal mathematical smoothness of the patchwork to cl,
shape and eigenstructure of the guide are preserved. The com-
parison also indicated that exclusively bi-3 surfaces have notably
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Figure 29: (a) Input c-net, n = 6. (b) pinched highlight lines characteristic of
Catmull-Clark subdivision. (c) At this resolution the highlight line distribution
of Si 5 and the construction in (d) look identical. (d) 4 rings of § % »7 followed by
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Figure 30: The pinching of highlight lines for Catmull-Clark is absent for § i 3
(4 guided rings + cap).

poorer highlight line distributions. Bi-4 construction is therefore
likely the least-degree to provide curvature-bounded subdivision
surfaces with consistently visually non-oscillating highlight line
distributions.  The reasons for the strong quality decrease be-
tween bi-3 and bi-4 surfaces are only partly understood. Both bi-
4 and bi-3 guided subdivision with adjustable contraction speed
have linear and stationary subdivision rules that can be written
as large subdivision stencils. The cost of a large stencil over
traditional small-stencil subdivision is offset by much improved
surface quality.
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Appendix: Analysis of the Subdivision Scheme

First we observe that the guide g is a superposition of homo-

geneous functions. The Bernstein polynomials Bf, := (Oj{k)l{ 5

are homogeneous of degree d; for any A, ngk(/lx) = /lngjk(x).
Consequently ngk oL, of degree jxk, is homogeneous of degree
d and for any 4,

(BY . © L)(Au, Av) = 2Y(Bg; o L)(u, v).

Homogeneity is not affected by constraints (4—6). Therefore, if
we set one unconstrained BB-coefficient to 1 and the others to 0,
the resulting g is homogeneous in all sectors. This yields an ex-
plicit basis of homogeneous functions of the guide g. We count 6
functions of quadratic expansion, 6n functions that are non-zero
on two adjacent sectors and n groups of 16 functions that are
non-zero in only one sector (with the superscript indicating the
degree, (d,ijk) ~ Bf’jk o L: (4,022), (5,032), (5,023), (6,042),
(6,033), (6,024), (7,052), (7,043), (7,034), (7,025), (8,053),
(8,044), (8,035), (9,054), (9,045), (10, 055)). Scaling the argu-
ments of g by any A therefore scales n, many basis functions by

2345678910(8)
3 2n 3n 4n 4n 4n 3n 2n n

The rings x” are fully defined by the guide g and inherit the
guide’s homogeneous decomposition. Here r > 2 of S %,12 and



Squlz and r > 1 for S§,27’ S‘}m and SA'iS. We denote by X;z,p the
rth ring obtained by applying the constructions of Section 5 to
the pth homogeneous function f;, of degree d. By construction,
X;,p = (Ad)"zxéyp.

Since the linear combination of the two homogeneous eigen-
functions of degree 1 reproduce y and since y is injective (see
[21] for original Catmull-Clark and [22] for general o), the
eigen-spectrum implies that the bi-3 guided subdivision surfaces
are C' and their curvature at the extraordinary point is bounded.
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Figure 31: (a,b) Geometric background of the subdivision matrix. (c) The blank
sub-matrix is zero.

Properties of §3 ; Two groups of control points define $7 .
Group Q, has 6n independent BB-coefficients marked as black
diamonds in Fig. 31b. Group G has 22n + 6 independent BB-
coeflicients defining the guide g. (Recall that the black bullets in
Fig. 31a,b are averaged samples of the guide g. Fig. 31b recalls
the construction of wa and Fig. 31a displays the tensor-border

t constructed in the previous step.) Since some entries of Q de-
pend on G, some entries of the subdivision matrix are dependent.
(This dependence between the groups should not be conflated
with the linear independence of the degrees of freedom for mod-
eling or engineering analysis that each new ring provides.) Inde-
pendence of entries in the subdivision matrix is fortunately not a
requirement for subdivision theory [21]. We only need stationary
refinement rules, i.e. an unchanging subdivision matrix. Indeed
the refinement rules are unchanging. (i) de Casteljau’s algorithm
shrinks the domain of g so defining a finer sub-matrix G*. (ii)
The Q (diamonds in Fig. 31b) are obtained by splitting the f con-
structed in the previous step, see Fig. 31a. (iii) The averaged
sampling from g defining the black bullets and the completion
of T are always the same. That is, Q% is always derived from
G and Q by unchanging rules, i.e. the subdivision is stationary.
(Linearly dependent G and Q are introduced only to prove C'
continuity at the limit point. Engineering analysis does not use
these groups but linearly independent eigen-functions described
earlier in this Appendix.)

Fig. 31c shows the block structure of the matrix. The sub-
matrix for group G has the eigenstructure of g and hence the
eigenvalues listed in (8). Since the upper right 61 X (22n + 6) sub-
matrix is zero, the lower left part of the matrix is irrelevant for
calculating the eigenvalues. The eigenvalues of the 6n X 6n sub-
matrix corresponding to Q have absolute value less than A2. The
linear homogeneous functions of the guide determine the eigen-
functions corresponding to the eigenvalue A and the construction
reproduces the characteristic map y. Together this implies that
S 421’3 surfaces are C! and curvature bounded at the extraordinary
point.
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