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Abstract

Enriching tensor-product B-spline control nets by allowing T-gons (where strips of quadrilaterals start or end) and
irregular nodes (where n 6= 4 quadrilaterals meet) reduces the requirements on quad-meshing and increases the flexi-
bility for polyhedral design with associated smooth surfaces. This paper introduces a family of piecewise polynomial,
geometrically continuous surface constructions that yield good highlight line distributions also in the presence of ir-
regular nodes next to a T-gon. Such tight juxtaposition can further reduce the quad-meshing requirements and increase
the space of polyhedral design control structures. The surfaces can be chosen to cover T-gons with G1 caps of degree
bi-4 – or with caps of degree bi-3 that are almost G1 and preserve the good highlight line distribution of the bi-4 G1

surfaces.
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(a) input net (b) refined net (c) BB-net + surface (d) highlight lines

Figure 1: Modeling with T-gons despite nearby irregular nodes. (a) Input control net with red T-gon and neighboring irregular nodes of valences
3, 5, 6. (b) T-refined input net. (c) Surface with Bernstein-Bézier net overlaid: bi-3 regular, bi-3 transition, bi-4 cap, and bi-4 multi-sided: n=3,5,6.
(d) Zoom to the transition and cap for the everywhere bi-3 almost-G1 construction: just like for the bi-4 construction, the highlight lines (see Beier
and Chen (1994)) across the surface do not reveal the location of the T-gon.

1. Introduction1

Extra freedom to model detail can be added to tensor-product spline surfaces by locally inserting additional knot2

lines. However this assumes a careful, strictly hierarchical surface design that globally keeps track of knot distances3

to assure compatibility. If the layout of the control net is given, by a prior model or by a designer using a polyhedral4

modeler, such a global knot distribution has to be discovered; and it may not exist as simple examples demonstrate,5

e.g. Fig. 2 of Karčiauskas et al. (2017).6

A change in density can be indicated by a control net where a 4-sided facet, short quad, has one or more split7

edges. At the split point two quads on one side meet one facet on the other. This configuration is called a T-junction.8
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Meshes with T-junctions can arise from remeshing existing polyhedra, or by direct design. An m-gon, m > 4, in a9

quad-dominant mesh will be called T-gon if all its vertices are either T-junctions or of valence 4, and if it is surrounded10

by quads. The three practically relevant cases are: the T1-gon with one T-junction (a pentagon Fig. 2a), the T2-gon11

with two T-junctions (a hexagon Fig. 2b), and the T3-gon with three T-junctions (a heptagon Fig. 2c). The T-gon and12

its surrounding layer of quads is called τ -net, or localized T-net. As opposed to the more expansive T-net required in13

Karčiauskas et al. (2017), the τ -net has no restrictions on the nodes that do not belong to the T-gon. That is, all mesh14

nodes marked as red disks or circles in Fig. 2 can be irregular, i.e. have more or fewer than four neighbors, and still15

admit a smooth surface. If any of the solid red disks are irregular, we call the configuration tight.16

Allowing tight configurations reduces complex and global constraints of strict quad-meshing (Bommes et al.,17

2012; Vaxman et al., 2016) to simpler, more lenient ones (Li et al., 2006; Alliez et al., 2003; Kälberer et al., 2007;18

Jakob et al., 2015; Pietroni et al., 2016).

(a) τ1-net (b) τ2-net (c) τ3-net

Figure 2: T1-gon, T2-gon T3-gon with respectively 1,2,3 T-junctions Points marked as red disks may be irregular for a τ -net, but must be regular
for GTKPP. Points marked as red circles may be irregular in both cases.

19

There are several options to merge strips of tensor-product, quadrilateral patches; or to spawn additional strips20

for introducing more detail. T-splines Sederberg et al. (2003) impose a knot distribution across the surface, and21

hierarchical constructions like hierarchical B-splines, PHT-splines and LR-splines Kraft (1998); Kang et al. (2015);22

Dokken et al. (2013) require a global planar parameter space. Alternatively, Catmull and Clark (1978) subdivision23

can convert a T-gon into a pattern of one m-valent and multiple 3-valent points, one for each T-junction. However,24

Catmull-Clark subdivision yields visible artifacts. These artifacts rule out the subdivision approach for high-quality25

surface construction.26

Another approach is to introduce rational singularities so that derivatives need not match. This is often called the27

Gregory-approach (Gregory, 1974; Loop et al., 2009; Hettinga and Kosinka, 2018). Unfortunately, as we explored28

new singular rational constructions for tight τ1-net configurations, we found that, akin to other singular constructions,29

such rational constructions suffer from shape defects (see e.g. Fig. 18).30

A third approach reflects the observation that switching density of control points is naturally associated with a31

change of domain variables, i.e. with geometric continuity. The geometrically smooth modeling of surfaces with T-32

junctions in Karčiauskas et al. (2017) yield aG1 (normal-continuous) and strictly local construction, the geometrically-33

smooth T-, hence GT -spline, whose highlight line distributions are satisfactory over an obstacle course of challenging34

T-net configurations. We abbreviate this construction asGTKPP in the following. However,GTKPP requires T-junctions35

to be isolated: all nodes marked by red disks in Fig. 2 must have exactly four neighbors36

Our approach improves on the GTKPP-construction, drastically reducing the requirements on the local mesh: the37

outer nodes of the first ring of quads surrounding the T-gon can all be irregular! This yields more flexibility for the38

designer, respectively reduced constraints on any quad-dominant meshing algorithm. For example, the new construc-39

tion allows tight configurations as in Fig. 1a that can not be modeled using GTKPP. The τ -net in Fig. 1a is extreme in40

that all five nodes adjacent to the T-gon that need to be 4-valent for GTKPP to work (red disks in Fig. 2a) are irregular.41

The resulting uniform highlight line distribution for this τ -net is remarkable since, when approached in a naive way,42

already any one of the five adjacent nodes being irregular creates surface quality problems. The complex configuration43

requires a judicious new localized refinement of the input net in the vicinity of the T-gon Fig. 1b and constructing a44

2



transition Fig. 1c to the central GT -spline cap.45

A second contribution of this paper is an alternative construction that provides the option of replacing the G1 bi-446

cap by a formally G0 bi-3 cap with essentially identical highlight lines and curvature distribution. Combined with47

the construction for irregular points from Karčiauskas and Peters (2015a) this allows us to generate everywhere bi-348

free-form surfaces with good highlight line distributions.49

A third contribution of this paper is a new approach for T2-gons. While a construction analogous to the T150

construction yields good results also for T3-gons, this type of approach fails for T2-gons. Instead, we carefully51

remesh the T2-net and leverage Karčiauskas and Peters (2015b) to obtain high-quality surfaces. In summary, the52

contributions of this paper are53

– a quality-preserving refinement of the input net in the vicinity of a T-gon to minimize the footprint of the54

construction;55

– a highlight line-preserving transition to the GT -spline cap;56

– a quality-preserving remeshing of T2-gons;57

– an everywhere bi-3 construction for free-form surfaces with T-gons and irregular points that yields good high-58

light line distributions.59

Overview. Sections 3, 4 and 5 present, respectively, the constructions of T1-,T3-,T2-surfaces, Section 6 evaluates the60

constructions, also in comparison to alternative Gregory-type patches.61

2. Definitions and Setup62

As in GTKPP, we will interpret regular sub-nets, i.e. quads surrounded by quads, two sharing an edge and four
a vertex, as bi-cubic uniform single-knot B-spline control mesh. And we represent the polynomial spline pieces of
bi-degree d (d = 3 or d = 4) that make up a GT -spline in Bernstein-Bézier form (short BB-form; see e.g. Farin
(1988)):

f(u, v) :=

d∑
i=0

d∑
j=0

fijB
d
i (u)B

d
j (v) , (u, v) ∈ [0..1]2. Here Bdk(t) :=

(
d

k

)
(1− t)d−ktk

are the Bernstein polynomials of degree d and fij are the BB-coefficients. The regular grid of BB-coefficients con-63

nected whenever their subscripts differ by 1 in exactly one subscript, is called the BB-net (Not to be confused with64

the much coarser T-net or τ -net defined in the Introduction that are akin to B-spline control nets de Boor (1978).) We65

refer to the switch from the B-spline control mesh to the BB-net as B-to-BB conversion. The algorithms presented in66

this paper effectively convert τ -nets to BB-form.67

We will join adjacent pieces, called patches, with G1 continuity. Patches join Gk if their cross-derivatives up to
order k match along a common boundary after reparameterization. More formally their kth-order jets (one-sided Tay-
lor expansion) match along their common boundary after a change of variables ρ. This characterization is equivalent
to formulations of Ck continuity of manifolds in terms of charts, see e.g. Peters (2002). Specifically, two surface
pieces f̃ and f sharing a boundary curve e join G1 if there is a suitably oriented and non-singular reparameterization
ρ : R2 → R2 so that the jets ∂k f̃ and ∂k(f ◦ ρ) agree along e for k = 0, 1. Although ρ is just a change of variables,
its choice is crucial for the properties of the resulting surface. Throughout, we will choose e to correspond to the
patch parameters (u, 0 = v). Then the relevant Taylor expansion of the reparameterization ρ with respect to v is
ρ := (u+ b(u)v, a(u)v) and the chain rule of differentiation yields the G1 constraints

∂v f̃(u, 0)− a(u)∂vf(u, 0)− b(u)∂uf(u, 0) = 0. (1)

3. T1-surfaces68

A T1-gon is a pentagon with one T-junction, see Fig. 2a. Since we will leverage the center cap of the construction69

GTKPP, we start by summarizing its main steps.70
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(a) T1-net (b) structure of bi-3 frame

xL xR

xL xR

xL xR

(c) bi-3 ring + bi-4 cap

Figure 3: Construction of T1 surface using GTKPP.

3.1. Review of the GTKPP construction for T1-nets71

Fig. 4a,b and Fig. 3 illustrate the steps of the GTKPP construction. Using a left or right bias, there are two ways72

to virtually reconnect the T1-net to the sub-nets sketched in Fig. 4a,b. B-to-BB conversion of these sub-nets yields73

the patches xL and xR of a bi-3 frame in Fig. 3c. The BB-coefficients marked as • in Fig. 3b C1-extend the top and74

bottom curves of xL and xR (scaled by 1
2 on top). The BB-coefficients marked as ◦ are crucial for good shape and are75

defined by special formulas published with GTKPP. The two remaining BB-coefficients are chosen to C2-connect the76

left and right pieces of the top boundary, respectively of the bottom boundary. The resulting frame of bi-3 polynomial77

patches is filled by a cap consisting of polynomial patches of degree bi-4 whose formulas are listed in Table 1 of78

GTKPP. Fig. 5b shows the surface together with the BB-net (cf. Fig. 3c). Frame and cap construction honor the79

distinction between the horizontal and the density-changing vertical direction. By contrast, direction-agnostic multi-80

sided constructions typically have shape artifacts at T-junctions (as demonstrated for CC in GTKPP ).

(a) (b) (c) refinement and averaging (d) refined net (e) bicubic transition ring

Figure 4: New localized τ1 surface construction. (a,b) virtual sub-nets after re-connection. (e) BB-coefficients of transition ring (gold in Fig. 5e).

81

(a) T-net (b) BB-net (c) highlight lines (d) refined net (e) BB-net

Figure 5: (a) Input T-net with red T-gon. (b) Construction of GTKPP: bi-3 frame and a red cap composed of two bi-4 patches. (c) highlight lines
of (b) and (e) are alike. New construction: (d) refined net; (e) gold bi-3 transition from the bi-3 input to the bi-4 cap of GTKPP.

3.2. T1-refinement and bi-3 transition82

B-spline refinement (subdivision) of the input net of Fig. 3a defines the B-spline control points marked as black83

bullets in Fig. 4c. The biased sub-net of Fig. 4a additionally defines the magenta and the biased sub-net of Fig. 4b84
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the cyan coefficients. At the circled overlapping locations in Fig. 4c the coefficients are averaged. This yields the85

T-refined net in Fig. 4d.86

The T-refined net defines, by B-to-BB conversion, an outer frame (green-underlaid in Fig. 5e) that matches second-87

order Hermite data along the outer boundary of the original bi-3 frame in Fig. 5b. We focus on the transition frame88

(gold in Fig. 5e). The BB-net of the transition frame and of the central cap are shown in Fig. 4e: the green-gray89

underlaid part of the transition frame C1 extends the outer frame; the inner red-gray underlaid part is obtained by90

splitting the original bi-3 frame of Fig. 5b. This guarantees G1 continuity with the bi-4 cap of GTKPP, i.e. the τ1-91

construction is complete if we accept a bi-4 cap. The following bi-3 cap construction will use the same bi-3 Hermite92

data as the bi-4 cap, i.e. the same transition frame.93

3.3. Constructing a bi-3 cap94

Bi-3 splines are widely used to model free-form surfaces. While any given surface could be re-approximated to
any desired precision by a quilt of C0-joined bi-3 patches, the following construction requires only four bi-3 patches
and minimally relaxes the G1 constraints to satisfy the practical prescriptions of Autodesk (2018) in the spirit of
(Sabin et al., 2003). To make the degree uniformly bi-3, the center cap in particular, we focus on the first-order
Hermite extensions of xL and xR. Fig. 6a labels the BB-coefficients of the xL extension. Splitting the extension
yields the BB-coefficients marked by circles in Fig. 6b. The C1 extension, scaled by 1

2 , of xL respectively xL appear
as green bullets in Fig. 6b. While the extension of xL agrees with the split extension of xL, the extension of xL does
not. Therefore the extension of xL must be reparameterized, see Fig. 6c, by

ρ0 :=u+ a0(u)v , a0 := B2
0(u) +B2

1(u) +
3

4
B2

2(u) ;

ρ1 :=u+ a1(u)v , a1 :=
3

4
B2

0(u) +
1

2
B2

1(u) +
1

2
B2

2(u) .

(2)

Treating the extensions of xR, xR, xR analogously, yields the construction as follows.

1

2

3

4

5

6

7

8

xL

(a) C1 extension

xL

xL

xL

(b) split extension

v

u

v

u

x0
L, ρ0

x1
L, ρ1

(c)

top

bottom

(d) BB-nets of the 2× 2 bi-3 cap

Figure 6: τ1-construction. (c) correspondance of split extensions and reparameterizations.

95

- The circled BB-coefficients in Fig. 6b define the first-order expansions xsL(u, v), s = 0, 1 along the boundary96

curve v = 0.97

- Since the first-order expansions of ys := xsL ◦ ρs are of degree 5, we convert [ys, ∂uys, ∂vys, ∂u∂vys], the98

Hermite data at the end points, to BB-form of degree bi-3.99

- The partial BB-nets are joined to form the left and right layers (underlaid orange-red in Fig. 6d) of the bi-3 cap100

with boundary curves matching xL and xR.101

- Since the layers of x0
L and x1

L are C1-connected, it suffices to pre-calculate the BB-coefficients marked ×, as
affine combinations of the BB-coefficients of the extension of xL (resp. xR). In the layout of Fig. 6a

4 8
3 7
2 6
1 5

, the weights for ×top in Fig. 6d are:
[
4 8
9 15
6 6
1 −1

]
/48 and for ×bottom:

[−1 1
0 12
3 21
2 10

]
/48. (3)
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- The 2 × 2 bi-3 cap is completed by setting the top and bottom blue-gray underlaid BB-coefficients in Fig. 6d102

by C1 extension with ratio 1
2 of the surrounding bi-3 frame and choosing the central curve, from top to bottom,103

to be a single cubic curve in two segments.104

- The BB-coefficients marked as hollow squares are set so that the horizontal layers are C2 connected.105

By construction, the lower and upper halves of the bi-3 cap are C1 connected and the left and right halves of the106

bi-3 cap are C2 connected. The cap is C1 connected to xL, xR, xL, xR. Along the left and right boundary curves107

the bi-3 cap is formally only C0-connected to the surrounding bi-3 frame. Testing the construction on a sequence of108

challenging inputs, we found the mismatch of normals to always be less than 0.1◦. According to the manual Autodesk109

(2018), a mismatch of less than 0.1◦ is acceptable for smooth surfaces in automobile class A surface design practice.110

We note that this type of bound is not affected by unitary transformations or uniform scaling. In our experience,111

meshes whose surfaces exceed the 0.1◦-criterion are artificial in the design context since T-junctions are used where112

the geometric variation is sufficiently ’tame’ to safely decrease the number of quad-strips. For artificial cases like113

Fig. 7c, splitting the extensions of xsL, s = 0, 1 and applying the reparameterizations obtained by splitting the original114

ρ0, ρ1 reduces the normal mismatch by an order of magnitude. The resulting eight-piece bi-3 cap is visually alike the115

4-piece cap. Since the bi-3 cap uses the same first-order Hermite data along the inner boundary of the bi-3 frame as116

the bi-4 cap in GTKPP, the bi-3 cap can replace the bi-4 cap both in the T1 construction in GTKPP and in the new τ1117

construction with transition frame.

(a) bi-3 of Fig. 5b (b) bi-3 of Fig. 5e (c) 0.1◦ criterion (d) bi-3 of Fig. 1c

Figure 7: Bi-3 τ3-construction: 2× 2 bi-3 patches replace two bi-4 patches of the bi-4 constructions with little loss in highlight line quality. (For
multi-sided facets, we use 2× 2 bi-3 patches per sector.) (c) Stress-testing for normal mismatch: 0.177◦ before and 0.019◦ after splitting.

118

4. T3-surfaces119

τ3-nets can be treated akin to τ1-nets. Again we leverage GTKPP for the central cap.

(a) input T3-net (b) bi-3 T3-frame

xL xR

xMxL xR

xL xR

(c) frame + central bi-4 T3-cap

Figure 8: T3-net and construction GTKPP.

120
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4.1. Review of the GTKPP construction for T3-nets121

The bi-3 frame (green in Fig. 8b) is derived from Fig. 8a by B-to-BB conversion of the reconnected subnets122

Fig. 9a,b. Only the top and bottom curves require special care: the BB-coefficients marked as blue disks in Fig. 8b123

C1-extend the left and right neighboring bi-3 patches, xL and xR. The blue circled points are defined via special124

stencils listed in the GTKPP publication. The remaining coefficients are set so that the two pieces of each curve are C2
125

connected. The C1 extension towards a central cap of bottom-middle patch xM is split 1 : 1 and the C1 extensions126

of top patches xL and xR are split with ratio 2 : 1. Then these extensions as well as the extensions of xL and xR are127

reparametrized as detailed in Karčiauskas et al. (2017) to become part of the central bi-4 cap.128

(a) (b)

q

(c) refinement and averaging (d) refined net

-0.023 0.087

0.505

0.0670.032

0.118

(e) stencil of q

Figure 9: τ3 construction. (a,b) the virtual subnets after re-connection. (c) refinement and averaging; (d) refined net; (e) stencil for top-circled
point q (completed by symmetry).

4.2. T3-refinement and bi-3 transition129

The refined T3-net is shown in Fig. 9. The magenta and cyan bullets are obtained from the subnets (a) and (b)130

and averaged at the overlapping locations marked by black circles (however, unlike the τ3 case, the hollow magenta131

and cyan circles are not used in the construction and have been added only for completeness as a by-product of the132

refinement). Since the choice of the top-circled point q in Fig. 9c as a straight average of the sub-net BB-coefficients133

causes shape artifacts, it is re-defined by the stencil Fig. 9e explained below.134

(a) bi-3 transition frame

xL xR

xMxL xR

xL xR

(b) central bi-3 cap

Figure 10: τ3 construction.

The bicubic transition (see Fig. 10a) is simpler than in the T1-case: the left and right bi-3 strips stemming from the
refined net require no modification. However, slight artifacts (see Fig. 11) motivate a special rule, Fig. 9e,for q (top,
circle in Fig. 9c) by determining

argmin
∑
p∈P
F2(p) P := bi-3 patches affected by q . (4)

Fκf :=

∫ 1

0

∫ 1

0

∑
i+j=κ,i,j≥0

κ!

i!j!
(∂is∂

j
t f(s, t))

2dsdt.

The absolute maximal weight of nodes for the argmin outside the τ3-net is less than 0.01 in the affine expression.135

We set them to zero. Adjusting the remaining weights so they sum to 1 and have 3 digits yields the localized stencil136

of Fig. 9e for q. The construction therefore applies even to tight configurations such as Fig. 16a. As for the τ1-137

construction, the τ3-construction can either be completed with the bi-4 cap from GTKPP, or the bi-3 cap specified138

next.139
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(a) T3-net (b) not localized (c) highlight lines (d) mean curvature

(f) refined net (g) with transition (h) without correction (i) τ3 construction

Figure 11: Constructions for T3-nets. top: bi-3 surface without refinement bottom: localized bi-3 surface with refinement and transition. We note
that despite the localization, the highlight line distribution does not suffer and even differences in curvature are slight.

4.3. Constructing a bi-3 cap140

To make the degree uniformly bi-3, including the central cap of Fig. 10b, we proceed as in Section 3.3 but use the
bi-3 transition ring Fig. 10a described in Section 4.2. The top and bottom transitions are the same as in the bi-4 case.
We reparameterize the split extension of xL and xR with ρ0 and ρ1 where

a0 := B2
0(u) +B2

1(u) +
5

6
B2

2(u), a1 :=
5

6
B2

0(u) +
2

3
B2

1(u) +
2

3
B2

2(u). (5)

The reparameterized data determine the red-gray parts of the central cap of Fig. 10b. Analogous to (3), the BB-
coefficients marked by × are determined by the weights

×top :
[
4 14
9 27
6 12
1 −1

]
/72, ×bottom :

[−1 1
0 18
3 33
2 16

]
/72. (6)

The blue-gray part of the BB-net in Fig. 10b is obtained from the top and bottom patches xL, xR, xM , xL, xR by141

C1 extension and splitting as in the previous section. Except for the red-gray region, the vertical sequences of BB-142

coefficients each form a single (split) cubic curve. Comparing Fig. 11i vs Fig. 11h illustrates the improvement via the143

stencil of Fig. 9e.144

5. T2-surfaces145

Since theGTKPP construction for T2-surfaces (see Fig. 13b) involves all nodes of the outermost layer of the T2-net,146

it is not surprising that T2-polygons with adjacent irregular nodes as in Fig. 15a do not offer satisfactory localizedGT -147

splines: removing the outermost nodes from the GTKPP construction results in significantly reduced surface quality148

over many informed trials. We therefore choose an alternative route that avoids GT -splines altogether.149

• Add a new node q to the T2-net and connect it with three vertices of T2-polygon, see Fig. 12a,b, to obtain a pair150

of adjacent irregular nodes of valence 3 and 5.151

• Apply one local Catmull-Clark refinement step to separate the irregular nodes.152

• Apply the G1 bi-4 construction of Karčiauskas and Peters (2015b) to the refined net Fig. 12c.153

Fig. 12h shows the resulting surface layout.154

8



1 2 3 4 56 7 8 9

10 11

12

(a) T2-net

q

(b) augmented net (c) refined net (d) τ2 construction (e) naive

(f) convex T2-net (g) refined net (h) τ2 surface

(i) Catmull-Clark surface (j) alternative Catmull-Clark surface

Figure 12: Construction for a T2-net. (a) T2-net (with the labels for definition of new node); (d) highlight lines for surface from T2-net in Fig. 13a;
(e) Result of naive choice of new node as centroid of the T2-gon.

(a) T2-net (b) GTKPP

(c) augmented (d) refined mesh (e) new τ2-construction

Figure 13: Comparison of T1-net construction and T2-net construction. Top row: (a) net with red T2-gon. (b)GTKPP-construction – green bi-3 ring
and four red bi-4 patches; (c) adding a 3-valent node replaces the T-gon by three quads. (d) the refined augmented net (e) the localized τ2-surface
without loss of highlight line quality. Moreover, over many trials, the highlight lines are more uniformly distributed than for the corresponding
GTKPP surfaces.
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The finite construction yields better results than applying Catmull-Clark repeatedly; and allows placing the shape-155

critical q near argmin
∑
p∈P F4(p), where P consists of the patches affected by q (bi-3 patches where regular,156

and patches defined by Karčiauskas and Peters (2015b) otherwise: bi-4 patches for 3-valent points and bi-5 patches157

for n = 5-valent points). In the affine expression of the new node, the absolute maximal weight of nodes outside158

Figure 14: Redistribution of
q weights.

the τ3-net is less than 0.01. However, in contrast to the τ3-construction, setting them
to zero leads to visible shape artifacts. Deriving a stencil for q from a localized net
requires more care. As indicated by the arrows in Fig. 14, the weights of the outermost
nodes (gray bullets) are added to their neighbors (black bullets). Adjusting the resulting
weights so they sum to 1 and have 3 digits yields the following stencil for q in terms of
the inner nodes labeled in Fig. 12a (and their diagonally symmetric counterparts):

{1 . . . 6} : 0.017 −0.017 0.023 −0.021 0.016 0.024
{7 . . . 12} : 0.201 0.231 −0.039 0.286 −0.069 0.023

(7)

We note that taking the central node naively as the centroid of the T2-polygon results159

in distinctly worse highlight line distributions: compare e.g. Fig. 12d to Fig. 12e. The160

bottom row in Fig. 12 illustrates that both direct application of Catmull-Clark subdivi-161

sion and more sophisticated re-meshing followed by Catmull-Clark subdivision yields unacceptable highlight lines.162

6. Discussion and Examples163

6.1. Tight configurations164

Just like Fig. 1 demonstrated how the new localized approach enables a close juxtaposition of T-gons andm-valent165

points for the case of τ1-nets, so Fig. 15 and Fig. 16 demonstrate this for design with τ2-nets and τ3-nets.166

Fig. 17 demonstrates for τ1-gons that the formal decrease in smoothness does not affect the highlight line distri-167

bution. In fact, the highlight lines are subtly (not visible in static images) improved since the left and right pieces of168

bi-3 cap are C2 connected. And differences between the bi-3 and the bi-4 construction, in the highlight lines across169

the border of central cap and the transition frame, are also near imperceptible. This indicates that both versions, bi-3170

and bi-4, are equally acceptable.171

(a) tight configuration (b) refined mesh (c) bi-3 (d) highlight lines

Figure 15: τ2-construction. (a) mesh with red T2-gon and irregular nodes of valence 3 and 5; (b) once refined mesh after augmentation; (c) final
surface: bi-3 regular patches green, three-sided and five-sided surfaces.

6.2. Localization via inconsistent derivatives: Gregory-type patches172

GT -splines scale the C1 prolongations of the bi-3 frame to equate originally inconsistent derivatives. Alterna-
tively, incompatible inner and boundary BB-coefficients can be made to coexist by introducing a rational patch with
different derivatives depending on the approach to the corner, see e.g. (Gregory, 1974; Loop et al., 2009; Hettinga and
Kosinka, 2018). Consider Fig. 18a. At the bottom, black bullets mark the BB-coefficients obtained by C1 extension
of xL and xL of the bi-3 frame. On top, the black bullets mark only some BB-coefficients of the C1 extension of
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(a) tight configuration (b) refined T-net (c) bi-3 (d) highlight lines

Figure 16: τ3-construction. (a) Mesh with red T3-gon and irregular nodes of valencies 3, 5, 6.a (c,d) bi-3 surface and highlight lines.

(a) T1-net (b) bi-3 frame + bi-3 transition frame + bi-3 cap (c) bi-3 frames + bi-4 cap

Figure 17: Comparison of bi-3 and bi-4 central caps.

xL, because the BB-coefficients `̀̀12, `̀̀13 that extend xL (gold bullets) do not match the BB-coefficients t12, t13 that
extend xL. Setting

b12 :=
ut12 + (1− v)2`̀̀12
u+ (1− v)2

, b13 :=
ut13 + (1− v)2`̀̀13
u+ (1− v)2

(8)

yields a rational patch of bi-degree 4×5 with a singularity of type 0
0 at the left-upper corner. This patch joins smoothly173

with its neighbors. However, like many other singular rational constructions, the resulting surfaces are acceptable but174

not class A, as may be seen by comparing the surfaces in bottom row of Fig. 18. They are acceptable because the175

singularity does not prevent a graded tessellation: Fig. 18f displays such tessellation with 20 × 20 quads per patch;176

and, at first impression, the visual quality is good, see Fig. 18b. However, the rational singularity causes problems177

when analyzing and interrogating the surfaces. Together with the lack of a ‘class A’ highlight line distribution, this178

makes the approach undesirable for industrial applications.179

Note, in (8) the point b12 can alternatively be the linear average b12 := ut12+(1−v)`̀̀12
u+1−v . However, this yields a180

rational patch of bi-degree 5× 6 with slightly worse highlight lines than presented above.181

7. Conclusion182

T-junctions can reduce the requirements on algorithms for quad-meshing and increase the flexibility of polyhedra183

as control nets for defining smooth surfaces. The surfaces are affine invariant since their BB-coefficients are linear184

combinations of the points of the input net. This paper introduces piecewise polynomial geometrically continuous185

surface constructions for tight configurations, further reducing the quad-meshing requirements and increasing the186

scope for polyhedral control of design surfaces. At T-configurations the surfaces are G1 and consist of 2,4,8 patches187

of degree bi-4 for τ1, τ2, τ3-nets. A key feature, a quality-preserving refinement of the input net in the vicinity of188

a T-gon, minimizes the footprint of this construction. For τ2-gons we introduced a quality-preserving remeshing in189

place of the refinement. Alternatively, we introduced an everywhere bi-3 variant for T-gons that uses twice as many190

patches as the bi-4 construction and generates surfaces that are formally onlyC0. Together with a known construction191

for irregular points, this variant has the desirable property that the overall degree of the free-form surface is uniformly192

bi-3, including the center cap. And while not formally smooth, the bi-3 surfaces have good highlight line distributions193

for T-gons with 1,2, or 3 T-junctions also where vertices in close proximity are irregular (valence other than 4).194

11



xL

xL

xL

u

v

t12 `̀̀12

t13 `̀̀13

b00 b30

b330
0

(a) inconsistent extensions (b) cf. Fig. 16

(c) layout (d) τ1-construction (e) rational (f) tessellation

Figure 18: (a) Input for Gregory-type patch derived from T1-net and incompatible BB-coefficients for Gregory-type averaging. (b) Gregory-type
surface of Fig. 16. (c) Layout of surface from Fig. 5a T1-net; hl s of (d) GT surface and (e) Gregory-type surface and (f) its tessellation.
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