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A B S T R A C T

Multi-sided facets in polyhedral models and meshes serve to connect regular sub-
meshes (star-configurations) and to start or end quad-strips (T-configurations). Using
the polyhedral mesh as control net, recursive subdivision algorithms often yield poor
shape for these non-quad configurations. Polynomial surface constructions such as ge-
ometrically smooth splines (G-splines) do better, but lack subdivision-like refinability.
Such refinability is useful for hierarchical modeling and engineering analysis.

This paper introduces a new class of G-splines that generalizes bi-quadratic C1

splines to polyhedral control nets with star- and T-configurations and that is refinable.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

A standard approach to interactive shape modeling is to2

sketch, extrude and manipulate coarse polyhedral control nets3

and have them algorithmically refined into smooth surfaces. A4

classical algorithmic refinement is Doo-Sabin subdivision [1].5

Doo-Sabin subdivision generalizes bi-2 (bi-quadratic) splines6

and can therefore be viewed as the most thrifty option for gen-7

erating smooth surfaces. Unfortunately, when looked at closely,8

Doo-Sabin surfaces (and to a lesser degree the bi-3 generaliz-9

ing Catmull-Clark surfaces [2]) have shape deficiencies notably10

in the irregular neighborhoods for which they were invented11

(see e.g. Fig. 4b,c), namely star-configurations, where multiple12

quad-meshes join in a point or polyhedron, Fig. 2.13

Classical subdivision also fails to address a second challenge14

arising in polyhedral shape modeling. Quad-dominant meshes,15

where most facets are quadrilateral, are preferred by artists to16

capture the flow of principle directions. Where quad-strips start17

or end (to accommodate or remove detail, see Fig. 1), Doo-18

Sabin subdivision creates surfaces with poor highlight line dis-19

tributions for T-configurations Fig. 3b,c. (Uniformity of high-20
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(a) T0-gon (b) T1-gon (c) T2-gon

(d) τ0-net (e) τ1-net (f) τ2-net

Fig. 1. The main T -configurations
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light lines is a measure commonly used by practitioners to eval-1

uate surface quality, see [3])2

(a) DS-gon (b) DS-net (c) S �
5 -net (d) S �-net→DS

Fig. 2. Main star-configurations and conversion by bi-2 spline refinement.

However, subdivision naturally excels at hierarchical refine-3

ment for adaptive fine-grained modeling. This paper there-4

fore introduces a new nestedly refinable class of G-splines5

that generalize bi-2 C1 spline surfaces to include T- and star-6

configurations and provides much improved highlight line dis-7

tributions. (Nested refinement means hierarchical refinement,8

where a coarse generalized spline control net is replaced by a9

finer one without changing the surface.) It suffices to focus on10

the configurations shown in Fig. 1 and Fig. 2 since, by local re-11

connection without adding control points, complex T-junctions12

in free-form design can be reduced to the three types of Tn-13

gons, n = 0, 1, 2 shown in Fig. 1. Among star-configuration14

DS-gons, Fig. 2a, are n-sided facet whose vertices are all of15

valence 4. DS-gons are the hallmark of Doo-Sabin subdivi-16

sion but star-configurations are often more convenient for de-17

sign. Since one step of B-spline knot insertion turns a star-net18

into a DS-net, see Fig. 2d, the constructions can nevertheless19

restrict attention to just T-gons and DS-gons. T-gons and DS-20

gons surrounded by quadrilateral facets (quads) provide the data21

for multi-sided caps and are respectively called τ-nets and DS-22

nets. Quad-dominant meshes with no other irregularities than23

DS-nets, star-nets and τ-nets are locally quad-dominant.24

This paper introduces new constructions for locally quad-25

dominant meshes that26

– are smooth with fewer oscillations and sharp creases in the27

highlight line distribution than existing bi-2 subdivision al-28

gorithms;29

– consist of a finite number of patches both for T− and star-30

configurations;31

– are (nestedly) refinable and so enable localized editing (see32

Fig. 3e, 4e);33

– leverage geometric accelerated tuning for improved shape34

at star-configurations.35

To achieve refinability, surface pieces have bi-degree up to 436

near irregularities: bi-2 in regular regions, bi-degree (4,2) for37

T0- or T1-gons, bi-4 for T2, and bi-3 at star-configurations, op-38

tionally completed by a tiny bi-4 cap.39

1.1. Literature: Generalizing bi-quadratics40

Due to our focus on generalizing least-degree smooth bi-41

2 splines, we do not review the ample literature on gen-42

eralizing bi-3 splines. We note though that [5] introduced43

a T-construction for bi-cubic splines that includes a review44

(a) τ1-net+ (b) Doo-Sabin (c) Point-augm

(d) new refinable τ1 surface (e) local edit

Fig. 3. Bi-2 subdivision is unsatisfactory for T-junctions. (a) τ1-net+ = τ1-
net surrounded by one layer of quads. (b) Surface layout: input bi-2 patches,
patches generated by first refinement step, by second refinement; subsequent
3-sided and 5-sided areas of Doo-Sabin subdivision. (c) Wavy highlight lines
of point-augmented subdivision surface [4]. (d) Layout and highlight lines of
the construction in this paper: input bi-2 patches, τ1-cap of bi-degree (2, 4). (e)
Localized edits are used to create vertical grooves on top and a horizontal bulge
across the bottom transition from frame to cap.

(a) n = 5 (b) Doo-Sabin (c) Point-augmented

(d) geometrically tuned (new) (e) local edit

Fig. 4. Bi-2 subdivision is unsatisfactory for star-configurations. (b,c) High-
light lines of Doo-Sabin and point-augmented subdivision surfaces (d) Con-
struction of this paper and (e) localized edits leveraging hierarchical refinement.

and comparison of bi-3 alternatives, including Catmull-Clark- 45

subdvision surfaces (that fail for T-junctions in a manner similar 46

illustrated for Doo-Sabin in Fig. 4). Section 5 and Fig. 22 com- 47

pare the surface quality of our new construction vs [5] with bi-2 48

vs bi-3 splines. [5] can be combined with existing construc- 49

tions for star-configurations, e.g. [6, 7], but cannot as tightly 50

integrated with them as the new construction and does not offer 51

simple refinability. 52

There are two major generalizations of bi-quadratic splines 53

using subdivision: Doo-Sabin [1] and point-augmented 54

[4]. Even though point-augmented subdivision consider- 55

ably improves the highlight line distribution over Doo-Sabin- 56

subdivision, treating T-junctions as irregular 3-valent nodes – as 57

subdivision algorithms do – results in poor shape. This is illus- 58

trated in Fig. 3b,c. Fundamentally, T-gons have a distinct verti- 59

cal direction of change (strip density) while star-configurations 60
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are direction-agnostic. (Here and in the following, vertical and1

horizontal refer to the standard layout in Fig. 1.) Even for star-2

configurations, Fig. 4 makes clear that Doo-Sabin [1] and point-3

augmented [4] subdivision leave ample room for improving the4

uniformity of highlight lines. A new geometric, accelerated5

tuning improves shape and allows treating the first two or three6

subdivision rings as the bulk of a cap that consists of finitely7

many patches.8

Both types of irregularities can be covered by geometrically9

smooth splines (G-splines) that consist of a finite number of10

polynomial pieces joined along G-curves, where derivatives11

match only after a change of variables. Indeed, state-of-the-12

art G-spline constructions yield good highlight line distribu-13

tions, even when the degree is low [8, 5] (see also the purely14

bi-2 construction [9]). However, these algorithms are not15

conveniently nestedly refinable. Refinement of G-splines re-16

quires that G-curves remain G-curves and therefore forces care-17

ful book keeping and special rules to reproduce shape with more18

control handles. G-curves prevent memory-less uniform hierar-19

chy that comes naturally with subdivision surfaces.20

(a) (b) (c)

Fig. 5. Doubling a ribbon’s width with T0-gons. This natural doubling of
parameter space is inimical to hierarchical (T-)splines.

Inserting additional local knot lines provides extra degrees21

of freedom in tensor-product splines (see e.g. [10, 11, 12] for22

bi-2 splines). However this assumes a disciplined, strictly hier-23

archical surface design and requires keeping track of knot dis-24

tances to assure global compatibility. If a prior model or poly-25

hedral design prescribes a distribution of T-junctions a compat-26

ible global knot distribution may not exist. For example, Fig. 527

shows an increasing widening of a ribbon that closes back up28

at twice the initial height. For hierarchical splines, the (total29

sum of) knot spacings of the initial and the doubly high strip30

ends have to be equal, and that is not possible unless many knot31

intervals are zero. Efficient design can therefore combine hi-32

erarchical T-spline for refinement of regular sub-meshes, [5]33

for treatment of irregular nodes and the new construction for34

T-gons.35

Road map: After introducing the input control nets and36

smoothness between polynomial pieces, Section 3 introduces37

the construction for T-configurations. The basic idea is to38

choose a quadratic re-parameterization to relate derivatives39

across the vertical boundaries of the τ-surface cap. This40

quadratic accommodates the change of quad-density in the ver-41

tical direction while elegantly enabling nested refinement. Sec-42

tion 4 details the construction for star-configurations introduc-43

ing the concept of geometric tuning as opposed to the classi-44

cal (analytic) eigen-spectrum tuning of subdivision algorithms.45

The idea is to use extra degrees of freedom in the subdivision 46

rings to improve shape right from the start and not just in the 47

limit. Section 5 explains the choices in developing the new low- 48

degree refinable smooth surface construction and compares the 49

resulting surfaces. 50

2. Definitions and Setup 51

Fig. 1 lists the relevant T-configurations. A T-junction is 52

where two quads on one side meet one facet on the other. For 53

n > 0, a Tn-gon is an n + 4-gon surrounded by quads and such 54

that n vertices are T-junctions and the remaining have valence 55

4. A T1-gon has one T-junction (formally a pentagon Fig. 1c), 56

a T2-gon has two T-junctions (a hexagon Fig. 1d). For n = 0, a 57

configuration that frequently arises in quad-dominant meshing 58

algorithms [13, 14], the triangle has two vertices of valence 4 59

and one of valence 5 and is surrounded by 7 quads. The T-gon 60

and its surrounding layer of quads is called τ-net. 61

The main star-configurations and the conversion from a star- 62

net (S �-net) to DS-net are displayed in Fig. 2. 63

To calibrate what quality of surface can be expected for τ- 64

configurations when the surrounding surface is a C1 bi-2 spline. 65

the nets are surrounded by one layer of quads to form a net+. 66

A GT-spline is a collection of tensor-product patches in
Bernstein-Bézier form (BB-form; see e.g. [15]):

p(u, v) :=
d1∑
i=0

d2∑
j=0

pi jB
d1
i (u)Bd2

j (v) , (u, v) ∈ [0..1]2,

where Bd
k (t) :=

(
d
k

)
(1 − t)d−ktk are the Bernstein polynomials 67

of degree d and pi j are the BB-coefficients. This paper uses 68

d ∈ {2, 3, 4}, i.e. the BB-patches are bi-2 (bi-quadratic), bi-3 69

(bi-cubic), bi-4 (bi-quartic) or of bi-degree (4,2). Connecting 70

pi j to pi+1, j and pi j+1 wherever possible yields the BB-net of 71

BB-coefficients. A useful operation on polynomials in BB-form 72

is their splitting into two pieces, say a left half and a right half, 73

by the well-known de Casteljau algorithm [15]. 74

For any 3×3 grid in the mesh, the vertices can be interpreted 75

as the control net of a bi-quadratic uniform B-spline. Express- 76

ing this spline in bi-2 BB-form is called B-to-BB conversion, 77

see Fig. 6a. A partial conversion from a partial mesh yields a 78

sub-net of the BB-net that defines position and first derivatives 79

across an edge, a tensor-border of degree 2 and depth 1 denoted 80

by t, see Fig. 6b. 81

(a) (b)

Fig. 6. Bi-2 B-to-BB conversion. Circles ◦ mark B-spline control points, solid
disks •mark BB-coefficients. The rules are: •center = ◦center, •edge = the average
of ◦center and a neighbor ◦, and •corner = the average of the four surrounding ◦.

The T-constructions and the finite cap for star-configurations 82

are based on the concept of geometric continuity, i.e. smooth- 83

ness after change of variables, see e.g. [16, 17]. Patches p and 84
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q that share a G-edge parameterized by (u, 0 = v) are G1 con-1

nected if they have matching derivatives after change of vari-2

ables ρ(u, v) := (u + b(u)v, a(u)v):3

∂vq(u, 0) − a(u)∂vp(u, 0) − b(u)∂up(u, 0) = 0 . (1)

2.1. C1 continuity in the direction along a G-curve4

Key to refinability of the τ surfaces is the C1 continuity of5

patches qs(u, v), s = 0, 1 along a G-curve (see Fig. 7a). We6

denote by jp the first-order expansion of p with respect to v7

(effectively across the G-curve) and abbreviate jp0 ∼ jp1 if the8

first order expansions join parametrically C1 at their respective9

u-parameters 1 − s.

jp0 jp1

jq0
jq1

↓

(a) Lemma 1

jq

jp

00

01

00

01

40

41

20

21

(b) Lemma 2

Fig. 7. BB-nets of jps (degree 2) and jqs (degree 4) illustrating (a) C1 smooth-
ness of position and of first cross-derivative at the split point where the pieces
meet (marked by ↓). (b) Labels of BB-coefficients in Lemma 2.

10

Lemma 1. Let

jp0 ∼ jp1, qs := j(ps ◦ ρs), ρs(u, v) := (u + bs(u)v, as(u)v).

If a0 ∼ a1 and either11

(i) ps(u, 0) join C2 at u = 1 − s and b0 ∼ b1 or12

(ii) bs(us) = 013

then jq0 ∼ jq1.14

Proof Differentiating the expansion

j(ps ◦ ρs)(u, 0) = ps(u, 0)
+

(
bs(u)∂ups(u, 0) + as(u)∂vps(u, 0)

)
v.

with respect to u yields

∂ups(u, 0) +
(
bs(u)∂uups(u, 0) + ∂ubs(u)∂ups(u, 0)

+ as(u)∂u∂vps(u, 0) + ∂uas(u)∂vps(u, 0)
)
v.

(2)

If (i) holds then the overlined terms are continuous; if (ii) holds15

then only the smooth join of a0 and a1 matters. |||16

Define the quadratic and matrix maps

a := [a0, a1, a2], 1 := [1, 1, 1], aB2(u) :=
2∑

i=0

aiB2
i (u),

Q j :=


q0 j

q1 j

q2 j

q3 j

q4 j

 , M(a) :=


a0 0 0
a1
2

a0
2 0

a2
6

2a1
3

a0
6

0 a2
2

a1
2

0 0 a2

 , P j :=

p0 j

p1 j

p2 j

 , j = 0, 1.

Then the G1 join characterization, Lemma 2, is easily verified17

by substitution.18

Lemma 2. Let

(jp)(u, v) :=
2∑

i=0

1∑
j=0

pi jB2
i (u)B2

j (v), ρ(u, v) := (u, vaB2(u))

and qi j, i = 0, . . . , 4, j = 0, 1, the BB-coefficients of jq := j(p◦ρ)
in bi-degree (4, 2) form. Then

Q0 = M(1)P0, Q1 = M(a)P0 + M(1 − a)P1. (3)

If q̆i j, i = 0, . . . , 4, j = 0, 1, are BB-coefficients of the expansion 19

of q(u, v) represented in bi-degree (4, 4) form then q̆i0 = qi0 and 20

q̆i1 =
1
2 (qi0 + qi1), i = 0, . . . , 4. 21

3. Constructions for T-configurations 22

A T-junction represents a change of quad-strip density when 23

traversing in vertical direction. It is therefore natural to repa- 24

rameterize along the way and this is achieved by a carefully 25

chosen quadratic re-parameterization of the cross-derivatives 26

along the vertical boundaries of the τ-surface cap. While the 27

quadratic re-parameterization increases the final patch degree 28

to 4, Section 3.1 will show that it enables nested refinement. 29

Applying the partial B-to-BB conversion to the τn-nets, gen- 30

erates a frame of tensor-borders denoted as ti, t j, tk with appro- 31

priate subscripts displayed in Fig. 8a, Fig. 9a, Fig. 10a. Not all 32

tensor-borders need to be labeled since the τ0 and τ1 construc- 33

tion will be symmetric with respect to the central vertical line 34

and τ2 diagonally symmetric. 35

The tensor-borders t, t are only suitable for inclusion into a
C1 cap once they are split in the ratios shown in Fig. 8b, Fig. 9b,
Fig. 10b. After splitting, the frame is not consistent at some
corners and so requires reparameterization. While choosing a
linear a(u) and a quadratic b(u) that is zero at the split point
allows constructing a C1 bi-3 cap (cf. [5]) this ’zero-b’ property
cannot be preserved under refinement: due to (2), the refined
construction is generally only C0. The choice b(u) := 0,

ρs :[0..1]2 → R2, (4)

ρs(u, v) := (u, as(u)v), as(u) := asB2(u),

allows refinement but forces a(u) to be of degree 2 and the final 36

surfaces to be of degree 4 in the u-direction. The tensor-borders 37

ts are therefore reparameterized with the ρs(u, v) of (4). (In 38

Fig. 8b, Fig. 9b, Fig. 10b, the black arrow heads indicate the 39

u-direction, hollow ones the v-direction.) 40

τ0 construction (Fig. 8, ’left-right’ symmetric)
1. Reparameterize the tensor-borders t0, t1 (Fig. 8a) using

a0 := [1, 1,
3
4

], a1 := [
3
4
,

1
2
,

1
2

]

and represent j(ts ◦ as) in bi-degree (4, 2) form. 41

2. Together with the right counterpart and the top and bottom 42

tensor-borders (split and degree-raised to 4 in the vertical direc- 43

tion to be consistent with the reparameterization) this defines a 44

depth 1 tensor-border frame for the cap Fig. 8c. 45

3. Set the central vertical layer BB-coefficients, marked ◦ in 46

Fig. 8c, as midpoints of their horizontal neighbors. 47
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t0

t1

t

(a) framing

1:1

ρ0

ρ1

(b) splitting (c) BB-net

Fig. 8. τ0-construction. (a) τ0-net nodes and frame of input tensor-borders. (b)
Reparameterization and splitting the tensor-borders. (c) BB-net of the cap of
degree 2 in the horizontal and degree 4 in the vertical direction.

t0

t1

tM

tL

(a)

2 :1 1: 2

1:1

ρ0

ρ1

(b) (c)

Fig. 9. τ1-construction. (a) τ1-net nodes and frame of input tensor-borders. (b)
Reparameterization and splitting the tensor-borders. (c) BB-net of the cap of
degree 2 in the horizontal and degree 4 in the vertical direction.

Fig. 24 in Appendix lists the complete set of formulas to enable1

the readers both to confirm their understanding of Lemma 2 and2

to directly implement the τ0 construction.3

τ1 construction (Fig. 9, ’left-right’ symmetry)
1. and 2. are very similar to the τ0 construction, but use

a0 := [1, 1
5
6

], a1 := [
5
6
,

2
3
,

2
3

]. (5)

and split top and bottom tensor-borders as shown in Fig. 9b.
3. The BB-coefficients, marked as boxes in Fig. 9c, com-
plete two vertical sequences of BB-coefficients as C1-connected
quadratic curves represented in degree 4 form, i.e. with BB-
coefficients p0

i , p1
i , i = 0, . . . , 4 that satisfy

p1
0 = p0

4 := −
1
2

(p0
0 + p1

4) + p0
1 + p1

3,

p0
2 := −

1
2

p0
0 +

4
3

p0
1 +

1
6

p1
4, p0

3 := −
1
2

p0
0 + p0

1 +
1
2

p1
4

and p1
1, p1

2 defined by symmetric formulas.4

The BB-coefficients, marked as circles, are the 1:1, respectively5

2:1 averages of their horizontal neighbors.6

τ2 construction. (Fig. 10, diagonal symmetry)7

The ending of quad-strips in both directions creates additional8

complexity compared to τ0 and τ1.9

1. Tensor-borders ts, s = 0, . . . , 7 (and their diagonally sym-
metric counterparts, see Fig. 10b) are reparameterized using as

defined in (5) and writing the new maps a(u) with a subscript:

a4(u) = a0(u) := a0(
2
3

u), a5(u) = a1(u) := a0(
2
3

(1 − u) + u),

a6(u) = a2(u) := a1(
1
3

u), a7(u) = a3(u) := a1(
1
3

(1 − u) + u),

t0 tM
t3

tL tR

(a)

2 : 1
1 : 2

1 : 1
t0 t1 t2 t3

t4
t5

t6
t7

1
:
1

2
:

1
1
:

2

(b)

×

(c) BB-net

1 2 3 4 5

6 7 8 9

10 11

12

(d)

Fig. 10. Construction of the τ2-cap. (a) τ2-net nodes and tensor-border frame.
(b) split tensor-border; reparameterizations; (c) BB-net of bi-4 cap (consisting
of 4 × 4 pieces); (d) labeling of τ2-net.

and j(ts ◦ as) (light-red underlaid in Fig. 10c) is represented in 10

bi-4 form. 11

2. Completion of the cap, see Fig. 10c. 12

(i) Construct the central vertical layer marked by the vertical 13

arrows as two C2-connected cubic curves represented as 14

four pieces of degree 4 (see Appendix). 15

(ii) Apply the same procedure to complete the horizontal lay- 16

ers of BB-coefficients marked by dots. 17

(iii) Repeat the Steps (i) and (ii) creating first the central hori- 18

zontal layer and then the 13 vertical layers. 19

(iv) To make a construction diagonally symmetric, average the 20

BB-coefficients from Steps (i)+(ii) with those from Step 21

(iii). 22

The algorithm is executed with the central coefficient, marked
as × in Fig. 10c, undetermined. Then × is set as the minimizer
of the functional F3 f :=

∫ 1
0

∫ 1
0

∑
i+ j=3,i, j≥0

3!
i! j! (∂

i
s∂

j
t f (s, t))2dsdt,

summed over all 16 patches of the cap. The weights w j of the
resulting formula × :=

∑20
j=1 w jc j in terms of the τ2-net vertices

c j labeled in Fig. 10d are (adjusted to have 3 digits and to sum
to 1; due to diagonal symmetry only 12 of them are listed):

w1...6 : 0.011 −0.015 −0.02 −0.013 0.007 0.074
w7...12 : 0.215 0.181 −0.022 0.285 −0.019 0.002.

This completes the τ-constructions for T-configurations. 23

3.1. Nested refinement 24

A refinement is nested if the finer representation can repro- 25

duce any coarser representation. Refinement is useful since it 26

exposes additional degrees of freedom. Since the caps are in- 27

ternally C1, their refinement amounts to standard knot insertion 28

into a C1 spline. (For τ0, τ1 the spline is of bi-degree (4, 2), 29

for τ2 of degree bi-4. Since the top and bottom tensor-borders 30

of degree 2 for τ0, τ1 are not reparameterized, only the degree 31
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needs to be raised to match that of the cap.) Lemma 3 shows1

how to refine jq := jp ◦ ρ for τ0, τ1 and τ2 across the remain-2

ing G-curves where ρ(u, v) := (u, a(u)v). The following is then3

easily verified.4

Lemma 3. Partitioning with breakpoints 0, h, . . . in the v-
direction, and dk in the u-direction, the pieces along the bound-
ary v = 0 and between u = dk and u = dk+1 are defined by
maps

pk(u, v) := p(dk(1 − u) + dk+1u, hv),

qk(u, v) := q(dk(1 − u) + dk+1u, hv)

ρ̇k(u, v) := (u, a(dk(1 − u) + dk+1u)v). (6)

Then jqk = j(pk ◦ ρ̇k).5

Equations (6) and (3) suggest the following6

Refinement Algorithm (see Fig. 11)7

- Apply de Casteljau’s algorithm to obtain the BB-8

coefficients of qk from p. The new, unconstrained BB-9

coefficients are marked as red bullets.10

- Apply standard bi-2 spline refinement to obtain new, un-11

constrained control-points marked as green bullets.12

- Apply de Casteljau’s algorithm to obtain the BB-13

coefficients of ρ̇k from ρ.14

- Apply B-to-BB-conversion followed by (3) to the new15

green control points to set the gray-underlaid BB-16

coefficients.17

(a) (b)

Fig. 11. τ-refinement and degrees of freedom. ◦ = regular bi-2 B-spline control
points; • = cap bi-4 BB-coefficients.

Fig. 11 shows the two types of unconstrained handles for the18

designer: bi-2 spline control points and bi-4 BB-coefficients.19

4. Construction for star-configurations20

The focus of this section is to improve the shape of existing21

refinable constructions that generalize bi-2 subdivision to multi-22

sided configurations. A key new concept is geometric tuning of23

all subdivision rings right from the start, rather than the classi-24

cal (analytic) eigen-spectrum tuning of subdivision algorithms25

that has its main effect in the limit. The idea here is to use extra26

degrees of freedom in bi-3 rings to improve the shape and to27

accelerate the convergence so that two to three rings cover what28

otherwise requires four to six rings of Doo-Sabin or augmented29

(a) S �-net (b) DS-net (c) S �-net→DS

(d) S �-net+ (e) DS-net+ (f) refinement

Fig. 12. Star-configurations. (a) S �-net and its degree 2 tensor-border. (b) DS-
net and its degree 2 tensor-border. (c) Switching from an S �-net (big bullets)
to a DS-net (small bullets). (d,e) S �-net+ and DS-net+ each defining a bi-2
surface ring. (f) geometric embedding of a S �-net+ and its refined net whose
innermost quads are the DS-net obtained from an S �-net.

(a) point-augm (b) bi-3

1
4 ↓ 1 −1

4

(c) C2 sector join

Fig. 13. Geometric tuning. (a) Bi-2 ring of point-augmented subdivision
[4] is (b) degree-raised to bi-3 and (c) sectors are joined C2 by setting the
BB-coefficients marked by ◦ as weighted average of nearby coefficients. The
weights of one BB-coefficient (marked by ↓) are specified.

subdivision. Since a finer subdivision is rarely needed in prac- 30

tice, the two to three rings form a cap, completed by the tiny 31

bi-4 construction in Section 4.1. 32

Knot insertion, i.e. standard bi-2 spline control net refine- 33

ment, converts an S �-net to a DS-net as illustrated in Fig. 12c, 34

so that the construction can assume a DS-net as starting point. 35

The construction is based on a ‘tuned’ (improved) version 36

of point-augmented bi-2 subdivision [4]. For while point- 37

augmented subdivision generates better-shaped surfaces than 38

Doo-Sabin subdivision as demonstrated in Fig. 4b,c, its high- 39

light lines still look too sharp. Unlike conventional analytic 40

tuning of subdivision surfaces [18, 19, 20] that focuses on the 41

vicinity of the extraordinary point (by modifying the eigen- 42

spectrum via the refinement rules), the new geometric tuning 43

modifies the functions associated with the control net. That is, 44

geometric tuning modifies the generation of surface rings from 45

the refined nets but does not change the refinement rules. Ge- 46

ometric tuning not only improves the highlight lines but stays 47

close to the already reasonable global shape of point-augmented 48

surfaces. 49

Geometric tuning. See Fig. 13. 50

- Degree-raise the bi-2 surface rings (Fig. 13a) of 51

augmented-subdivision to bi-3 (Fig. 13b). 52

- Except for the input ring, join the sectors of each ring C2
53

by setting the BB-coefficients marked by ◦ in Fig. 13c to 54
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an average of neighbors (weights indicated for one ◦).1

- C1-extend the BB-coefficients of the coarser surface ring2

(underlaid light-gray in Fig. 13c) and split to form the3

dark-gray underlaid BB-coefficients of the bi-3 patches.4

r − 1
r

r + 1

pi3

pi2

(a) tensor-borders

r̃

3 : 1

p̃i3

p̃i2

(b) split

(c) final ring (d) cap

Fig. 14. Double-speed tuned subdivision. (a) Tensor-borders of subdivision
ring. (b) Non-uniform split. (c) Final surface ring. (d) Adjustment and tiny cap.

Geometric tuning additionally supports faster ring contrac-5

tion by splitting the C1-extension (dark-gray underlaid BB-net6

in Fig. 14a) of every second ring (light-gray underlay) in the7

ratio 3 : 1, see Fig. 14b; the first order Hermite data of the8

next ring (light-gray underlay in Fig. 14b) is then ’resized’9

(stretched) to match double-speed contraction: with the labels10

in Fig. 14a,b: p̃i3 := pi3, p̃i2 := −2pi3 + 3pi3. Fig. 14c shows11

the final ring. Tuned subdivision can be further accelerated by12

using a third ring and splitting 7 : 1 – but this results in unsatis-13

factory shape.14

Lemma 4. Geometrically-tuned and double-speed tuned sub-15

division surface are C1.16

Proof By construction, tuned surface rings, also when double-17

speed, are internally C1 (sectors even join C2) and join C1 to18

one another. The control net refinement rules of tuned subdivi-19

sion are the same as of [4]. Therefore the subdivision matrix A20

and its eigen-spectrum is the same, and for double-speed tuned21

subdivision it is A2. The necessary conditions for a C1 limit at22

the extraordinary point are therefore satisfied as in [4]. More-23

over, the characteristic maps are obtained by geometric tuning24

and speed-doubling of the (sequence of) characteristic map(s)25

of [4] and are injective. By [21] this completes the proof. |||26

Fig. 15 juxtaposes the characteristic maps of [4], tuned and27

double-speed subdivision for n = 3, 5, 6.28

4.1. A finite central cap29

While standard subdivision (also Catmull-Clark-subdivision)30

introduce shape artifacts already in the first steps [22], geomet-31

rically tuned subdivision preserves the highlight line quality of32

(a) point-augm (b) tuned (c) accelerated

Fig. 15. Characteristic subdivision maps for point-augmented, tuned and ac-
celerated subdivision, respectively.

the regular bi-2 surface. Therefore it makes sense in practice 33

to stop the refinement and smoothly cap the remainder of an 34

otherwise infinite sequence of contracting rings. 35

Skipping, for the last ring, step (2) of geometric tuning (C2
36

joining the bi-3 patches), degree-raising and C1 extending back- 37

wards the first-order Hermite data (Fig. 12c) yields the under- 38

laid BB-coefficients in Fig. 14d. This frame admits the surface 39

cap defined in [8]. Since the degree near T -gons is 4, we choose 40

the cap to have single bi-4 patch per sector for n > 4 and bi-3 41

for n = 3. According to [8] the bi-4 patches can alternatively be 42

replaced by 2×2 bi-3 patches, and, for quad meshes with valen- 43

cies restricted to n = 3, 5, a special algorithm can additionally 44

yield a single bi-3 patch per sector when n = 5. 45

Central cap algorithm 46

- As transition, generate one ring of tuned subdivision, 47

- then three rings of double-speed subdivision, then 48

- apply the central cap of [8]. 49

Compared to immediate applying to double-speed subdivi- 50

sion, the initial regular-speed transition layer prevents shape ar- 51

tifacts that arise for some challenging configurations. 52

5. Assessment and Comparison 53

To calibrate what quality of surface can be expected for τ- 54

nets and star-nets when the surrounding surface is a C1 bi-2 55

spline, the nets are surrounded by one layer of quads that de- 56

fines one input bi-2 outer ring. This extended net is called net+. 57

The central cap is always colored red. 58

Fig. 16 demonstrates that inclusion of T -gons into quad- 59

dominant mesh does not disrupt the highlight line distribution 60

of such surfaces. Note in Fig. 16b that, as typical for many 61
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(a) τ0

(b) τ1

(c) τ2

Fig. 16. From left to right: T-net+, frame and cap, highlight lines.

inputs, the highlight lines of the central cap are smoother than1

those of the surrounding bi-2 surface.2

Fig. 17 for τ0 and Fig. 18 for τ2 (τ1 was shown in Fig. 3)3

demonstrate the resilience of the algorithms when the input net+4

is convex. Such input represents a hard challenge for most con-5

structions as illustrated in Fig. 3b,c.6

Fig. 19 shows a two-beam configuration as in Fig. 4. Zoom-7

ing to the central yellow region reveals sharp highlight line turns8

for point-augmented subdivision (see Fig. 19b), whereas geo-9

metrically tuned subdivision results in smoothed highlight lines10

displayed in Fig. 19c. As is often the case, smoothing sharp11

features resulats in slight waviness. Similar sharp vs wavy fea-12

tures reappear in the tiny area marked by � in Fig. 19a where13

the last ring reverts back to degree bi-2 to admit the cap of [8];14

see the enlarged views of Fig. 19d,e,f.15

Fig. 20 tests the algorithm for n = 3, 6. As in earlier exam-16

ples, for n = 3 the sharp highlight line turns (kinks) are already17

part of the given regular bi-2 surface and not of the cap. Note18

that double-speed is so fast that for all practical purposes two19

rings suffice before placing the red cap (that is so small that the20

red is not visible in Fig. 20b). Fig. 20g,h illustrate that complex21

saddles pose no problem22

Fig. 21 shows a design that combines the surfaces developed23

for T - and star-configurations and features a localized elevation24

at the center in the horizontal direction.25

Comparing generalizations of bi-2 C1 splines with those of26

bi-3 C2 splines makes as much sense as comparing bi-2 C1
27

splines to bi-3 C2 splines. The first two rows of Fig. 22 group28

together (for the input net of Fig. 3a) the new τ1-surface and29

the surface generated by [5] with C1 bi-2 and C2 bi-3 surfaces30

(a) τ0-surface

(b) Localized edits

Fig. 17. τ0-surfaces and edits.

(a) τ2-surface (b) Localized edit

Fig. 18. τ2-surface

(for the input net re-connected to yield a locally regular net). 31

All four options have good highlight line distributions. By con- 32

trast, rows three and four of Fig. 22 accentuate the difference in 33

quality between bi-3 and bi-2 splines and exhibit a correspond- 34

ing difference between the new τ1-surface and [5] for the input 35

net of Fig. 16b, left. 36

6. Conclusion 37

A new class of spline surfaces was presented that general- 38

izes bi-2 C1 splines to polyhedral control nets with star- and T- 39

configurations. It is based on a rarely-used choice of geometric 40

continuity and a new geometrically-tuned accelerated subdivi- 41

sion. Notably the surfaces are refinable for (iso-geometric) en- 42

gineering analysis and for localized geometry editing. While 43

applications to engineering analysis are future work, the use 44

of refinability for geometric modeling was demonstrated in nu- 45

merous examples. Since in practice subdivision is stopped 46

after five or six steps, double-speed contraction delivers in 47

essence a finite refinable spline complex that admits completion 48

by a G1 cap. Together this considerably increases the flexibility 49

of interactive polyhedral modeling with smooth output surfaces. 50
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Appendix: explicit stencils for implementation 49

For i = 0, . . . , 4, s = 0, . . . , 3, consider pieces ps
i of degree 4

such that p0
0, p0

1, p3
3, p3

4 are fixed. Determine position and first
derivative data in degree 3 form:

p̂0
0 := p0

0, p̂0
1 := −

1
3

p0
0 +

4
3

p0
1, p̂

3
3 := p3

4, p̂3
2 := −

1
3

p3
4 +

4
3

p3
3.

Then the stencils of Fig. 23 yield two cubic curves, C2- 50

connected at the point marked as ×××, split in the displayed ra- 51
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(a) = Fig. 3a (b) new τ1 surface (c) [5]

(d) regular (e) bi-2 surface (f) bi-3 surface

(g) = Fig. 16b (h) new τ1 surface (i) [5]

(j) regular (k) bi-2 surface (l) bi-3 surface

Fig. 22. Comparison of the new τ1 surface vs the construction of [5]; and
the corresponding comparison of bi-2 vs bi-3 surfaces with regular control nets
obtained by biased regular re-connections (d) and (j) of the T-meshes (a) and
(g) from Fig. 3a and Fig. 16b, left. The T-constructions pick up (preserve) the
shape of comparable tensor-product splines.

tios (2:1, 1:2) and represented as four pieces p̂s
i , i = 0, . . . , 3,1

s = 0, . . . , 3. The cubics are degree-raised to quartics.2

Fig. 24 lists all the formulas needed to assemble the τ0-cap3

constructed in Section 3. Each BB-coefficient of the two left-4

most vertical layers of Fig. 8c is expressed as a weighted sum of5

the τ0-net nodes (lower right inset of Fig. 24) listed as a brack-6

eted group; the 8 numbers in each group represent these weights7

scaled by 96. The two right vertical layers are obtained by sym-8

metry. The BB-coefficients of the central vertical layer are the9

midpoints of their left and right neighbors.10

−3 15 8 −3 1 /18

−7 27 40 −9 3 /54
−1 3 /2

1 −6 9 /4
2 : 1 1 : 2

Fig. 23. Four construction stencils (weights sum to 1) of C2-connected layers
that form two C2-connected cubic curves in four pieces. The curves are defined
by two coefficients (marked as the circles) at either end and the central BB-
coefficient of the layer (marked as ×××).

[
0 0
24 24
24 24
0 0

] [
0 0
6 42
6 42
0 0

]
[

0 0
36 36
12 12
0 0

] [
0 0
12 60
6 18
0 0

]
[

4 4
40 40
4 4
0 0

] [
1 7
19 61
2 6
0 0

]
[

12 12
36 36
0 0
0 0

] [
6 18
18 54
0 0
0 0

]
[

24 24
24 24
0 0
0 0

] [
12 36
12 36
0 0
0 0

]

[
0 0
0 0

24 24
24 24

] [
0 0
0 0
0 48
0 48

]
[

0 0
0 0

36 36
12 12

] [
0 0
0 0
0 72
0 24

]
[

0 0
4 4

40 40
4 4

] [
0 0
0 8
1 79
1 7

]
[

0 0
12 12
36 36
0 0

] [
0 0
0 24
6 66
0 0

]

Fig. 24. Complete set of formulas for the τ0-construction. Cf. Fig. 8c.
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