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Abstract

Polyhedral modeling and re-meshing algorithms use T-junctions to add or remove feature lines in a quadrilateral mesh. In many
ways this is akin to adaptive knot insertion in a tensor-product spline, but differs in that the designer or meshing algorithm does
not necessarily protect the consistent combinatorial structure that is required to interpret the resulting quad-dominant mesh as
the control net of a hierarchical spline — and so associate a smooth surface with the mesh as in the popular tensor-product spline
paradigm. While G-splines for multi-sided holes or generalized subdivision can, in principle, convert quad-dominant meshes
with T-junctions into smooth surfaces, they do not preserve the two preferred directions and so cause visible shape artifacts.
Only recently have n-gons with T-junctions (T-gons) in unstructured quad-dominant meshes been recognized as a distinct
challenge for generalized splines. This paper makes precise the notion of locally quad-dominant mesh as quad-meshes including
t-nets, i.e. T-gons surrounded by quads; and presents the first high-quality G-spline construction that can use T-nets as control
nets for spline surfaces suitable, e.g., for automobile outer surfaces. Remarkably, T-gons can be neighbors, separated by only
one quad, both of T-gons and of points where many quads meet. A T-net surface cap consists of 16 polynomial pieces of degree
(3,5) and is refinable in a way that is consistent with the surrounding surface. An alternative, everywhere bi-3 cap is not

Sformally smooth, but achieves the same high-quality highlight line distribution.

1. Introduction

When working from a polyhedral model, artists can create new de-
grees of freedom by inserting additional quad strips. Where two
quads on one side meet one facet on the other, the meshlines form
a ‘T’ and the polygonal facet is therefore called a T-gon: Fig. 1b
and Fig. 1c¢ show T-gons with one and two T-junctions respectively.
T-gons also prominently feature in quad-dominant remeshing (see
e.g. [ACSD*03, RLL*06, LKHO8, JTPSH15, STI* 17]) where they
allow to side-step the otherwise stringent global quad-meshing con-
straints (see e.g. [KNP07,ZSW10, BCE*13, PBIW14, MPZ14]).
Also popular in this context are (isolated) triangles that merge and
so reduce the number of quad-strips, see Fig. 1a. Since other multi-
sided configurations can be modeled by n # 4 quads meeting at an
irregular node, a disciplined design or re-meshing algorithm has no
need for additional non-quad facets.

Given the success of tensor-product splines as an intuitive
bridge between the world of meshes and the continuous repre-
sentations preferred for geometric modeling and engineering anal-
ysis, ideally the meshes of polyhedral models with T-gons can
immediately serve as control nets of (generalized) splines, i.e.
their vertices act as coefficients of linear combinations of splines
that model appealing surfaces. Hierarchical and T-splines such as
[Kra98, SZBNO3, GJS12, WZLH17] need to carefully coordinate
knot intervals to admit meshes with T-gons as control nets. For
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Figure 1: T-gons and t-configurations. The subscript counts the
number of T-junctions.

many meshes, e.g. Fig. 2 bottom, a globally consistent choice of
intervals is impossible.

[KPP17] introduced G-splines for 77-and 7>-gons. The construc-
tion requires T-gons to be isolated by at least two layers of quadri-
laterals, and so forces careful placement of T-gons and irregular
points. As Section 5 demonstrates, the resulting surfaces are not
quite good enough to serve as automobile outer surfaces.

The new construction yields both high-end surface quality and
locality. It requires T-gons to be enclosed by only one layer of
quads, whose outer vertices may be irregular, i.e. have more or
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Figure 2: Using t-nets as control nets. (a) Mesh with T-gons and irregular nodes of valences 3 and 5 (covered by [KP15]). (b) Preprocessing:
since almost all sub-nets in (a) are not regular, the input mesh is refined everywhere. (c) Patch layout: regular bi-3 patches; t-spline surface
(also orange and yellow where they are close together) and multi-sided caps (grey or blue). (d) highlight lines according to [BC94] should
be uniformly spaced where there are no intended features. (e) Using refinability fo create localized features.

fewer than four neighbors, or can belong to another T-gon. The key
advantages of the new spline over the prior state-of-the art exem-
plified by [KPP17] are:

e To-configurations are covered (see Fig. 1a);

e T-nets can be placed in close proximity to each other and to ir-
regular nodes (see Fig. 2);

o the highlight line distribution is superior, suitable for automobile
outer surfaces;

e the construction can be nestedly refined for engineering analysis
or to add geometric detail (see Fig. 2e).

Remarkably, the constructions for Ty and for T; configurations
are unified into one, reducing the implementation overhead. The
unified construction consists of 16 patches of degree (3,5) and is
compatible and complements high-quality constructions for multi-
sided, star-like configurations and T-nets (see Appendix). Fig. 2
shows examples of such combined modeling where T-nets are
placed in close proximity to each other and to irregular nodes.

Spline covers for T-configurations are distinct from multi-sided
configurations in that they must preserve the two preferred direc-
tions, along and across the T-lines. In reference to the layout in
Fig. 1, for 7y and t; configurations, we will refer to them as ‘verti-
cal’ (where mesh density changes) and ‘horizontal’ (where the flow
and density are not to be perturbed). The key is to view T-surfaces
as the result of merging second-order Hermite data from two (vir-
tual, overlapping) tensor-product splines. From this vantage point,
we can explain (warn)

— why direction-agnostic constructions such as subdivision sur-
faces fail to produce good shape; and
— where not to place T-junctions in a quad-dominant mesh.

Overview After introducing T-gons, T-nets, and several techni-
cal construction tools, Section 3 defines the unified construction for

Tp- and T;-configurations. Section 4 introduces variants of this con-
struction that are curvature continuous, quantifiably almost curva-
ture continuous, respectively everywhere bi-3 with normal discon-
tinuities below an accepted industry threshold. Section 5 discusses
choices and limitations and compares to alternative constructions.

1.1. Related constructions

To configurations frequently arise in remeshing and in polyhedral,
e.g. automobile, design sketches. T-splines and hierarchical splines
do not consider 7j configurations. [KSD14] uses Tp-gons to create
creases or reduce continuity by doubling up knot lines that can be
ended in T-junctions.

To leverage hierarchical splines [Kra98], T-splines
[SZBNO3, GJS12, WZLH17] or [KSDI14], for smoothing a
given quad-dominant mesh, one needs to discover and assign
knot spacings. Also Dyadic Subdivision [KBZ15] relies on a
knot structure. While more flexible, the half-edge-reinterpretation
of knot spacings in [CZ17] still requires global coordination:
arbitrary T-meshes are ruled out and a consistent label assignment
may not exist, e.g. for the example of Fig. 2 of [KPP17]. In
[CZ17] extraordinary points need to be isolated by three regular
rings. The construction in [WZLH17] combines T-splines with a
(2-ring-)isolated construction for star configurations. The focus of
the construction [KP19b] is refinability. It generalizes (curvature
dis-continuous) bi-2 splines, has a dual structure (i.e. the patch
vertices are roughly averages of four control points) and a corre-
sponding multi-sided construction of low degree. However, it has a
distinctly lower surface quality, including sharply turning highlight
lines, than the essentially curvature continuous, primal construc-
tions of this paper that generalize C? bi-3 splines. Similarly, the
focus of the construction in [KP19a] is to localize the construction
in [KPP17]. The proposed algorithm achieves both locality and
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refinability with a unified construction, but focuses on superior
shape.

2. Setup and Tools

This section defines the setup and tools for the algorithm in Sec-
tion 3. After defining T-gons, T-nets and the piecewise polynomial
surface representation, Section 2.3 presents the reparameterization
and Section 2.4 explicit coefficient formulas for smoothly changing
quad-strip densities near T-gons.

2.1. T-gons and t-nets

Fig. 1 shows the practically relevant T configurations consisting of
one non-quadrilateral facet, called 7-gon, surrounded by quadrilat-
eral facets (quads). In contrast to the larger footprint T-nets defined
in [KPP17], a t-net has no restrictions on the nodes that do not
belong to the T-gon: all outer nodes in Fig. 1 may be irregular,
i.e. have more or fewer than four neighbors, or can belong to an-
other T-gon. The (minimal) separation due to the single frame of
quads is essential for getting high quality surfaces. Meshes consist-
ing of quads and T-nets are called locally quad-dominant, a term
inspired by the observation that less separation, e.g. two non-quad
facets sharing a vertex, no longer gives the impression of ‘quad-
dominance’ in the local neighborhood.

Connecting a T-junction to one of
the two opposite vertices of the 71-gon
converts the T; configuration to a Ty
configuration but destroys symmetries
in the model. But adding to a 73-net Figure 3: T3-net
two edges (marked red in Fig. 3) results in a mesh with a Tp-subnet.
And, despite its smaller footprint, the Ty construction developed in
this paper is of higher quality than the 73 construction in [KPP17].

@ Q

(a) bi-3 patch p (b) tensor-border

Figure 4: Bi-3 B-to-BB conversion. Circles o mark B-spline con-
trol points, solid disks  mark BB-coefficients.

2.2. BB-form and tensor-borders

The generalized spline surfaces will be a collection of tensor-
product patches in Bernstein-Bézier form (BB-form; see e.g.
[Far88]) of bi-degree (dy,d,) (short bi-d if d| = dp = d):

d d>
p(uv) =Y, [Z: pkgBZ‘ (u)lez(v), (u,v) € [0..1]%,
=0(=0

where BY (1) := (7)(1 — )4~ are the Bernstein polynomials of

degree d and p;; are the BB-coefficients. Connecting p;j t0 pit1,j
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and p; j+1 wherever possible yields the BB-net. A useful operation
on polynomials in BB-form is to split them into two pieces, say a
left half and a right half, by the well-known de Casteljau algorithm
[Far88].

The vertices of any 4 x 4 sub-grid in the mesh can be interpreted
as the control net of a uniform bi-3 B-spline [dB78], the grey net in
Fig. 4a. The B-to-BB conversion, i.e. expressing this spline in bi-3
BB-form, yields the green BB-net in Fig. 4a. A partial conversion
from a partial mesh yields a sub-net of the BB-net. A sub-net defin-
ing position, first and second derivatives across an edge Fig. 4b is
called a tensor-border.

2.3. Reparameterizations

The splines for T-junctions are based on the concept of geometric-
continuity, see e.g. [DeR90]. Patches p and q that share an edge
parameterized by (u,0 = v) are G' connected if their derivatives
agree after a change of variables (reparameterization). We denote
the first-order and second-order expansions (jets) of p(u,v) with
respect to v by

jlp(u,v) = p(u70)+a"p(u70)va (1)
jzp(u, v) ;= p(u,0) + dyp(u,0)v+ %Bwp(u,O)vz. 2)

In this paper q := p o p where p has degree bi-3 and the reparam-
eterization p(u,v) := (u,a(u)v) has a(u) a polynomial of degree
d =2 or d = 3 with coefficient vector a := [ay, ..., ay]. Differenti-
ation of jlp and jzp after composition with p implies that jlq is of
u-degree 3 +d, and j2q of u-degree 3 + 2d. In order not to exceed
degree 5 when using a quadratic a(u) in the main construction, qu
is approximated as follows (see Fig. 5).

Rq g Ra\ T
Wq 0udq %0q | — @@
g dq g
s
(a) Hermite data (b) BB-net

C ® ®© ®

(c) j*q, u-degree 5 (d) j*q, u-degree 6

Figure 5: (a) Second-order Hermite data in partial derivatives
form is converted to (b) BB-form. (c) qu of degree 5. (d) qu of
degree 4.

At parameter values u = 0,1 (end-points marked o and o in
Fig. 5c ), the second-order Hermite data displayed in Fig. 5a is
collected as 3 x 3 BB-coefficients Fig. 5b and joined to form a BB-
presentation of degree (5,3), displayed Fig. 5c. We denote this ap-
proximation of qu by qu. Note that the BB-coefficients marked
as black bullets (lower two layers) represent jlq exactly and their
bottom layer represents the boundary cubic curve in degree-raised
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form. When p is linear (as in some parts of the main construction)
the second-order expansions are of degree 5 and the conversion
represents jq exactly.

Analogously, in order for j*q not to exceed degree 6 when a(u)
is of degree 3, we collect at u = 0, 1 the Hermite data

9%q 9ud7q 030rq 0y0iq
avq auavq a%avq agavq
qa g g g

in degree (6,3) form and average BB-coefficients of the column
where the two 4 x 3 arrangements overlap, see Fig. 5d. This ap-
proximation of qu is also denoted by j2q since the context makes
the meaning unambiguous. Since jlq is of degree 6, the overlap-
ping black bullets coincide and all black bullets represent jlq ex-
actly. While qu does not always represent qu exactly, j2q picks
up shape information crucial for high-quality constructions.

When the expansions jzps ,s=1,2 are C? connected, one can
verify by differentiation that jz(ps op") are also C? connected if
a*(u) are C* connected (C' connected if so are the a*(u)).

2.4. Technical tools for the unified construction

Here we collect technical results for later reference. The following
construction is easy to check.

Lemma 1 (4-piece c? formula) Let b}, i =0,...,3,5s=0,...,3,
be the BB-coefficients of four consecutive cubic curves: b(]) =b),
bl =m =03, b3 =b}. If

by : —7b} +26b3 + 6m —2bj +b3), 3)

:ﬂ(

ba is defined by the symmetric formula, and b}, i = 1,2, s = 1,2,
are defined by C* connection to the outer curves bY, b, then the

inner curves b,-l, b,-2 are C2 connected.

02 ) 0o 12
[ p—— 42 50
01 31
01 51
00 30 00 50
(a) i*p ®) j°q

Figure 6: Labels of (a) input tensor-border j2p (superscripts r,s
of Y;j) and (b) output tensor-border j*q (subscripts i, j of Yij) in
Lemma 2.

Next, we present the formulas for the BB-coefficients of qu =
j*(pop) when a := [ag,a,,a>]. The BB-coefficients of jq are ex-
pressed as a weighted sum

3 2
qij::Z %}prh i:07~"757j:071727 (4)
0

r=0s=

of the BB-coefficients p,s of jzp. By the choice of p, the BB-
coefficients q;9, i = 0,...,5 represent the cubic boundary curve
with coefficients p,9, r = 0,...,3 in degree-raised form. By sym-
metry, the weights Yéiij, i=0,1,2, j = 1,2 are obtained from v}

by exchanging ay with a. Since y;,z =0, (4) is well-defined once
the explicit formulas are given for vjj, s = 0,1, and ¥5, s = 0, 1,2
andi=0,1,2.

Lemma 2 (j2q expansion) Leti =0,1,2 and setd; :=1—a;, dy :=
ap—2ay, dy :=dy(dy+2ay). For y[j in (4) (see Fig. 6) if r > i then
Yi; = 0. Otherwise

[ oi— . [‘fo] Y| . 1 [2111 300] Y| . i [az 6a; 300}
e T lad [ T 5 [2asa ] || T 10 L@ 6 3a

_’YOO% T a% "/121 1 —2apdy 3a(2)
ol i=11=-01, [ ] = 3 2—() 3-() |,
L) ] @ 7 2dg(do+1) 3a3

[T 1 [ d+2@a  —6ady 34}
A ::E 1—(:) 6—() 3-0) |,
L ] di+1—2dgay 6dg(do+1) 3a2

where (:) denotes the sum of top and bottom entries of a corre-
sponding column.

As a consequence of de Casteljau’s algorithm we observe the
following.

Lemma 3 Consider a curve h(u) with BB-coefficients hg, hy,hy, . ..
over a halved domain: i.e. (u) := h(%). Then

_ = 1 1 - 1 1 1
ho =0, hy:=Sho+Shi, = Jho+ Shi+ hy . (5)

3. Splines for 1p- and t;-configurations

In this section, we build a frame of tensor-borders and fill it with
a refinable cap. Remarkably, a localized subdivision yields a com-
mon, once-finer control net for both Tp- and 7;-nets (Section 3.1)
so that the remaining gap can be filled by a single surface cap con-
struction (Section 3.2). Both the cap and its surrounding mesh are
each nestedly refinable (Section 3.3).

ﬁ % LW g

(a) left bias (b) right bias

Tt

(c) merged (d) unified

(f) right bias

(e) left bias (g) merged (h) =(d)
Figure 7: Unified control net (d)=(h) after refining (top) 1o and
(bottom) T1. (a,b,e,f) biased reconnected subnets; (c,g) merged re-

finements; (d=h) input (not a BB-net!) for unified construction.

3.1. Merging regular refinements

Re-meshing with left bias (magenta edges in Fig. 7a,e) and right
bias (cyan edges in Fig. 7b,f) yields two biased sub-nets whose reg-
ular subdivision defines control points marked as black, magenta
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or cyan bullets, are merged (averaged at overlapping locations), see
Fig. 7c,g. The outermost orange control points are independently
defined by neighboring configurations, i.e. by one of: regular B-
spline refinement, the new t-net rules, extraordinary Catmull-Clark
rules, or special boundary rules. Removing its leftmost and right-
most control-net layers in Fig. 7g, we get the same mesh connec-

tivity Fig. 7h as in Fig. 7d.
A
|
o
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(b) top split, p
N\ I/
7 m

| \w
\ |
| |
\
\
/ / \ \ \
[ 36\
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(c) BB-net

(d) x weights

Figure 8: The unified © construction. (a) Input net and

. B-to-BB conversion to (b) Top frame split causing
the reparameterizations of left (and right) tensor-borders. Since the
construction is symmetric with respect to the vertical center line,
only a subset of the labels is needed. (c¢) BB-net structure of the cap
of bi-degree (3,5). (d) Redistribution of weights for computing .

3.2. The unified construction

The net of Fig. 7d is re-displayed as a mesh of gray circles in
Fig. 8a. It serves as the unified starting point for both Ty and t;-
constructions in steps (i-v):

(i) (Fig. 8a) Generate a frame of
B-to-BB conversion of the input net.
(i1) (Fig. 8b) Split the top tensor-borders uniformly into four (blue
in Fig. 8b).
(iii) (Fig. 8c) Reparameterize the left (and right) tensor-borders with

p*(u,v) := (u,a’ (u)v),s =0,...,3,
1, ;1110 9

tensor-borders by partial

(V. o 2 v

a = [151712]7 a 12512712}3

29 8 7, 3 _ 711
=l nnk =l

so the resulting first-order expansions are consistent with the top
and bottom tensor-borders.

Note that the functions a* () are C'-connected and a' () and a® (x)

are pieces of a single linear function.
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Fig. 8c shows the structure of 16 patches of degree 3 in the hor-
izontal and degree 5 in the vertical direction. (As in Section 1, we
will repeatedly use the terms horizontal and vertical in this sense of
the underlying standard orientation of Fig. 1.) The dark-gray under-
laid parts of the BB-net represent the first-order data of the top and
bottom tensor-borders of Fig. 8b in (vertically) degree-raised form,
and the now consistent first-order expansions jlqs. The light-gray
underlaid BB-net represents the additional coefficients of qus.

(iv) The central vertical curve of the cap is constructed by applying
the rule (3) (followed by degree-raising) to the top and bottom
tensor-border coefficients marked as o and o in Fig. 8b and the
central BB-coefficient marked as x in Fig. 8c.

(v) The remaining BB-coefficients are set by applying rule (3) hor-
izontally to the left and right qu and the central vertical layer.

The choice of X is key to the quality of the resulting surface.
Steps (1)—(v) are first executed with X undetermined, i.e. the 16
patches of the cap are expressed in terms of the unknown x. Then
the functional Fyf := fol fol Yitjm4ij>0 %(aéa{f(sJ))zdsdt, is
summed over all 16 patches and X is chosen to minimize this sum.
Then x is a weighted sum of control points of the input net. Since
the absolute values of the weights of the outer nodes of the net
(circles) are smaller than the inner ones by a factor of 10, they
are added to the inner weights (bullets) according to the arrows
in Fig. 8d. The weights of the inner nodes are then adjusted to sum
to 1 and have 3 digits. The final 12 weights w; of the inner nodes
labeled in Fig. 8d are

0.018 —0.019
0.092 0.24

0.001
—0.015

—0.019
0.198

—0.063
0.013

0.331
—0.024

Wi.6-
w7..12°"

together with their symmetric counterparts complete the formula
Xi= Y wje;.

The next lemma collects the continuity properties of the con-
struction.

Lemma 4 (cap smoothness) The cap is

(a) C? across the three inner vertical curves;

(b) C? across the central horizontal curve;

() G? joined to the middle two left and right pieces of the frame in
Fig. 8a.

@c Uacross the remaining internal boundaries and

e G 1 /C ! with the remaining tensor-border frame.

Proof (a) follows from (v). (b,c) Since a' (u) and az(u) are pieces
of one linear polynomial, j2q* = j?>q* for s = 1,2; and j2q' joins
qu2 2. By construction step (iv) central curve is C?. (d.e) hold by
explicit construction.  []

We will see in the examples that the transitions characterized by
(d,e) manifest only slight curvature discontinuities.

3.3. G-refinement

The following refinement has two properties valued in design and
in engineering analysis: (@) the refinement is nested, i.e. the re-
fined representation can exactly model the coarser representation;
(B) the distribution of degrees of freedom (dofs) within the frame
of control points follows a regular pattern and so does the distri-
bution of unconstrained BB-coefficients of the cap. To achieve this
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(b) dofs of the cap
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(c) refined dofs

(d) refined dofs of cap

Figure 9: Nested refinement. (a) initial degrees of freedom (dofs) of
the input mesh o; (b) initial dofs internal to the cap e. (c,d) refined
dofs.

regular pattern, after initialization by the unified construction, we
adopt a slightly larger space by dropping some second-order (2,
G?) constraints. Specifically the control net in Fig. 9a defines only
the grey-underlaid BB-net in Fig. 9b but not those marked by e that
represent degrees of freedom of a spline cap that is c>!, namely c?
in the horizontal but only C !in the vertical direction.

Refinement of the interior of the cap then amounts to regular
knot insertion into the C2'! spline. Since the top and bottom gray-
underlaid BB-nets are C' joined to their surrounding bi-3 data, knot
insertion also works here and only the degree needs to be taken
into account. Finally Lemma 5 establishes the refinement jlq =
j'(pop) along left and right boundaries with p(u,v) := (u,a(u)v).
The following is easily verified.

Lemma 5 Partitioning with breakpoints 0, 4 in the v-direction, and
d* in the u-direction, the pieces along the boundary v = 0 and be-

tween u = d* and u = d**! are defined by the maps
p*(u,v) ==p(d" (1 — ) +d" " u, hv),
qk(u7 V) ::q(dk(l —u)+d ), (6)

ok (u,v) =, a(d* (1 — u) +d"u)v).
Then j'q* = j' (p* 0 p").
Equations (6) yield the following

Refinement Algorithm

1. Apply knot insertion to the C>! spline of bi-degree (3,5). (This
yields the new degrees of freedom marked e in Fig. 9d.)

2. Apply standard bi-3 C 2 spline refinement to obtain new dofs dis-
played in Fig. 9c. (The dofs define the gray-underlaid part of the
cap in Fig. 9d.)

3. For horizontal layers with e apply a standard B-to-BB conver-
sion of cubic C* splines with C! end-conditions.

4. For the remaining horizontal layers, the BB-coefficients are the
averages of their vertical neighbors obtained in 3.

4. Variants of the unified construction

The curvature of the uni-
fied degree (3,5) construc-
tion is not continuous but
well-distributed. The de-
fault construction has in-
teresting variants. Increas-
ing the degree to (3,9)
yields curvature continu-
ous surfaces (Section 4.1)
whose curvature profile
is, for all practical pur-
poses replicated by a for-
mally not curvature con-
tinuous construction of de-
gree (3,6) (Section 4.2). A
third variant of degree (3,3) is formally only € but its normal dis-
continuities are observed to be below the threshold acceptable in
class A automobile outer surfaces (Section 4.3). All variants have
the same structure of 16 patches per cap.

Figure 10: 4 X 4 patches of the
curvature continuous cap of bi-
degree (3,9); e mark dofs.

4.1. Curvature continuous cap of bi-degree (3,9)

A curvature continuous cap of bi-degree (3,9) is constructed copy-
ing steps (i-v) with the following modifications. In (iii), a’(u) for

p*(u,v) := (u,a’*(u)v), s =0,...,3 are cubic functions with coeffi-
cients a := [ag,ay,as,a3] defined as
0 23, , 231153
=1L el =, 22
a=L b gha = mea)
T A
47371272477 7 247272720

In (iv) we degree-raise the curve to 9.
Lemma 6 The (3,9) cap is curvature continuous.

Proof The functions a* (i) are C>-connected (a' (i) and a®(u) are
pieces of one cubic function). The second-order expansions qus
(left and right dark-gray underlaid BB-coefficients in Fig. 10) are
of degree 9 and consistent with top and bottom tensor-borders (also
dark-gray) in degree-raised form; and they are C?-connected. [

The (3,9) cap refinement along the left and right boundary curves
is as in Section 3.3. But, due to higher degree, the refinement of the
inner part yields approximately twice the number of C? functions
(degrees of freedom) for engineering analysis.

The main purpose for introducing the (3,9) cap is to quantify the
observed ‘almost’ curvature continuity of its siblings.

(© 2019 The Author(s)
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4.2. An’almost’ curvature continuous cap of bi-degree (3,6)

A bi-degree (3,6) construction, formally just G'-joined to the ’left
and right’ input data is visually indistinguishable from the degree
(3,9) construction, both in the highlight lines and in curvature
plots. As explained in the second half of Section 2.3, the degree 9
expansions qus are approximated by qus of degree (3,6) (left and
right gray-underlaid strips in Fig. 11a where light-gray indicates
the approximated part). With the central vertical layer presented in
degree 6 form, rule (3) is applied in the horizontal direction. The
resulting cap is internally C?, G' connected to left and right input
data and C? connected to top and bottom input data.

(a) (3,6) (b) refined (c) j?q vs j°q

Figure 11: 'Almost’ curvature continuous cap. (a) Structure of the
bi-degree (3,6) cap, (b) once refined. (c) Comparing j>q with j>q
degree-raised to 9 in the u-direction.

The e in Fig. 11a mark inner BB-coefficients of the cap that
can serve as dofs for engineering analysis in addition to the subset
of light-gray-underlaid BB-coefficients analogous to the bi-degree
(3,5) construction in Fig. 9b. After one refinement, the new inner
degrees of freedom are again marked by e in Fig. 11b. The refine-
ment along the left and right bounding curves is as in Section 3.3
but with j2q of degree 6.

To quantify ‘almost’ curvature continuous, we degree-raise j2q
in the u-direction and compare with qu. The difference is re-
stricted to the circled BB-coefficients in Fig. 11c. For all four pieces
s = 1,..4, we express both sets of coefficients as affine combi-
nations of the BB-coefficients of input bi-3 j2p with weights w?,
respectively w;. Then max; [w? —w}| < 0.001. Additionally, we
numerically computed for a series of challenging inputs both the
Gaussian curvature and the mean curvature, the maximum differ-
ence e between exact and "almost’ curvature continuity along the
boundary and the difference E between max and min values of the
exact curvature. In all cases, we found £ < 0.001. Each refine-

ment of the input data (followed by extension qu) further reduces
max; |w® —w?| by a factor of 10.

4.3. Bi-3 cap

To further explore the space of t-surfaces, we reduce the degree
(3,5) construction to bi-3 as follows. At the corners where u =0, 1,
the Hermite data (see Fig. 12a) of the G? expansion according to
Lemma 2 is collected as 2 x 3 arrangements of BB-coefficients in
bi-3 form. These are merged to form the BB-net j2q of Fig. 12b.
(The degree is reduced in the u-direction from 5 in Lemma 2 to 3 by
setting the bi-3 coefficients of q in terms of those of q (of degree
5 in the u-direction) as qqy := qoz, q1¢ := —%ﬁog + _%(114.) Then

© 2019 The Author(s)
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qu represents the boundary curve exactly, as the BB-coefficients
marked as e. Then steps (i-v) of the unified construction (with the
central vertical layer kept in degree 3 form) yields the bi-3 cap.

The new bi-3 cap is

- formally only CO-joined to the left and right input data,
- C! from top to bottom, and
- C? from left to right.

dq  dudiq // N
avq auavq
q duq
(a) Hermite data (b) j2q (c) bi-3 cap

Figure 12: Bi-3 construction. (b) j2q in bi-3 form. (c) Top and bot-
tom (dark-gray) are C 1_connected to the input tensor-border frame.

Testing the construction on a sequence of challenging inputs, we
found the mismatch of normals to always be less than 0.1°, accept-
able for automobile class A surface design [Aut19].

5. Examples and discussion

This section compares to Catmull-Clark surfaces [CC78],
[KPP17], the variants of Section 4 and evaluates interac-
tion with nearby irregular points and mesh creases.

v

(a) Tj-convex (d) Tp-wave

(b) to-ridge

(c) T;-ridge

Figure 13: Locally quad-dominant test meshes. (a) The nodes of
a mesh with Ty -gon lie on an elliptic paraboloid. (b) The ridge top
and its two base strips lie on different paraboloids. (c) A copy of (a)
with one vertical layer lifted up. (d) A convex mesh with top-right
3 X 3 sub-net pulled up.

The test configurations in Fig. 13

place the input mesh on a well-

understood basic shape, an elliptic

paraboloid in Fig. 13a. Many con-

structions, for example Catmull-

Clark subdivision, produce non-

uniform highlight line distribu-

tions already for this simple in-

put. As is common in polyhe-

dral design, pieces of basic shapes

are merged, Fig. 13b, or sub- Figure 15: Bi-3 stress
meshes displaced, Fig. 13c,d. The test

test meshes are intentionally small

since shortcomings of the spline

surface (as opposed to the large scale polyhedral outline) are subtle
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Cstep  (b) reprojected (c) unified layout (d) bi-3 layout

o

(e) CC of (a) (f) CC of (b) (g) unified (h) bi-3
Figure 14: First three columns: comparison to Catmull-Clark
(CC) subdivision. (a) Mesh Fig. 13a after one Catmull-Clark re-
finement. (b) Subnet of (a) is then projected onto the elliptic
paraboloid. (c) The unified construction: regular bi-3 patches, cen-
tral cap. (d) Bi-3 construction of Section 4.3.

and local. To be useful for evaluating surface quality, one would
anyhow have to zoom in on large meshes.

Fig. 14 demonstrates that Catmull-Clark subdivision is not sat-
isfactory for design with Tp- and t;-nets. The highlight lines em-
phasize artifacts that are visible already in shaded view. While
the highlight line distribution of the unified construction is perfect
(Fig. 14g). Fig. 14e shows what Malcolm Sabin aptly named ’first
step artifacts’, i.e. unwanted waviness. Even re-projecting the rel-
evant part of the refined mesh Fig. 14b onto the initial paraboloid
Fig. 14c, to remove the damage of the first step, only improves but
does not fix the highlight flaw Fig. 14f. And while ’tuning’ can
improve the eigenspectrum and limit near the extraordinary point
[CADS09, ADS11], the overall shape is typically worse due to first
step artifacts. By contrast to the direction-unaware Catmull-Clark
subdivision, the unified construction retains the tensor-product bias
of the input (this was conveniently used in Fig. 2e to place the *T’).
Fig. 14g,h show visually identical highlight lines for the unified de-
gree (3,5) cap and its bi-3 modification. Indeed for this and other
inputs even the curvature shading is nearly indistinguishable. Also
the < 0.1° upper bound on the mismatch of the normal continues
to hold where the geometry changes extremely fast as in Fig. 15
(the angular deviation of normals is < 0.068°).

(a) CC (b) unified

Figure 16: ty-ridge. (a) Catmull-Clark surface and highlight lines.
(b) unified construction and highlight lines.

A further argument against the use of Catmull-Clark subdivision
for T-configurations is the outcome in Fig. 16a. Here the central
wave is convex. After two steps the bicubic 3- and 5-sided regions
become separated (red in Fig. 16a) and the original two-direction
layout is forgotten. The resulting poor highlight line distribution
contrasts with that of the unified construction Fig. 16b.

(a) [KPP17] (b) unified

Figure 17: t-ridge from Fig. 13: comparing unified to [KPP17].

Besides its ability to handle much tighter configurations than
[KPP17] the unified construction yields visually smoother highlight
lines. The arrows < in Fig. 17a point to the undesirable sharper

(a) (3,5) unified

Nz

(c) (3,6) variant (d) (3,6) mean

(e) (3,5) Gaussian

P

(b) (3,5) mean

(f) (3,6) Gaussian

Figure 18: Comparison of the unified construction and its bi-
degree (3,6) variant. Top rows: input mesh Fig. 13d. Bottom row:
input mesh Fig. 13a.

Fig. 18 demonstrates that the degree (3,5) unified construc-
tion and its variant of degree (3,6) generate very similar surfaces
both visually and comparing their curvatures. Moreover, the degree

(© 2019 The Author(s)
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(3,6) surfaces’ curvature is near-impossible to distinguish from
that of the curvature continuous degree (3,9) construction.

v?."%"

(a) design (b) To -net (e) mean

Figure 19: Natural occurence of a ty-net when merging surfaces.
(e) mean curvature.

» 5 Wk

(b) layout

(a) To-gons,
n==6

(c) highlight lines (d) mean curvature

Figure 20: t-net with high valence vertex: (a) a mesh with six Ty-
gons and irregular node of valence 6.

Fig. 19 shows a designer’s sketch, the blending of two ‘primary’
surfaces. Already Fig. 2 showed T-gons and irregular nodes in
close proximity. Fig. 20 re-emphasizes that also higher valences
in T-nets pose no problem.

Where not to place T-junctions. Skilled designers (or good
remeshing algorithms) know not to run ridges diagonal to the
tensor-product directions since this can give rise to oscillations.
In the unified construction two diagonally re-connected tensor-
product subnets (see Fig. 21 c¢,d) are merged. Neither should vi-
olate good design practice, even though the merging diminishes
the oscillations. Therefore placing the t-net as in Fig. 21b is asking
for trouble. Fig. 21e,f,g show that the unified construction is the
most tolerant of the options: the — in Fig. 21e points to the flaw
in [KPP17] and the direction-agnostic Catmull-Clark subdivision
fares worse. By contrast, when a crease is oriented horizontally, as
in Fig. 21h,k, the virtual subnets do not introduce a ‘camel back’
effect of Fig. 21d. (Catmull-Clark subdivision fails also for this in-
put).

Fig. 22 mimics, via a T1-gon, the insertion of a crease Fig. 22e
as is created in (b) by truncated double (triple) knot lines and Tp-
gons. Of course the goal for this paper is to smooth out, not create
creases.

5.1. Partition of unity and linear independence

For a heterogeneous collection of c? B-splines, multi-sided sur-
faces [KP15] and 7 surfaces it is appropriate to define generating
functions as the collection of polynomial pieces in BB-form ob-
tained from the construction applied to a mesh where one nodal
value is one and all others zero. Partition of unity then follows

© 2019 The Author(s)
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>

(b) creased mesh, 2 views

(a) un-creased

e TP

(c) left bias net + bi-3 surface (d) right bias net + bi-3 surface

(m

(e) [KPP17]

(h) top crease (i) CC (j) unified
(k) bottom crease 1) CC (m) unified

Figure 21: Good and bad alignment of a T -gon with creases.

from the affine invariance of the construction. By [GP15], isogeo-
metric analysis (IgA) using the surface as physical domain requires
functions with the same geometric continuity as the surface. While
for geometry some degrees of freedom are sacrificed to obtain bet-
ter shape, IgA uses the maximal set of basis functions of a fixed
smoothness class. This is the same set that is considered for refin-
ability. The following exhibits these t-functions and their refine-
ments.

- (3,5): For the default construction the tensor-border in Fig. 8a
defines the gray-underlaid strips of BB-coefficients in Fig. 9b
and Fig. 23a. The left and the right strips consist of jets jlqs. By
Lemma 5 the jets are nestedly refinable. The top and the bottom
strips are refinable since they are obtained by degree-elevation.
The 36 BB-coefficients marked as o in Fig. 23a have linearly in-
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(a) Tf—net, surface and highlight lines

o

(b) creases

Figure 22: Introducing creases. (b) green layers delineate a double
knot line behavior, and a triple knot line forms the top ridge.
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@ (3,6) (e) dofs (f) refined dofs

Figure 23: Conversion and refinement. top: (a) unified net and BB-
coefficients of the tensor border; (b) B-spline coefficients as dofs
(blue disks); (c) refined dofs. bottom: same for degree (3,0).

dependent generating functions; and are 1-1 with the 36 control
points, marked as o in Fig. 23b, of splines that are c? along the
boundary frame and C ! across. (Representation in B-spline form
simplifies connection with the neighboring generating functions
and reparameterization does not alter linear independence.) The
o in Fig. 9b are control points of a C?/C' bi-degree (3,5) spline
cap. This yields a total of 42 + 36 = 78 linearly independent
functions. Fig. 23c and Fig. 9d show the refined sets of dofs.

- (3,6): The dark-gray underlaid BB-coefficients in Fig. 1la
correspond to 40 linearly independent functions whose BB-
coefficients are shown in Fig. 23d, or, equivalently, to 40 B-
spline control dofs in Fig. 23e. These are complemented by the
39 dofs marked e in Fig. 11a; the refined sets of dofs is shown in
Fig. 23f and Fig. 11b.

- (3,9): In the curvature continuous case, all 42 input B-spline

control points define a linearly independent set of functions.
They are complemented by 25 basis functions controlled by e
in Fig. 10.

Due to the present focus on geometry, we leave as future work the
full characterization of how the dofs of the constructions interact
within the global set of linearly independent functions on a het-
erogeneous mix of abutting T-nets, multi-sided configurations and
B-splines.

6. Conclusion

The new unified construction is first in generating free-form sur-
faces with merging quad-strips of a quality suitable for automo-
bile outer surfaces. Moreover, due to the unifying refinement, the
construction is surprisingly local, requiring 7,-gons to only be sur-
rounded by one layer of quads. This makes precise the notion of a
locally quad-dominant mesh. In practice, this often averts global re-
finement to isolate irregularities which not only increases the patch
count but can harm the overall shape.

The unified construction (of degree (3,5)) has two interesting
variants: increasing the degree to (3,6) yields surfaces indistin-
guishable from curvature-continuous surfaces; and decreasing the
degree to bi-3 yields surfaces whose jump in normal falls inside the
range acceptable for automobile A-class design. The constructions
are nestedly refinable and offer for engineering analysis linearly
independent functions that form a partition of unity.
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Appendix. 1;-surfaces

Due to the change of density in two directions, Tp-constructions
differ from their Tp- and T;-counterparts. Virtual refinement and
reparameterization, the approach used in the unified construction,
resulted in lower quality than the following T,-construction.
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(a) Local augmentation

(b) refined net

Figure 24: T,-configuration.

— Define a new node e in Fig. 24a as a weighted sum of the initial
nodes with the weights

1:6= 0.017 —-0.017 0.023 —-0.021 0.016 0.024
7:12= 0.201 0.231 —-0.039 0.286 —0.069 0.023

(Due to diagonal symmetry of the construction only a subset of
the weights are listed corresponding to the labels in Fig. 24a.)

— Connect e as shown in Fig. 24a.

— Apply one Catmull-Clark refinement step to the augmented net.
This yields the new control points in Fig. 24b: e stem from the
initial Tp-net and e are influenced by the added control point.
(The upper and right nodes depend on outside neighbors.)

— Apply a multi-sided hole filling construction to the net in
Fig. 24b.

The last step could use, e.g. [LS08] or [YZ04], but applies [KP15],
a low degree, refinable construction of good quality. Fig. 25 il-
lustrates how the construction improves on its main alternatives:
Catmull-Clark subdivision [CC78] (Fig. 25b, c¢) and [KPP17]

po

(@) T (b) CC (c) Tp-construction
(d) 1o (e) [KPP17] (f) To-construction

Figure 25: ty-meshes. (a) convex, (d) creased. Comparison of
the T-construction with [KPP17] and Catmull-Clark subdivision
(CC).



