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Abstract

To be directly useful both for shape design and a thin shell analysis, a surface representation has to satisfy three properties: (1) be
compatible with CAD surface representations, (2) yield generically a good highlight distribution, and (3) offer a refinable space of
functions on the surface. Here we propose a new construction, based on a number of recently-developed techniques, that satisfies
all three criteria. The construction converts quad meshes with irregularities, where more or fewer than four quads meet, to C1 (or,
at the cost of more pieces, C2) bi-4 surface consisting of subdivision rings for the main body completed by a tiny G1 cap.

1. Introduction

Modern piecewise polynomial constructions are based on
careful parameterizations to achieve generically good highlight
line distributions also where more or fewer than four 4-sided
pieces meet. This representation is directly compatible with
current CAD surface standards. Remarkably, such Gk con-
structions automatically provide a Ck space of functions on the
surfaces [1, 2]. However, nested refinement of the Gk repre-
sentation requires careful tracking of the original Gk edges to
ensure that a solution obtained at one level of refinement is not
lost at the next finer one. Already when k = 1, the character-
ization of all possible degrees of freedom, even when joining
just one pair of patches, is not easy [3]. For specific high-end
surface constructions, where the degrees of freedom under re-
finement have been explicitly characterized, they are heteroge-
neously distributed [4].

An alternative is to model multi-sided surface pieces with
an infinite sequence of nested polynomial surface rings so that
nested refinement is built-in. Such generalized subdivision is
exemplified by Catmull-Clark (CC) subdivision [5]. Unfortu-
nately many parts of the CAD pipeline are not set up for infi-
nite recursive definition. More importantly, as Fig. 1 illustrates,
CC subdivision produces poor highlight lines even for simple
configurations, such as joining two crossing pipes. Note the
characteristic ‘pinching’ of highlight lines near the 6-valent ir-
regularity.

Retaining the best of subdivision and geometrically contin-
uous surface constructions leads to the approach of this paper.
The key observation is that in practice, analysis works with
a maximal anticipated refinement level ` for a given geomet-
ric design. We therefore propose to model multi-sided surface
pieces as a sequence of C1 surface rings closed off by an n-
sided G1-cap at the final anticipated refinement level.

a. Since the final surface consists of a fixed number of 3n`+
4n bi-4 (bi-quartic) surface pieces, it is CAD representable.

b. Since the surface rings and final cap carefully follow a
guiding shape, good highlight line distribution as in Fig. 1
is observed without exception for an obstacle course of
challenging configurations.

c. Since the maximal refinement level at the irregularity is
realized by the G1-cap, it need not be refined. And since
the sequence of surface rings forms aC1 complex, nested
refinability amounts to standard regular spline refinement.

While non-trivial in its derivation, the bi-4 surface is efficiently
constructed via pre-tabulated operators, akin to the more light-
weight subdivision stencils of CC subdivision. The number of
surface rings can be varied to suit the application.

Structure of the paper. Section 2 explains the input and basic
tools used for the constructions: the corner jet constructor, maps
of total degree and characteristic parameterizations. Section 3
describes the guide and Section 4 a guided subdivision. Sec-
tion 6 characterizes the eigenstructure of this subdivision and
reveals how it is inherited from a guide surface. Section 5 re-
formulates the bi-4 guided subdivision to look more like tradi-
tional CC subdivision. Section 7 sketches how G1 caps yield
a high-quality, hybrid construction with finitely many patches.
Section 8 illustrates the surface quality according to alternatives
and trade-offs that lead to the preferred bi-4 construction pre-
sented here.

2. Definitions and Setup

This section characterizes the input, operators, C1 polyno-
mial caps of total degree, and the reparameterizations used to
define first the guide and then the final surface.

2.1. A B-spline-like control net for irregular layout

We consider as input a network of quadrilateral facets, short
quads. Nodes where four quads meet are regular, otherwise ir-
regular. We assume that each irregular node is surrounded by
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(a) input quad-mesh (b) Catmull-Clark

(c) bi-4 guided rings + cap (d) new finite bi-4

Figure 1: (a) Input mesh with (top) adjacent nodes of valence 6 and (bottom)
once refined. (b) Pinched highlight lines typical of Catmull-Clark subdivision
surfaces. (c) regular surface of degree bi-3 (green) and C1 bi-4 guided rings
with tiny G1 bi-4 cap (red) covering the 6-sided region with a guided surface
with (d) good highlight line distribution.

at least one layer of regular nodes. Fig. 2a shows the c-net (bul-
lets) of an isolated node of valence n = 5. The c-net consists of
the irregular node plus 6n nodes forming two layers of quads
surrounding it. Typically a third layer is added for evaluation
of local shape. The extra layer provides a surrounding surface
(green in Fig. 2b). This allows tracing the highlight line dis-
tribution [6] across the transition where quality is as important
and challenging as the internal quality of the cap.

Each 4 × 4 sub-grid of nodes is interpreted as the B-spline
control points of a bicubic tensor-product spline surface. Ex-
cept at the irregular node, well-known formulas can be applied
to convert the B-spline form to Bernstein-Bézier form (see e.g.
[7, 8]). The tensor-product Bernstein-Bézier (BB) form of bi-
degree d is

p(u, v) :=

d∑
i=0

d∑
j=0

pijB
d
i (u)Bdj (v) ,

(u, v) ∈ � := [0..1]2, where Bdk(t) :=

(
d

k

)
(1− t)d−ktk

are the BB-polynomials of degree d and pij are the BB coeffi-
cients. Fig. 2b also shows the C2 prolongation of this surface
ring, i.e. Hermite data represented as a grid (black) of bi-3 BB-
coefficients. Specifically, the BB-coefficients pij , i = 0, . . . , 3,
j = 0, . . . , 2, represent Hermite data of order 2 along one
boundary curve v = 0. Degree-raised to bi-degree 4, we call
these data tCC . In the remainder of this paper, we refer to

(a) c-net extended by 1 layer (b) bi-3 ring + tensor-border

Figure 2: B-spline-like irregular control net and tensor-border. (a) Extended
c-net for n = 5. (b) Schema of surface ring (green) and its tensor-border (of
degree 3 and depth 2 = inner grid of BB-coefficients). The tensor-border is the
input for the multi-sided construction.

second-order Hermite data of degree 4 along the loop of bound-
ary curves as one of

t,h = a tensor-border of degree 4 and depth 2.

We will construct tensor-product patches and tensor-borders with
the help of jet constructors

[[[f]]]di×j , the corner jet constructor,

expresses, at a corner of the domain square [0..1]2, the expan-
sion of a function f of order i−1 in u and j−1 in v in BB-form
of bi-degree d. That is, [[[f]]]di×j outputs i×j BB-coefficients (see
Fig. 3a,b for i = 3 = j). Fig. 3c displays four corner jet con-
structors [f ]43×3 merged to form a bi-4 patch by averaging the
overlapping BB-coefficients.

∂2
vf ∂u∂

2
vf ∂2

u∂
2
vf

∂vf ∂u∂vf ∂2
u∂vf

f ∂uf ∂2
uf

→
(a) (b)

(c) (d)

Figure 3: Corner jet constructor [f ]d3×3 at work. (a) Hermite data as partial
derivatives converted to (b) BB-form assembled, by averaging 3 × 3 jets, into
(c) a patch of degree bi-4. (d) L-shaped sector of the tensor-border t.

Fig. 3d illustrates the analogous assembly of an L-shaped
sector of the tensor-border by applying and averaging a jet con-
structor at three corners.

Several steps of the surface construction use a simple sym-
metric rule, called C2-rule in the following and illustrated in
Fig. 4: two curve segments (of the same degree) in BB-form
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join C2 at their common end-point (marked as a big bullet) if
and only if the BB-coefficient immediately to its left (small cir-
cle indicated by ↓ in Fig. 4) is defined as the weighted average
of the BB-coefficients marked as bullets with the weights indi-
cated above. The right circled BB-coefficient is defined by the
mirrored formula.

1/4 ↓ 1 -1/4

Figure 4: Symmetric rule of C2 join.

2.2. Maps of total degree d
We will use maps b4 of total degree d whose domain is a

regular n-gon D composed from n equal triangles with a com-
mon vertex O at the origin. Fig. 5a shows one such triangle
with sides defined by li = 0, i = 0, 1, 2. Each linear function li
is equal to 1 at the vertex opposite to li = 0. On the triangle we
define a map b of total degree d in Bernstein-Bézier form as

b :=
∑

i+j+k=d

bijkB
d
ijk, i,j,k≥0, Bdijk :=

(
d

ijk

)
li0l

j
1l
k
2 .

(1)
Fig. 5b labels the BB-coefficients rotationally symmetric. Let
c := cos 2π

n . Pieces on adjacent sectors bs and bs+1 join

C0 if bs+1
d−i,i,0 := bsd−i,0,i, i=0,...,d (2)

C1 if bs+1
d−i,i−1,1 := −bsd−i,1,i−1 + 2cbsd−i,0,i (3)

+ 2(1− c)bsd−i+1,0,i−1, i=1,...,d

C2 if bs+1
d−i,i−2,2 := bsd−i,2,i−2 − 4cbsd−i,1,i−1 (4)

+ 4c2bsd−i,0,i − 4(1− c)bsd−i+1,1,i−2

+ 8c(1− c)bsd−i+1,0,i−1 + 4(1− c)2bsd−i+2,0,i−2,

i=2,...,d.

across the sector boundary between patch s and patch s + 1
(modulo n). In the following,
– superscript s denotes the sector, i.e. s ∈ {0, 1, . . . , n−1} and
– superscript r denotes the refinement level, i.e. r = 0, 1, . . ..

The six BB-coefficients b0
ijk (indicated as red bullets in

Fig. 5) define a quadratic expansion q at the central point b0
d00.

This local expansion is propagated to the neighboring sectors
by repeatedly enforcing Eq. (2) for i = 0, 1, 2, Eq. (3) for
i = 1, 2 and Eq. (4) for i = 2. That is, the b0

ijk define a unique
quadratic expansion of the C1 map b4 at b0

d00.
With the quadratic expansion fixed, the C1 constraints (3)

can be rewritten as

bsd−i,0,i :=
1

2c

(
bsd−i,1,i−1 + bs+1

d−i,i−1,1

)
(3’)

+ (1− 1

c
)bsd−i+1,0,i−1, i = 3, . . . , d.

This allows the BB-coefficients

bs| := {bs112,b
s+1
121 ,b

s+1
031 ,b

s
013} of b4

to be unrestricted by C1 continuity (see Fig. 5b); bs022 is unre-
stricted due to its distance from the sector boundary.

l0 = 0

l1 = 0

l2 = 0 O

(a) domain

040

031

013

112

031

121

004

400

bs bs+1

(b) b4

Figure 5: (a) Domain of total degree d map. (b) The n = 5 sectors of the
C1 map b4 of degree d = 4. The ‘light red’ shaded region indicates the
quadratic expansion q at the center. The BB-coefficients that remain unre-
stricted when enforcing C1 constraints are marked as ( black and red) bullets;
the BB-coefficients shown as orange bullets do not affect C1 continuity be-
tween sectors.

L

g�

b4 g

Figure 6: Increasing the flexibility of b4 via linear shear L.

2.3. The linear shear map L

We denote by L the linear shear that maps a unit square to
the unit parallelogram with opening angle 2π

n as illustrated in
Fig. 6. To increase the flexibility we set for each sector

g := b4 ◦ L. (5)

Then, see Fig. 6, along the sector boundary the gray-underlaid
BB-coefficients of theC1 map b4 determine the corresponding
gray underlaid BB-coefficients of the G1 map g. But while
each sector of b4 has only one coefficient not influencing C1

continuity between sectors, each sector of g has 9 coefficients
that do not influence G1 continuity of g. These coefficients,
later referenced as g� (magenta bullets) provide extra degrees
of freedom. Therefore g has a total of 9n+ 4n+ 6 = 13n+ 6
degrees of freedom.

Fig. 7a displays the sectors of g disjoint to emphasize that
the guide is sampled locally in each sector, while subsequent
adjustments are local respect to each sector boundary. Fig. 7b
displays the BB-coefficients of b4 that defines the gray under-
laid BB-coefficients of g (unrestricted coefficients as bullets).

The switch from C1 to G1 maps (and later, via sampling
in Section 4, back to C1 maps) not only increases the freedom
for the guide to achieve better shape but also connects guided
subdivision to conventional subdivision, see Section 5. The
complexity of such composition and re-sampling is reduced by
defining local linear operators that apply to groups of coeffi-
cients as explained in Section 3.
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(a) sectors of g (b) b4 coefficients deter-
mining gray part of g

Figure 7: Multi-sector (n = 5) schema of (a) a collection of the sectors of
the guide g and (b) the part of b4 that determines the gray layers of BB-
coefficients of g.

2.4. Characteristic parameterizations χ and χ̃

Fig. 8a displays the BB-coefficients of one sector of the
characteristic map χ of Catmull-Clark subdivision (for n = 5).
One way to obtain the gray-underlaid BB-coefficients is by sub-
dividing a coarser L-shaped tensor-border χ̃ of degree 3 and
depth 2, shown in Fig. 8b. χ̃ exists since the characteristic map
χ, scaled by subdominant eigenvalue of Catmull-Clark subdivi-
sion, isC2 connected to χ. We use χ̃� := L−1◦χ̃ to jet-sample
g in each sector at the locations marked as crosses in Fig. 8c
to form a tensor-border t as illustrated in Fig. 3d. The BB-
coefficients marked solid blue or cyan in Fig. 3d are expressed
as an affine combination of the gray-underlaid BB-coefficients
of g and so of the gray underlaid coefficients of b4. Since
g := b4 ◦ L and χ̃� := L−1 ◦ χ̃ these BB-coefficients are
directly calculated from the jet-sample [b4 ◦ χ̃].

(a) χ (b) χ̃

L−1

(c) χ̃� := L−1 ◦ χ̃

Figure 8: One sector of (a) the characteristic parameterizations, (b) the charac-
teristic tensor-border and (c) the usage of χ̃.

b̂

b||

(a)

b̄

b|

bs bs+1

310 301

211 211
301

202
112 121

013 031

(b)

Figure 9: Groups of BB-coefficients of b4 (a) b̂ and b|| local to a segment
and (b) b| and b̄ local to a sector boundary.

3. Construction of the guide g

The idea of separating detail from global shape, expressed
by a guide surface, goes back at least to [9]. Since then the
‘technology’ for determining the guide and sampling it for the
final surface have dramatically improved. For the construc-
tion, we form and operate on groups of BB-coefficients. Since
the groups are local, we drop the superscript s that denotes the
sector wherever this is unambiguous.

- b̂ : per sector of b4, the 6 BB-coefficients of the quadratic
expansion q (light-red underlay in Fig. 9a).

- b| : per sector boundary of b4, the 4 BB-coefficients
bs013, bs+1

031 , bs112, bs+1
121 , see Fig. 9b.

- b|| : per sector of b4, the 8 BB-coefficients of the union
of two b| arrangements, see Fig. 9a.

- b̄ : per sector boundary of b4, 7 BB-coefficients of the
quadratic expansion of b4: bs400, bs301, bs202, bs310, bs+1

301 ,
bs211, bs+1

211 , see Fig. 9b.
- g� : per sector of g, the 9 BB-coefficients (magenta bul-

lets in Fig. 6) that do not affect theG1 continuity between
sectors.

We will determine the 13n+6 BB-coefficients of g that are un-
restricted by smoothness so that (parts of) the g-sampled tensor-
border t match (parts of) an incoming tensor-border h. This
elimination will be symbolic, i.e for unspecified h so as to ob-
tain formulas that can be tabulated as a linear transformation
matrix. The grouping of t and h is analogous to that of b4 and
g (see Fig. 10):

- t| (h|) : per sector boundary, the 4 BB-coefficients with
indices {30, 03, 31, 13}.

- t|| (h||) : per sector, the 8 BB-coefficients of the union of
two t| (h|) arrangements.

- t� (h�) : per sector, the 9 BB-coefficients per sector with
indices i, j, 0 ≤ i, j ≤ 2.

00 20 30

31
02

04

22

03

13

hs hs+1

(a) incoming tensor-border h

00 20 30

31

02

04

22

03

13

ts ts+1

(b) sampled tensor-border t

Figure 10: (a) An incoming tensor-border h. (b) Tensor-border t sampled from
g.

Local linear operators. The following linear and local oper-
ators Oi map the groupings (in symbolic, non-numeric repre-
sentation) into one another:
O1(h|, b̄)→ b|: Express b| as an affine combination of h|
and b̄ – so that t| = h|. (Due to the G1 continuity of g, the two
BB-coefficients of t on sector boundary are 1

2 (ts3i + ts+1
i3 ), i =

0, 1, hence coincide with the corresponding BB-coefficients of
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h marked as hollow green boxes in Fig. 10a.)
O2(h�,b||, b̂) → g�: Express g� as an affine combina-
tion of h�, b||, b̂ – so that h� = t�.
Applying O1 to both boundaries of a sector and subsequently
applying O2 yields
O3(h�,h||, b̂) → g�: analogous to O2 but with h|| in
place of b||.

Note that O1 is local to a pair of sectors and O2, O3 there-
after are local to one sector. The operators are ‘invertible’ in the
sense that we can equally well determine

O′1(b|, b̄)→ h|, O′2(g�,b||, b̂)→ h�. (6)

Leveraging the substitution operators O1 and O3, we get that
t� = h� and t| = h|, i.e. we almost match the incom-
ing tensor-border h with the sampled tensor-border t, for any
choice of the 6 BB-coefficients in quadratic expansion q.

1
2 3

4
5 6

7

Figure 11: Rotationally-symmetric la-
belling of one sector of the c-net.

Guide construction. Since
the incoming tensor-border
h is an affine combina-
tion of the c-net, the above
operators express the BB-
coefficients of g linearly
in terms of the c-net and
the quadratic expansion q.
We set the central BB-
coefficient b0

400 in terms of
the c-net (see Fig. 11, ck7 ,
k = 0, . . . , n − 1, is the
central node)

if n > 4,
n

n+ 5
c0

7 +

n−1∑
k=0

(γ5c
k
5 + γ6c

k
6), (7)

γ5 :=
1

n(n+ 5)
, γ6 := 4γ5,

if n = 3, (1− 3γ5 − 3γ6)c0
7 +

2∑
k=0

(γ5c
k
5 + γ6c

k
6), (8)

γ5 :=
5

96
, γ6 :=

1

6
,

i.e. as the extraordinary point of Catmull-Clark subdivision ex-
cept for a small perturbation to improve shape when n = 3. The
remaining BB-coefficients Γ := {b0

310,b
0
301,b

0
220,b

0
211,b

0
202}

determine the quadratic expansion and are fixed by minimizing

min
Γ

n−1∑
s=0

F4(gs), Fkf :=

∫ 1

0

∫ 1

0

∑
i+j=k
i,j≥0

k!

i!j!
(∂is∂

j
t f)2dsdt.

(9)

Implementation of g via generating functions. The initializa-
tion works for each coordinate separately. When all nodes of
c-net have value 0, except that c0

m = 1 for one of m = 1, . . . , 7
(see Fig. 11), we obtain the scalar-valued bi-4 coefficients

hk,mij ∈ R, k = 0, . . . , n− 1, m = 1, . . . , 7, i, j ∈ {0, . . . , 4},

where h0,7
ij = . . . = hn−1,7

ij . Then the BB-coefficients of g are

gsij := h0,7
ij c0

7 +

n−1∑
k=0

6∑
m=1

hk,mij cs−km ,

where the superscript of cs−km is interpreted modulo n.

3.1. A C2 bi-4 transition ring

If we choose h = tCC (see Section 2.1) then the high-
light line distributions of guided subdivision surfaces are better
than those of Catmull-Clark subdivision. However for some
challenging configurations (see Section 8) the transition from
input bi-3 data to the first guided ring is noticeable in the high-
light lines. This can be traced back to the fact that the sampled
tensor-border t does not reproduce the entire tCC . To smooth
out the transition, we could apply Catmull-Clark-refinement.
However Catmull-Clark subdivision’s tendency to pinch high-
light lines often damages the shape already in a single refine-
ment (see Fig. 27).

(a) C2 bi-4 patches (b) sampled t

Figure 12: (a) Structure of transition bi-4 ring. (b) tensor-border t sampled
from g5. Its circled coefficients are picked as the coefficients shown as black
bullets in (a).

To remove the first-step artifacts from the highlight line dis-
tribution, we insert one C2 bi-4 ring xtran. This transition ring
has the same layout as those of Catmull-Clark subdivision. Us-
ing the C2 prolongation of xtran as incoming tensor-border h
makes the transition defects disappear. The transition ring is
constructed as follows (see Fig. 12):

– The outer BB-coefficients (gray bullets in Fig. 12a) are
the tensor-border tCC once split.

– The tensor-border t (see Fig. 12b) is assembled as in Sec-
tion 3 but with jets [g5 ◦(λχ̃�)]43×3. The map g5 detailed
in the Appendix mimics g but better captures tCC .

– The circled coefficients of t become those marked by
black bullets in Fig. 12a.

– The C2-rule enforces C2 connection to the finer layer by
first determining every second BB-coefficient (marked as
big hollow squares in Fig. 12a) from those marked as
black and grey bullets; and then those marked as small
hollow squares.
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For efficient implementation via generating functions, only
6 entries need to be pre-computed (for 6 of the 8 black bullets
that can be assigned to one sector and are not covered by the
neighbor sector Fig. 12a).

4. Subdivision surfaces guided by g

Each subdivision step consists of jet-sampling the guide and
smoothly joining the resulting jet information. Note that in the
following the superscript r in tr denotes the refinement level
and the superscript s for sector need not be mentioned as it is
clear from the context. Recall that for best shape, we insert a
transition ring xtran. TheC2 prolongation of xtran is therefore
the incoming tensor-border t0 := h for constructing g.

4.1. Sampling with χ̃�

Analogous to Section 3, we create tensor-borders tr, r >
0 by assembling three corner jets [g ◦ (λrχ̃�)]43×3, averaged
where they overlap (see Fig. 3d). Here λ is the subdominant
eigen-value of CC subdivision and Fig. 13 shows χ̃� and its
scaled copy λχ̃�.

Computing [g◦(λχ̃�)]43×3 is equivalent to linearly mapping
S : [0..1]2 → [0..λ]2 and sampling (g◦S)◦ χ̃�. De Casteljau’s
algorithm at u = λ = v yields the BB-coefficients of g ◦ S
as the affine combinations of BB-coefficients of g and these are
easy to tabulate: due to combinatorial symmetry of construction
only one affine 52×52 map (de Casteljau) and one 21×52 map
(sampling of t1) are required.

Figure 13: Scaled sampling. The origin
is marked red. Figure 14: Correction

of C1 tr to C2 t̃r .

4.2. Constructing guided rings
The sectors of the sampled tensor-borders tr are automati-

cally C1 connected. Applying the C2-rule joins the sectors C2.
(This smoothing allows reducing the size of the t1 sampling
map to 12 × 52: 9 entries for t� and 3 on the sector bound-
ary.) The C2 tensor-border is called t̃r (see Fig. 14), and since
the sectors of h are C2 connected t̃0 = t0. Then t̃r and t̃r+1

determine the r-th ring xr, r = 0, 1, . . . as follows.

4.2.1. C1-joined rings
To join consecutive rings C1 (see Fig. 15a) the ‘outer’ dark-

gray underlaid BB-coefficients of the three bi-4 patches of a
sector of xr are those of t̃r (once subdivided). The ring joins
C1 to the tensor-border t̃r+1 by choice of the light-gray un-
derlaid BB-coefficients of xr. Then the sequence of rings is
C2-connected to the input data, the neighbor sectors join C2

and the dark-gray all underlaid layers of xr are C2 connected
with one another within the ring.

t̃r

t̃r+1

(a) C1 prolongation

3/4
-1/4

3/4
-1/4

(b) C2 prolongation

Figure 15: Structure of the guided bi-4 rings. The dark-gray underlaid BB-
coefficients are those of t̃r and, in the upper right, of t̃r+1. Light-gray BB-
coefficients ensure smoothness.

4.2.2. C2-joined rings
Alternatively, we can join consecutive rings C2. Each sec-

tor of xr is split into 4 + 2 + 2 patches of degree bi-4 (see
Fig. 15b). Again the ‘outer’ dark-gray underlaid BB-coefficients
are those of t̃r, suitably split. The ring joins C2 to the tensor-
border t̃r+1 by choice of the light-gray underlaid BB-coefficients
of xr. Internal C2 joints are computed using the stencil to the
right of Fig. 15b that determines the boundary coefficient (big
black bullet) as an affine combination of the smaller bullets
(with the displayed weights). We set their neighbors (hollow
boxes) via the C2-rule. This yields two once-split patches and
(tensoring the split) one 2 × 2 corner patch per sector of xr.
Each such macro-patch is internally C3.

5. Reformulating bi-4 guided subdivision towards traditional
small-stencil subdivision

Despite the obvious similarities to subdivision using small
stencils, such as CC subdivision [5], guided subdivision appears
to differ from traditional subdivision:
(i) the B-spline-like control net only serves to initialize the guide.
Thereafter, rings are controlled by the guide, not the net.
(ii) Although the contracting guided rings follow rules that are
efficient due to scalability and pre-calculation, these guided rules
are clearly more complicated than traditional stencils: the re-
finement matrix of guided subdivision is less sparse.

Figure 16: New determining set of g: t�, t|, and quadratic expansion (6 red
bullets).

We therefore reformulate the guide construction of Section 3
and the guided subdivision of Section 4 to better resemble tra-
ditional subdivision rules. The final rules map tensor-borders to

6



tensor-borders and are tabulated for each valence n. The new
determining set is illustrated in Fig. 16. Wrapping the origi-
nal bi-4 guided subdivision of Section 4 by applying operators
O1, O2, O′1 and O′2 allows replacing b|,g� by t| = h|, t� =
h�. The quadratic expansion (underlaid light-red) remains un-
changed:
– apply O1 and O3 (to restore the original determining set of
g);
– compute g ◦ S (as in Section 4.1);
– apply O′1 and O′2 (to re-create the new determining set of g).
This yields alternative local linear subdivision operators Ri:

- R1(tr| , b̄
r)→ tr+1

| : Symbolically express tr+1
| as affine

combination of tr| and of b̄r.

- R2(tr�, t
r
||, b̂

r) → tr+1
� : Symbolically express tr+1

� as

an affine combination of tr�, tr||, b̂r,

where the superscript r indicates the refinement level. For a
given n, R1 can be tabulated as a matrix of size 4× 11 and R2

as a matrix of size 9× 23.

- Since L ◦ S ◦ L−1 amounts to scaling of D by λ with
respect to the origin, the refinement formulas for b̂ (see
Fig. 17) are

b̂r+1
400 :=b̂r400, b̂r+1

310 := (1− λ)b̂r400 + λb̂r310,

b̂r+1
220 :=(1− λ)2b̂r400 + 2(1− λ)λb̂r310 + λ2b̂r220,

(10)

b̂r+1
211 :=(1− λ)2b̂r400 + (1− λ)λ(b̂r310 + b̂r301) + λ2b̂r211.

b̂r+1
301 and b̂r+1

202 are defined by mirrored formulas. Since
b̄ consists of pieces of neighboring b̂, the formulas also
define the refinement of b̄.

Wrapping also the sampled tensor-border construction (apply
O1 and O3, jet-sample to obtain the tensor-border t, apply O′1
and O′2) yields an operator O4(tr| , b̄

r) → trij , ij ∈ {32, 23}
that expresses the coefficients marked as big bullets in Fig. 18
as a linear combination of tr| (small bullets) and b̄r. For each
n, this operator can be tabulated as a 2 × 11 matrix. Setting
the shared BB-coefficients on the sector boundary (marked as
the hollow squares in Fig. 18) as averages completes the tensor-
border tr. With the tensor-borders tr−1 and tr known, we can
proceed as in Section 4.2 to complete and join the rings C1 or
C2.

400

301

202

310
220

211

b̂r

b̂r+1

Figure 17: Refinement of the quadratic expan-
sion.

30 03

31 13

32 23

Figure 18: Completing tr

beyond tr| .

By construction, the reformulated guided bi-4 subdivision
surface is identical to the original constructed according to Sec-
tion 4.2. However, there are several benefits to the reformulated

version. The original scheme requires storing g, i.e. the coeffi-
cients hk,mij , i, j ∈ {0, . . . , 4} of Section 3 while the reformu-
lated scheme requires storing only the quadratic expansion, i.e.
hk,mij , i+ j ≤ 2 since

b400 = g00, b310 = g10, b301 = g01, b220 = g20,

b202 = g02, b211 =
1

3

(
g00 − g10 − g01 + 4g11

)
.

And since the reformulated rules require fewer arithmetic oper-
ations its evaluation is faster.

6. Eigen-structure of guided bi-4 surfaces

While, for applications, we suggest capping the subdivision
after a few steps, a complete theoretical analysis is possible.

6.1. The guide g as a superposition of homogeneous functions
The Bernstein polynomials Bd0jk :=

(
d

0jk

)
lj1l

k
2 are homoge-

neous of degree d: for any λ, Bd0jk(λx) = λdBd0jk(x). Conse-
quently Bd0jk ◦L, of degree j×k, is homogeneous of degree d:
for any λ,

(Bd0jk ◦ L)(λu, λv) = λd(Bd0jk ◦ L)(u, v).

Homogeneity is not affected by constraints (2–4). If we set one
unconstrained BB-coefficient to 1 and the others to 0, the result-
ing g is homogeneous in all sectors. These simple observations
allow to efficiently construct an explicit basis of homogeneous
functions of the guide g. We count

– 6 functions corresponding to the quadratic expansion: the
function 1, two of degree 1 and three of degree 2.

– The 4n functions that are non-zero on two adjacent sec-
tors: 2n of degree 3 and 2n of degree 4.

– 9n functions (n groups of 9) that are non-zero only in one
sector: B4

022 ◦L of degree 4, B5
032 ◦L, B5

023 ◦L of degree
5, B6

042 ◦ L, B6
033 ◦ L, B6

024 ◦ L of degree 6, B7
043 ◦ L,

B7
034 ◦ L of degree 7 and B8

044 ◦ L of degree 8.

Scaling the arguments of g by any λ therefore scales nν basis
functions by λν :

ν = 0 1 2 3 4 5 6 7 8
nν = 1 2 3 2n 3n 2n 3n 2n n.

(11)

6.2. Eigen-structure of guided subdivision surfaces
BothC1 andC2 bi-4 guided subdivision surfaces inherit the

homogeneous decomposition of the guide g. For analyzing the
eigenstructure we start with ring x1 (skipping the transition ring
x0 whose eigen-decomposition, by smooth extension from x1

is not complicated but would distract.) We denote by xrd,p the
rth ring obtained applying the constructions of Section 4.2 to
the pth homogeneous functions fd,p of degree d in Section 6.1.
By construction, xrd,p = (λd)r−1x1

d,p. (This means that we can,
as in [10] and implicit in [11], pre-compute the initial 13n +
6 eigen-rings x1

d,p and obtain eigen-functions xrd,p by scaling
with (λd)r−1.)

7



The prominence of the homogeneous functions, closely re-
lated to monomials of the power form, re-affirms that the eigen-
decomposition serves theoretical analysis; for modelling the
BB-form is more suitable.

(a) λ2 (b) λ2 (c) λ2

(d) λ3 (e) λ4 (f) λ5

Figure 19: Eigenfunctions for n = 5.

Fig. 19 displays some C1 bi-4 eigenfunctions for n = 5.
Their C2 counterparts are visually alike. We used χ for the pla-
nar abscissae and scaled vertically for a better visual impres-
sion. The tiny red center is the G1 bi-4 cap to be constructed in
Section 7. The top-row of Fig. 19 shows the eigenfunctions of
elliptic, hyperbolic and parabolic shapes.

Smoothness at the extraordinary point. The linear combina-
tion of the two homogeneous eigen-functions of degree 1 re-
produces χ. Since χ is injective [12], the eigen-spectrum (11)
implies that the bi-4 guided subdivision surfaces are generically
at least C1 and curvature bounded.

(a) central bi-4 cap

u u
v v

u u
v v

f̀ f́

f̀ f́

(b) G1

constraint

Figure 20: (a) Structure of the bi-4 cap. (b) BB-coefficients and u, v along the
sector boundary involved in solving the G1 constraints (12).

7. The central cap

The bi-4 central cap is formed by n 2 × 2 macro-patches.
Each macro-patch is internally C1 and joins C1 with the sector
of the last ring xl: the (split) C1 prolongation defines the green
underlaid BB-coefficients in Fig. 20a. The light-gray underlaid
BB-coefficients

(a) c-net, n = 5 (b) 6 rings (c) highlight lines

(d) zoom (e) Gauss curvature (f) highlight lines

Figure 21: (b) The surrounding bi-3 surface data (green) is respected by the
bi-4 transition bi-4 ring (bronze) and completed by r̄ = 6 bi-4 rings and red
central cap. (c) highlight line distribution shows no artifacts across the transi-
tion (bronze). (d) Zoom to the last two rings and cap, (e) their Gauss curvature
and (f) highlight lines.

(a) n = 3, r̄ = 3

(b) n = 5, r̄ = 6, middle,right: Gauss curvature

(c) n = 9, visually identical highlight line distribution for r̄ = 6, 8

(d) n = 10, r̄ = 8

Figure 22: Part of the geometric obstacle course. (left) c-net. (middle) Bi-
3 surrounding (green), bi-4 transition xtran (bronze), guided bi-4 rings xr ,
r = 0, . . . , r̄ − 1, and tiny red central cap. (right) highlight lines.

enforce the G1 constraints of adjacent macro-patches (see
Fig. 20b) for the subpatches f̀ , f́ attached to the last ring and
the subpatches f̀ , f́ attached to the center:

∂ f̀v + ∂ f́v − (2c(1− u) +
2

3
cu)∂ f̀u = 0, (12)

∂ f̀v + ∂ f́v −
2

3
c(1− u)2∂ f̀u = 0 .

8



(a) c-net, n = 7 (b) structure (c) highlight lines

(d) C2-joined rings (e) C1-joined rings

Figure 23: Six rings plus cap for n = 7 input. The mean curvature differs little
whether the rings join (d) C2 or (e) C1.

We form a preliminary bi-4 cap by sampling the guide (repa-
rameterized to have the layout of the cap) as in Fig. 3c. BB-
coefficients unconstrained by either C1 or G1 constraints are
set to closely match those of the preliminary cap and the central
cap inherits the quadratic expansion of the guide g at the cen-
tral point. The symbolic calculations yield a tabulated matrix
that allows efficient inclusion of the central cap into the guided
framework.

(a) n = 6, genus 4

(b) n = 10, genus 4

(c) n = 7, genus 7

Figure 24: (left) MSV meshes [13]. (middle) n-sided regions, shown in differ-
ent colors, consist of one bi-4 transition ring, r̄ = 6 C1 guided rings and a
central cap. (right) highlight lines.

(a) MVS mesh, n = 6, r̄ = 6

Figure 25: (left) meshes. (middle) surface layout. (right) highlight lines.

8. Examples

Fig. 21 demonstrates how the C1 algorithm copes with a
common two-beam corner configuration. Remarkably, the high-
light line distribution is indistinguishable from that of the C2

algorithm and the curvature distribution is alike! This simi-
larity of the C1 and C2 bi-4 surfaces is confirmed by Fig. 23
for valence 7. Again the highlight line are indistinguishable
and the curvature differences are negligible. More examples
of good highlight line distributions for the geometric obstacle
course [14] are shown in Fig. 22. Fig. 22c in particular demon-
strates that higher valencies slow the contraction, hence require
more subdivision rings for a tiny cap to be deployed. However
visually, the two n = 9-sided surfaces are identical.

The input to Fig. 24 are MVS meshes in order to compare to
aG2 bi-4 construction with 2×2 patches per sector [13], called
MVS surfaces. ([13] requires minimal single-valence, MSV,
meshes consisting of vertices of a single irregular valence n,
two of which are separated by exactly one regular, 4-valent ver-
tex). Remarkably, the highlight line distribution and curvature
of guided bi-4 construction are on par with that of the MVS
G2 surfaces. Since MVS surfaces are only G1-refinable they
are less suited for analysis than the guided bi-4 construction.
Moreover, see Fig. 25, guided bi-4 construction can insert ad-
ditional shape while MSV surfaces cannot (because they do not
include regular bi-3 patches).

Fig. 26 demonstrates that the constructions without tran-
sition ring can fail to produce fair shape. For this configura-
tion one Catmull-Clark refinement improves the situation, but
Fig. 27 demonstrates that one Catmull-Clark refinement can
severely damage the highlight line distribution of a convex con-
figuration.

9



(a) c-net,
n = 6

(b) without transition ring

(c) with (bronze) transition ring ttran

Figure 26: The ring sequence for n = 6 between the green input bi-3 ring and
the red central cap (b,c,d) and their highlight line distribution. (b) No transition
ring. Note the kink in the highlight lines (white arrow). (c) default construction
with transition ring.

(a) n = 6 (b) CC subdivision

(c) bi-4 no transition ring, one
CC step

(d) bi-4 guided subdivision with
default transition ring

Figure 27: Convex c-net, n = 6. The highlight shadings of corresponding
surfaces: (b) Catmull-Clark subdivision; (c) bi-4 construction without transition
ring after one Catmull-Clark refinement; (d) default construction with transition
ring (no Catmull-Clark refinement).

Fig. 28 illustrates that a minimal valence n = 3 requires
maximal care – motivating the choice (8) of the central point.

While refinable functions are primarily intended for anal-
ysis on the surface, not for geometry, Fig. 29 visualizes how
the degrees of freedom arising from refinement can be used to
modify the shape of guided subdivision surfaces at higher fre-
quencies.

(a) n = 3 c-net (b) Catmull-Clark subdivision

(c) using (7) instead of (8) (d) default bi-4 guided

Figure 28: The highlight line distribution for n = 3 sectors of (b) Catmull-
Clark subdivision (CC); (c) central point set to the extraordinary point of CC
(7); (d) the default construction for n = 3 using (8).

(a) c-net, n = 8 (b) Catmull-Clark (c) C1 bi-4

(d) Manipulation of higher frequencies on consecutive subdivision rings

Figure 29: High valence and adaptive changes.

9. Conclusions

Compared to earlier guided subdivision schemes, the new
bi-4 guided construction offers:
– Improved surface quality as measured by the highlight line
distribution over an obstacle course of challenging examples.
– A remarkably simple eigen-structure characterized and deter-
mined by the guide.
– A conceptually simple construction and implementation based
on local pre-calculated operators.

Compared to Catmull-Clark subdivision it can be pointed
out that
– both are linear processes that generate inner surface rings
from outer surface rings.
– The matrix of Catmull-Clark subdivision stencils is sparser.
The local refinement operators of guided subdivision yield only
a block-sparse matrix.
– While Catmull-Clark subdivision approximates a central node,
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guided subdivision approximates a central quadratic derived from
the input c-net.
– The highlight line distribution of guided subdivision does not
have the artifacts observed for Catmull-Clark subdivision.
– While we can generate a sequence of C2-joined rings accord-
ing to Section 4.2.2, our preference is to generate C1-joined
rings according to Section 4.2.1. The C1-joined rings have a
highlight line distribution and even curvature display on par
with the C2-joined rings but are structurally simpler.
The overall trade-off therefore appears to be as follows. By
working directly with small refinement stencils on the c-net,
Catmull-Clark subdivision has an appealing, simple and intu-
itive mesh refinement. However, this simplicity yields a com-
plex eigen-structure and sub-par highlight line distribution. By
contrast, guided subdivision requires formulas that are too long
to conveniently write out explicitly in terms of the c-net; but the
guided subdivision rings are observed to have a good highlight
line distribution over a range of challenging inputs and a simple
eigen-structure.

For practical use, a few bi-4 guided subdivision rings plus
cap yield a finite number of polynomial pieces and so an au-
tomatic conversion of quad meshes with irregular vertices into
high-quality surfaces with built-in refinability. This hybrid pre-
serves the shape and is readily amenable to subsequent compu-
tations on the surface.
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[9] K. Karčiauskas, J. Peters, Guided spline surfaces, Computer Aided Geo-
metric Design 26 (1) (2009) 105 – 116.

[10] J. Stam, Exact evaluation of Catmull-Clark subdivision surfaces at arbi-
trary parameter values, in: Proceedings of the ACM Conference on Com-
puter Graphics (SIGGRAPH-98), ACM Press, New York, 1998, pp. 395–
404.

[11] D. Doo, M. Sabin, Behaviour of recursive division surfaces near extraor-
dinary points, Computer-Aided Design 10 (1978) 356–360.

[12] J. Peters, U. Reif, Subdivision Surfaces, Vol. 3 of Geometry and Comput-
ing, Springer-Verlag, New York, 2008.
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Appendix: The transition guide

Here a bi-5 guide g5 is constructed analogous to g but for
h := tCC . Correspondingly, we enlist a C1 map b45 of total
degree 5 with the same structure as b4, see Fig. 30a. We use
the same notation for groups of BB-coefficients with one key
difference: to better capture second-order data, both b|, h| and
t| now consist of 6 BB-coefficients per sector boundary (see
black bullets in Fig. 30a and green bullets in Fig. 30c).

050

005

500

bs bs+1

(a) b45

L
b45 g5

(b) b45 → g5

(c) t| (h|) (d) g4 (e) final g5

Figure 30: (a) A piecewise C1 map of total degree d = 5. (b) Increasing the
flexibility via linear shear L. (c) h| of h. (d) Switching to auxiliary bi-4 map
g4. (e) Final G1 bi-5 guide g5.

The construction mimics the process in Section 3 and is
done once to generate a linear map that is tabulated.

- Initialize g5 := b45 ◦ L.

- Compose the tensor-border t from three corner jets [g5 ◦
χ̃�]43×3.

- Choose b| so that all 6 BB-coefficients of t| (cyan bul-
lets in Fig. 10 straddling the sector boundary) match the
corresponding BB-coefficients of h|, see Fig. 30c.

- For each sector, [gs5]43×3 are assembled as in Fig. 3c to
create an auxiliary map g4 (Fig. 30d; the khaki underlay
indicates that g4 is only C0).

- The 9 magenta bullets of each sector of g4 (Fig. 30d) are
defined so that the 9 BB-coefficients of t sampled from
g4 and with indices i, j ∈ {0, 1, 2} (magenta in Fig. 10b)
coincide with the corresponding 9 BB-coefficients of h.

- Each sector of g4 is degree-raised to bi-5 to define 16
magenta underlaid BB-coefficients of g5.

- The central point is set by (7) (by (8) for n = 3).

- The remaining 5 degrees of freedom are set by (9).
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