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Kȩstutis Karčiauskas, Jörg Peters

Abstract

Compared to Gk continuity, Ck continuity simplifies the construction of functions on surfaces and their refinement,
e.g. to solve differential equations on the surface. The new class of almost everywhere parametrically C2 free-form
surfaces provide such a parameterization. For example, a new bi-6 construction combines a fast-contractingC2 guided
subdivision surface with a tiny multi-sidedG1 cap. The cap is chosen to be smaller than any refinement anticipated for
geometric modeling or computing on surfaces. Fast contraction means that one subdivision step shrinks the remaining
hole more than three steps of Catmull-Clark subdivision. This yields smooth surfaces consisting of a finite number
of pieces that are suitable for engineering practice. Both the subdivision construction and the cap are guided by a
reference surface. This guide conveys the basic shape, but has a different structure and lower smoothness.

1. Introduction

(a) polyhedron (b) surface (c) mean curvature (d) embossed features

(e) two bi-6 rings (f) extreme speed (g) highlight line distribution and Gauss curvature

Figure 1: (a) An input mesh with no regular submesh for defining bi-3 tensor-product patches. The entire surface consists of multi-sided pieces.
(b) One multi-sided piece, colored green. (c) The mean curvature distribution shows no variation except as forced by the macro-geometry. (d)
Localized geometry modification illustrates refinability. (e) Two bi-6 rings plus red cap where only the first ring has its BB-net (Bézier control
points) superimposed. (f) Yet faster choice of contraction. Both (e) and (f) result in visually identical highlight lines and Gauss curvature (g).

Relaxing parametricCk to geometricGk continuity in the construction of piecewise surfaces enables more flexible
designs and shapes ([1, 2]). However, the change of parameter across the corresponding G-edges between patches
complicates building and refining smooth functions on the union of the patches, e.g. texture maps or solutions of
partial differential equations on the surface as domain [3, 4, 5, 6, 7]. Since smooth functions on a Gk surface need
to have the same reparameterizations across G-edges as the surface itself [8] one needs to carefully keep the track
of G-edges when refining G-functions. Moreover, the degrees of freedom arising from G-refinement on free-form
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surfaces are irregularly distributed [9]. By contrast, where the reparameterizations are the identity or a binary split,
i.e. across Ck edges, the proper refinement can be achieved by binary knot insertion without any bookkeeping other
than the refinement level. Therefore the methods described in this paper seek to retain parametric continuity as much
as possible by employing a new fast-contracting guided subdivision combined with a tiny cap. The fast-contracting
subdivision generates a bi-6 C2 surface that inherits its shape and good highlight line distribution from a guide
surface. This fairer shape is the main distinguishing feature compared to Catmull-Clark subdivision, which is also
almost everywhere parametrically C2 but has shape artifacts (see e.g. Fig. 12b). The final tiny G1 cap preserves the
overall good highlight line distribution.

The input mesh Fig. 1a contains no 4 × 4 submesh that could be interpreted as bicubic B-spline control points
and admit standard spline refinement by knot insertion. Yet the new class of almost everywhere parametrically C2

free-form surfaces can not only smooth the genus 7 input, but can be refined to both support geometric detail and
adaptive computing on the surface. Moreover, as illustrated in Fig. 1 e,f the speed of contraction of the bi-6 rings can
be varied without immediate shape penalty.

(a) six bi-6 rings (b) two bi-6 rings

Figure 2: The contraction of (a) three steps at the speed of Catmull-Clark sub-
division approximately equals that of (b) one bi-6 subdivision step. The (red)
center is filled with a tiny G1 surface cap.

(a) (extended) c-net (b) bi-3 + tensor-border

Figure 3: B-spline-like irregular control net and its tensor-
border for n = 5. (a) The black bullets form the c-net.
Together with the outermost layer of control points they
form the extended c-net. Extended c-nets are used for ex-
amples since the bicubic ring provides a visual context for
checking surface quality. (b) Schema of a bi-3 surface ring
(green) and its tensor-border (mesh of BB-coefficients) of
degree 3 and depth 2. The tensor-border is the input for the
surface construction.

The new subdivision improves on the shape of early guided subdivision constructions such as [10], is easy to
analyze and is C2 in the limit. For all practical purposes, see Fig. 2, it suffices to apply two steps of bi-6 subdivision
and then fill the remainder with a tiny high quality bi-6 G1 cap. The resulting surface

• consists of 2× 3n C2-joined patches followed by n patches forming a tiny G1 cap;
• is C2 except for the tiny caps;
• is of degree bi-6 and
• provides surfaces with good highlight line distributions even for challenging input configurations.
• Functions on the surface are C2 refinable up to the level of the tiny cap.

Overview. Section 2 explains the input and the basic tools used for the construction such as the corner jet constructor.
Section 2.3 defines the piecewise total degree 6 guide surface. Section 3 shows how sampling the composition of
the guide with a characteristic parameterization results in bi-6 guided subdivision rings. Section 4 presents a full
analysis of this subdivision including the proof of curvature continuity in the limit. For practical use, we suggest
to only generate one or two subdivision rings and complete, see Section 5, the surface with a tiny cap (that does
not negatively affect the shape). Section 6 illustrates the outcomes and discusses alternative construction choices, in
particular the ‘speed sequence’ of the subdivision.
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2. Definitions and Setup

2.1. A B-spline-like control net for irregular layout

The input is a network of quadrilateral facets, short quads. Nodes where four quads meet are regular, else irregular.
We assume that each irregular node is surrounded by at least one layer of regular nodes. Fig. 3a shows the c-net
(bullets) of an isolated node of valence n = 5. The c-net consists of the irregular node plus 6n nodes forming two
layers of quads surrounding it. Typically a third layer is added for evaluation of local shape (yielding the green surface
in Fig. 3b). This allows assessing the highlight line distribution [11] across the transition which is as important as the
internal quality of the cap.

Each 4 × 4 sub-grid of nodes is interpreted as the B-spline control points of a bicubic tensor-product spline
surface. Except at the irregular node, well-known formulas can be applied to convert the B-spline form to tensor-
product Bernstein-Bézier form called BB-form in the following (see e.g. [1, 12]). The tensor-product BB-form of a
polynomial of bi-degree d is

p(u, v) :=

d∑
i=0

d∑
j=0

pijB
d
i (u)Bdj (v), (u, v) ∈ � := [0..1]2, Bdk(t) :=

(
d

k

)
(1− t)d−ktk

where Bdk are the Bernstein polynomials of degree d and pij are the BB-coefficients, so-named to distinguish from
the control points of the B-spline form. Fig. 3b also shows the C2 prolongation of this surface ring, i.e. Hermite data
represented as a grid (black) of bi-3 BB-coefficients. Specifically, the BB-coefficients pij , i = 0, . . . , 3, j = 0, . . . , 2,
represent Hermite data of order 2 along one boundary curve v = 0. When degree-raised to 5, we call these data tCC .
More generally, in the remainder of this paper, we refer to second-order Hermite data of degree 5 along the loop of
boundary curves as t.

2.2. Corner jet constructors
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Figure 4: (a,e) Hermite data as partial derivatives converted to (b,f) BB-form; (c) a patch of degree bi-5; (d) L-shaped sector of the tensor-border t.

We will construct the tensor-product patches and tensor-borders with a help of corner jet constructors [f ]di×i that
express, at a corner of domain square [0..1]2, the expansion of a function f of order i−1 in either variable in BB-form
of bi-degree d. For d = 5 we use only i = 3 (to construct the guide surface) hence for brevity denote this corner jet
constructor as [f ]5. In the main construction d = 6 and i = 4 and the corner jet constructor is denoted by [f ]6.
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Fig. 4c displays four corner jet constructors [f ]5 merged to form a bi-5 patch while Fig. 4d illustrates the analogous
assembly of an L-shaped sector of the tensor-border by applying a jet constructor at three corners. Fig. 4g displays
four corner jet constructors [f ]6 merged to form a bi-6 patch by averaging the overlapping BB-coefficients and Fig. 4h
shows assembly of corner jets [f ]7 into a bi-7 patch (that will be used for comparison with bi-6 surfaces.)

Several steps of the surface construction use a simple symmetric rule, called the C2-rule, illustrated in Fig. 5: two
curve segments (of the same degree) in BB-form join C2 at their common end-point (marked as a big bullet) if and
only if the BB-coefficient immediately its left (small circle indicated by ↓ in Fig. 5) is defined as the weighted average
of the BB-coefficients marked as bullets with the weights indicated above. The right circled BB-coefficient is defined
by the mirrored formula.

1/4 ↓ 1 -1/4

Figure 5: Symmetric rule of C2 join.

2.3. The structure of the guide surface: a map of total degree d = 6

In this section, we define maps b4 consisting of n pieces total degree d. When initialized to serve as a guide
surface over the n-sided region, we will denote the piecewise C1 map as g. The vertices of the n triangular domain
pieces will correspond to mid-edges of the n-sided region.

The domain of the map b4 of total degree d is a regular n-gon D composed of n equal triangles with a common
vertex O at the origin. Fig. 6a shows one such triangle with sides defined by li = 0, i = 0, 1, 2. Each linear function
li is equal to 1 at the vertex opposite to li = 0. On the triangle we define a map b of total degree d in Bernstein-Bézier
form as

b :=
∑

i+j+k=d

bijkB
d
ijk, i,j,k≥0, Bdijk :=

(
d

ijk

)
li0l

j
1l
k
2 . (1)

Fig. 6b labels the BB-coefficients rotationally symmetric. In the following, we reserve the
– superscript s to enumerate sectors s ∈ {0, 1, . . . , n− 1} and the
– superscript r for refinement levels r ∈ {0, 1, . . .}.
Patches bs and bs+1 (modulo n) on adjacent sectors join across the shared sector boundary

C0 if bs+1
d−i,i,0 := bsd−i,0,i, i=0,...,d c := cos

2π

n
, w0 := −1, w1 := 2c, w2 := 2(1− c), (2)

C1 if bs+1
d−i,i−1,1 := w0b

s
d−i,1,i−1 + w1b

s
d−i,0,i + w2b

s
d−i+1,0,i−1, i=1,...,d (3)

C2 if bs+1
d−i,i−2,2 := w2

0b
s
d−i,2,i−2 + 2w0w1b

s
d−i,1,i−1 + w2

1b
s
d−i,0,i + 2w0w2b

s
d−i+1,1,i−2 (4)

+ 2w1w2b
s
d−i+1,0,i−1 + w2

2b
s
d−i+2,0,i−2, i=2,...,d.

C3 if bs+1
d−i,i−3,3 := w3

0b
s
d−i,3,i−3 + 3w2

0w1b
s
d−i,2,i−2 + 3w0w

2
1b

s
d−i,1,i−1 + w3

1b
s
d−i,0,i (5)

+ 3w2
0w2b

s
d−i+1,2,i−3 + 6w0w1w2b

s
d−i+1,1,i−2 + 3w2

1w2b
s
d−i+1,0,i−1 + 3w0w

2
2b

s
d−i+2,1,i−3

+ 3w1w
2
2b

s
d−i+2,0,i−2 + w3

2b
s
d−i+3,0,i−3, i=3,...,d.

The ten BB-coefficients b0
ijk (indicated as red bullets in Fig. 6) define a cubic expansion q at the central point b0

d00.
This local expansion is propagated to the neighboring sectors by repeatedly enforcing Eq. (2) for i = 0, 1, 2, 3, Eq.
(3) for i = 1, 2, 3 and Eq. (4) for i = 2, 3 and Eq. (5) for i = 3. That is, the 10 b0

ijk define a unique cubic expansion
of the C1 map b4 at b0

d00.
With the cubic expansion fixed, the C1 constraints (3) can be rewritten as

bsd−i,0,i :=
1

2c

(
bsd−i,1,i−1 + bs+1

d−i,i−1,1

)
+ (1− 1

c
)bsd−i+1,0,i−1, i = 4, . . . , d. (3’)

leaving the BB-coefficients
bs213,b

s+1
231 ,b

s
114,b

s+1
141 ,b

s
015,b

s+1
051
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l0 = 0

l1 = 0

l2 = 0 O

(a) domain

060
051

015

114

213

051

141

231

006

600

bs bs+1

(b) b4

Figure 6: (a) Domain of total degree d map. (b) The n = 5 sectors of the C1 map b4 of total degree 6. The coefficients of the cubic expansion
at the center are underlaid light red. BB-coefficients unrestricted after enforcing the C1 constraints are marked as black and red bullets. The gold
underlaid BB-coefficients do not affect C1 continuity between sectors.

of b4 unrestricted by the C1 continuity constraints (see Fig. 6b; coefficients unrestricted due to their distances from
the sector boundary are underlaid gold).

The resulting map b4 is a piecewise C1 map of total degree 6 with a unique cubic expansion at the central point
and 12n+ 10 free parameters: 10 defining the cubic expansion, 6n marked as black bullets and 6n gold-underlaid in
Fig. 6.

3. Bi-6 guided subdivision

3.1. Characteristic parameterizations χσ and χ̃σ

(a) σ := 1
2

(CC)

σ : σ̃

(b) σ := 3
4

(c) σ := 7
8

(d) σ := 1
2

(CC) (e) σ := 3
4

(f) σ := 7
8

Figure 7: Top row: χσ ; bottom row: χ̃σ .

(a) χ5
σ′

(b) χ5
σ,σ′

Figure 8: Construction of
χ5
σ,σ′ .
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The subdominant eigenvalue of bi-3 adjustable speed subdivision [13] with ’speed’ parameter σ is

λσ :=
σ̃

2
((1 + c)σ2 + 2σ̃ + σ

√
(1 + c)((1 + c)σ2 + 4σ̃)), σ̃ := 1− σ, 0 < σ < 1. (6)

When σ := 1
2 then λσ is the subdominant eigenvalue of Catmull-Clark subdivision, σ > 1

2 yields faster and σ < 1
2

yields slower contraction. Already for σ ≈ 1
2 , analogous to Catmull-Clark subdivision, the subdivision surfaces of

[13] do not qualify for high-end design; and the shape deteriorates with increasing σ.
Fig. 7top displays several characteristic maps χσ for n = 5 and one sector. Fig. 7bottom displays the correspond-

ing characteristic tensor-borders χ̃σ of degree 3 and depth 2. In the classical analysis of Catmull-Clark subdivision
these tensor-borders are hidden since the maps χσ contain the key analytic information. For the new subdivision these
C2 prolongations are in the forefront, since they facilitate sampling the guide with increasing speed (see Fig. 8b),
an essential feature of the new approach. The gray underlaid BB-coefficients of χσ are the result of splitting χ̃σ in
the ratio σ : 1 − σ (see Fig. 7b). We consider normalized maps and tensor-borders where the corner BB-coefficients
(marked as diamonds in Fig. 7a,d) are at the distance 1 from the red center. While different σ result in different maps
χσ , the corresponding tensor borders χ̃σ although different, look alike. This allows constructing well-behaved bi-5
transition parameterizations χ5

σ,σ′ from one speed parameter to another.
Fig. 8 shows the transition for (σ, σ′) := ( 1

2 ,
7
8 ): in Fig. 8a χσ′ is degree-raised to degree bi-5 and named χ5

σ .
Fig. 8b shows the gray-underlaid BB-coefficients in (a) replaced by the tensor-border χ̃σ degree-raised to bi-5 and
split in the ratio σ′ : 1 − σ′ (light-gray underlaid BB-coefficients). This yields the map χ5

σ,σ′ . (We note that χ5
σ,σ

coincides with χσ)

3.2. Guide initialization

(a) sampling (b) t (c) tCC

Figure 9: (a) Map χ̃ 1
2

for sampling the guide g; (c) tensor-border t. (c) tensor-border tCC .

As in Fig. 4d, the tensor-border t in Fig. 9b is assembled from corner jets [g ◦ χ̃ 1
2
]5 that sample g in each sector

at the locations marked as crosses in Fig. 9a. We set the central BB-coefficient b6
600 as

if n > 4,
n

n+ 5
c0

7 +

n−1∑
k=0

(γ5c
k
5 + γ6c

k
6), γ5 :=

1

n(n+ 5)
, γ6 := 4γ5, (7)

if n = 3, (1− 3γ5 − 3γ6)c0
7 +

2∑
k=0

(γ5c
k
5 + γ6c

k
6), γ5 :=

5

96
, γ6 :=

1

6
, (8)

i.e. as the extraordinary point of Catmull-Clark subdivision except for a small perturbation to improve shape when
n = 3. The remaining 12n + 9 free parameters are fixed by minimizing the sum of squared distances between the
BB-coefficients of the sampled tensor-border t and the corresponding BB-coefficients of the input tensor-border tCC .
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g g ◦ S

(a) scaled sampling (b) C2 upgrade I (c) C2 upgrade II

Figure 10: (a) Sampling the guide g with χ; (b) C2 correction between sectors; (c) C2 upgrade between rings.

3.3. Construction of C2 guided bi-6 rings

The bi-6 patches p (see Fig. 4c) are assembled from the corner jets

[g ◦ (µχ5)]6, for 0 < µ < 1.

Adjacent sectors are automatically C1-connected and are C2-connected by applying C2-rule (see Fig. 10b). Comput-
ing [g ◦ (µχ5

σ,σ′)] is equivalent to linearly mapping S : D → µD (scaling of D with respect red origin in Fig. 10a)
and sampling (g ◦ S) ◦ χ5

σ,σ′ . DeCasteljau’s algorithm (see Appendix) yields the BB-coefficients of g ◦ S as the
affine combinations of BB-coefficients of g. Due to combinatorial symmetry it suffices to pre-compute de Casteljau’s
refinement only for the 28 coefficients of one sector, for symbolic µ. This is stored as a 28×28 matrix. For fixed pairs
(σr−1, σr) the sampled sectors are pre-computed as affine combinations of the BB-coefficients of g. Again it suffices
to pre-compute one sector and for the default speed sequence, it suffices to pre-compute two pairs.

With superscripts denoting refinement level l (scaling) of the ring, we have the following
Bi-6 Algorithm:

- Choose the maximal anticipated refinement level ` and the

sequence of speeds (σ0,σσσ) := (
1

2
, σ1, σ2, . . . σ`).

Since the incoming tensor-border data prescribe σ0 := 1
2 , we only list σσσ in the remainder.

- Initialize g0 := g.
- For r = 0, . . . , `− 1

· Per sector, apply the pre-computed de Casteljau split with µ := λσr to obtain the BB-coefficients of gr

from gr−1.
· Sample gr with the pre-computed (σr, σr+1) sampling rules to initialize the ring xr.
· Apply the C2-rule correction.
· C2-connect the consecutive rings xr−1 and xr via C2 prolongation of the split ring xr−1 (setting the

gray-underlaid BB-coefficients of xr in Fig. 10c; if r = 0 these coefficients stem from the degree-raised
and split tensor-border tCC).

4. Subdivision eigen-structure

Since the Bernstein polynomials Bd0jk :=
(
d

0jk

)
lj1l

k
2 are homogeneous of degree d, Bd0jk(λx) = λdBd0jk(x) for

any λ and this homogeneity is not affected by constraints (2-5). If we set one unconstrained BB-coefficient to 1 and
the others to 0, the resulting g is homogeneous in all sectors. We can so decompose the guide g into homogeneous
functions:
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- 10 functions corresponding to cubic expansion: the function 1, two linear functions of degree 1, three of degree
2 and four of degree 3.

- 6n functions that are non-zero on two adjacent sectors: 2n of degree 4, 2n of degree 5 and 2n of degree 6.
- 6n functions (n groups of 6) that are non-zero only in one sector: B4

022 of degree 4, B5
032, B5

023 of degree 5,
B6

042, B6
033, B6

024 of degree 6.

Assume x0 is the first ring generated with a sequence of only fixed σ. Denote by xrd,p the rth ring obtained by
applying the Bi-6 Algorithm to the pth homogeneous function of degree d of the decomposition of the guide. Then
xrd,p = (λdσ)rx0

d,p. (This implies that we can, analogous to [14], pre-compute the initial 12n+10 eigen-rings x0
d,p and

compute eigen-functions xrd,p simply by scaling by (λdσ)r. However, due to fast contraction this hardly makes sense
in practice.) A linear combination of the two homogeneous eigen-functions of degree 1 re-produce χσ; and χσ is
injective according to [13]. Since the linear eigen-functions generate (by construction) the quadratic eigen-functions
and the subsubdominant eigenvalue is the square of the subdominant eigenvalue, the bi-6 subdivision surfaces are C2

at the extraordinary point (see [15]).

5. The central cap

(a) bi-6 cap

u u
v v

f̀ f́

(b) G1 (c) σ := 7
8

(d) σ := 15
16

Figure 11: (a) The structure of bi-6 cap. (b) G1 constraints. (c,d) The parameterizations τ . The reparameterizations τ for different σ are visually
similar. But the ’wrong’ σ results in tiny caps of low quality.

The central cap is formed by n G1-connected bi-6 patches that join C1 with the last ring x`−1. The C1 pro-
longation of x`−1 defines the cap’s BB-coefficients that are green underlaid in Fig. 11a. The light-gray underlaid
BB-coefficients enforce unbiased G1 constraints between the adjacent patches (see Fig. 11b):

∂ f̀v + ∂ f́v − 2c(1− u)2∂ f̀u = 0. (9)

Planar reparameterization τ . First, for (each) fixed σ we construct a symmetric planar parameterization τ (Fig. 11c
shows one sector when n = 5) so that

- adjacent sectors of τ satisfy the constraints (9);
- the BB-coefficients that are green underlaid in Fig. 11c stem from χ̃σ degree-raised to bi-6;
- τ is rotationally symmetric and symmetric with respect to the sector diagonal.

Then τ has 14 free parameters that, collected in the set Γ, are chosen to minimize

min
Γ

n−1,∗∑
s=0

F5(τs), Fkf :=

∫ 1

0

∫ 1

0

∑
i+j=k
i,j≥0

k!

i!j!
(∂is∂

j
t f)2dsdt, (10)

where ∗ indicates that the sum is over both coordinates of τ . Due to symmetry, this minimization is local to one sector.
The subsequent calculations work with symbolic coefficients of g to obtain a general formula in terms of any

geometric realization of the guide g:
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- Assemble a map h from corner jets [g ◦ τ ] as in Fig. 4c. (The red BB-coefficients of h are then consistent with
the G1 constraints (9)).

- Replace the green underlaid BB-coefficients of h by the C1 prolongation of the bi-6 patches constructed from
the corner jets [g ◦ (λ−1

σ χσ)] (see Fig. 4c).

- Enforce the G1 constraints (9) along the sector separators by expressing the eight BB-coefficients, marked as
squares in Fig. 11a, as affine combinations of the green tensor-border, the quadratic expansion and the four free
BB-coefficients.

- Set the four free BB-coefficients by minimizing the sum of squared distances between the eight BB-coefficients
marked as squares and their counterparts in h.

The resulting formulas are applied to gl and C1 extension of xl−1. Since the red BB-coefficients represent a repa-
rameterized quadratic expansion of gl at the central point, the G1 cap has well-defined curvature at the extraordinary
point.

6. Examples and discussion

In the following, when the layout of the polynomial pieces is displayed, the surrounding bi-3 ring is colored green.

For n > 4, the default speed sequence is ` := 2, σσσ := (σ1, σ2) := (
7

8
,

15

16
).

This yields a central cap smaller than 8 CC-refinements. Setting σ1 := 15
16 typically yields good quality but results

in minor flaws in some extreme configurations. Similarly, setting σ2 := 31
32 yields a (minutely) worse highlight line

distribution.

(a) n = 3 c-net (b) Catmull-Clark (c) bi-6 construction: highlight line distribution, layout, BB-net

Figure 12: Valence n = 3 and choice ` = 1, σ1 = 31
32

, central cap is red.

The case n = 3 is special: σσσ := ( 31
32 ) yields high quality 3-sided surface and a tiny cap, see Fig. 12. Juxtaposition

of highlight lines in Fig. 12b,c demonstrates improved shape over Catmull-Clark subdivision.
Fig. 14 elaborates on the construction of local features exploiting the well-known fact that C2 B-splines of degree

bi-6 have many BB-coefficients unconstrained by C2 requirements. E.g. splitting a patch non-uniformly into 3 × 3
subpatches as in Fig. 14b leaves free the BB-coefficients marked as black bullets. These are lifted up to form a
cross while the circled BB-coefficients enforce the C2 connection. An analogous lifting up yields the embossing of
Fig. 14c.

Although the central G1 cap construction assumes that the cap is so tiny that no more refinements are needed
for geometry or analysis (spot the red cap in Fig. 13b!), the shape requirements are high in practice: the central
cap should not be noticeable in the highlight line distribution Fig. 13c, even under magnification Fig. 13f. The C2

parameterization means that adding geometric details to the surface (see Fig. 13h) is supported by standard knot
insertion (which has well-known benefits and limitations such as a preference for aligning finer geometric details with
parameter lines and not diagonal to them).
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(a) n = 5 c-net (b) layout (c) highlight lines (d) Gauss curvature

(e) zoom to 2nd ring (f) highlight lines (g) Mean curvature (h) embossed detail

Figure 13: Convex bi-6 surface for ` = 2, σσσ := ( 7
8
, 15
16

) with red central cap. (The c-net is the control net of the characteristic map of
Catmull-Clark subdivision projected onto a paraboloid z = x2 + 0.6y2.) The second and innermost ring x1 is blue in (b,e). (f) and (g) display
correspondingly the highlight lights and mean curvature of zoom in (e). (h) embossing the details exploiting a refinability.

(a) detail of Fig. 13h (b) 3× 3 split for cross in (a) (c) detail of Fig. 18g

Figure 14: (a) Embossed cross from Fig. 13h with BB-net superimposed. (b) BB-coefficients marked as • are not constrained by C2 requirements.

Fig. 15e demonstrates that the default sequenceσσσ := ( 7
8 ,

15
16 ) works well also for challenging inputs. A similar bi-5

construction requires at least three guided rings to avoid shape deficiencies (see the arrow in Fig. 15d for a construc-
tion with the same speed sequence but degree bi-5). Fig. 15g,h further illustrate this trade-off between permissible
contraction speed and the degree: if we reduce the sequence to ` := 1 and σσσ := ( 31

32 ) the bi-6 surface construction
exhibits flaws (see arrow in Fig. 15g) but a similar construction of degree bi-7 can handle also the extreme speed. The
presented algorithm with the default choice appears to be the best trade-off in practice of surface degree and number
of patches.

Fig. 16 places a complex surface under the microscope, comparing again, for default speed sequence, the presented
bi-6 construction with a similar bi-5 construction. The bi-5 ring x0 is acceptable, but the second bi-5 ring x1 in
Fig. 16d contracts too fast for the data.

Fig. 17 underscores the resilience of the default choice of σσσ also for a complex higher-order input c-net with
n = 7.

Fig. 18 interrogates the converse case: rather than increasing σσσ, we decrease its second entry to slow contraction
Fig. 18e. The highlight line distribution for Fig. 18e and σ2 := 7

8 is the same as for Fig. 18c and σ2 := 15
16 and

is shown in Fig. 18d. Zooming in (Fig. 18f,g), we see that the default surface quickly approaches the characteristic
configuration of adjustable speed subdivision [13] so that local editing of the second ring has predictable results even
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(a) c-net (b) layout (c) magnification (d) bi-5 (e) bi-6

(f) magnification (g) bi-6 (h) bi-7

Figure 15: Comparison of various surfaces from (a) n = 6 c-net. Top row: ` := 2, σ1 = 7
8

, σ2 = 15
16

. Bottom row: ` = 1, σ1 = 31
32

. (d) is
shared for (c) and (e).

(a) n = 8 (b) layout (c) magnification (d) bi-5 (e) bi-6

Figure 16: The surfaces from (a) n = 8 c-net for the default choice ` = 2, σσσ := ( 7
8
, 15
16

). (c) innermost ring + central cap.

for unusual inputs.

7. Conclusion

Almost everywhere parametrically C2 free-form surfaces leverage the theory of subdivision towards the practical
end of generating surfaces with few pieces and, except for tiny caps, C2 transitions between patches. A ‘class A’
highlight line distribution is obtained by reference to a guide shape as originally proposed in [10]. The shape im-
provements are major compared to Catmull-Clark subdivision. The larger stencil appears to be the unavoidable cost
for obtaining better highlight line distributions; there is no indication to date that small-stencil subdivision can pro-
duce ‘class A’ highlight line distributions. The advantage over earlier guided constructions lies in the more efficient
and analysis-friendly structure.

A number of variants are possible and should be explored: guided subdivision surface rings of degree bi-5 and
bi-7 can be derived akin to the present algorithm and also lower degree with more patches may ultimately yield good
results.

Acknowledgements. This work was supported in part by NSF grant CCF-1117695, DARPA HR00111720031 and
NIH R01 LM011300-01.
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(a) n = 7 c-net (b) layout (c) highlight lines

(d) zoom to x1 (e) Gauss curvature (f) Mean curvature (g) highlight lines

Figure 17: The surfaces from (a) n = 7 c-net for a default choice ` = 2, σ1 := 7
8

, σ2 := 15
16

.
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Appendix: BB-coefficients of a scaled triangular domain
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(b) 2nd step (c) restriction

Figure 19: Domain restriction: D → SD.

It is well known that if Bézier curve with BB-coefficients
pi, i = 0, . . . , d of degree d defined over unit interval [0..1] is
restricted to subinterval [0..λ], BB-coefficients p̄i of restriction
can be computed via formula

p̄i :=

i∑
k=0

Bik(λ)pk ,
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(a) n = 8 (b) layout (c) σ2 := 15
16

(d) highlight line distribution (e) σ2 := 7
8

(f) embossing (g) magnification

Figure 18: Surfaces from a c-net with n = 8 using the default choice of contraction speed σσσ (except for (e) where σ2 := 7
8

).

where Bik are the Bernstein polynomials. Applying this for-
mula first in one parameter and then in a second yields the BB-
coefficients of the restriction to scaled triangular domain (see
Fig. 19a,b and [16]).
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