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Abstract. Convolving the output of Discontinuous Galerkin (DG) computations using spline
filters can improve both smoothness and accuracy of the output. At domain boundaries, these
filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent
smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-
known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC
filtering amounts to forming linear products with local DG output and so offers a more stable and
efficient implementation.

The paper introduces a new class of PSIAC filters NP0 that have small support and are piecewise
constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP0

filters outperform the more complex known boundary filters. NP0 filters typically reduce the L∞ error
in the boundary region below that of the interior where optimally superconvergent symmetric filters
of the same support are applied. NP0 filtering can be implemented as forming linear combinations of
the data with short rational weights. Exact derivatives of the convolved output are easy to compute.
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1. Introduction. The output of Discontinuous Galerkin (DG) computations
often captures higher order moments of the true solution [ML78]. Therefore post-
processing DG output by convolution with splines can improve both smoothness
and accuracy [BS77, CLSS03, JvRV14]. In the interior of the domain of compu-
tation, symmetric smoothness increasing accuracy conserving (SIAC) spline filters
have been demonstrated to provide optimal accuracy [CLSS03]. To accommodate
non-periodic boundary data, such symmetric filters need to be complemented by
one-sided filters. The point-wise error and stability, of the pioneering Ryan-Shu
boundary filters [RS03] have been noticeably improved upon, during the last decade
[SRV11, MRK12, RLKV15, LRKV16].

Most recently these boundary filters have been simplified and improved by replac-
ing numerical approximation with symbolic formulas, both in the uniform symmetric
case [MRK15] and in the general case [Pet15]. For general knot sequences, [NP16]
introduced a factored symbolic characterization of spline filters that identified the
existing boundary filters as position-dependent SIAC spline filters (PSIAC filters).
While in earlier formulations, the rule for each convolved value had to be derived nu-
merically by Gauss quadrature, PSIAC prototype filters can be precomputed and then
easily scaled and shifted to fit the boundary region as required. PSIAC filtering then
amounts to forming a linear combination of the local DG output with simple weights
that are polynomial in the position. The coefficients of these polynomial expressions
are rational numbers for rational knot sequences. Remarkably [NP16, Theorem 4.2]
PSIAC-filtered DG output lies on a single polynomial over the boundary region, where
the filter is deployed. RLKV-filtered and SRV-filtered DG output is therefore infinitely
differentiable and derivatives of PSIAC-filtered DG output need not be approximated
[Tho77, RSA05, RC09, LRKV16] but have an explicit, easily-evaluated expression.
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(a) Error filtered by RLKV in the boundary
region at final time T = 2/3

(b) Error filtered by NP0 in the boundary re-
gion at final time T = 2/3

(c) DG error at final time T = 2/3 (d) Maximal errors restricted to the left B
and right C boundary region(new=NP0)

RLKV RLKVsymmetric filter

λλλ

NP0 NP0symmetric filter

Fig. 1. Pointwise errors e(x, T = 2/3) of the filtered output (a),(b) of the DG solution of
degree d = 3 for the canonical partial differential equation uτ + ux = 0 computed up to fixed final
time T = 2/3 (cf. (2.2)). The unfiltered error is shown in (c) and (d) summarizes the result. Each
subfigure shows in order, from top to bottom, the graph for mesh-size h = 20−1 (red), h = 40−1

(blue), h = 80−1 (green) and h = 160−1 (purple). (a,b) The growing interior, bordered by vertical
dashed lines of the color of the graph, is post-processed by the symmetric SIAC filter. The graph
for the interior is therefore identical in (a) and (b). The left boundary region [0..λ] is to the left of
the left dashed line and and the right boundary region is to the right of the right line. The RLKV
and NP0 error are computed on ever smaller boundary regions [0..λ] and [1− λ..1] since λ shrinks
with h (see (a)). (a) Errors after convolving the data of the boundary regions with the one-sided
RLKV filters [RLKV15] and the interior with the symmetric SIAC filter. This graph is identical
to [RLKV15, Figure 5,top-right] but is computed with the symbolic formulation. (b) Errors after
convolving the data of the boundary regions with the new least-degree PSIAC filters NP0and the
interior with the symmetric SIAC filter. (c) Original errors of the degree d = 3 DG output. (d) The
error in [0..λ+], i.e. the left boundary region augmented by the transition to the inner symmetric
SIAC filter region, is indicated by B. The error on the right by C. The error of the symmetric SIAC
filter applied in the interior is indicated by −−. The error of the new PSIAC filter NP0 is lower or
on par with the optimally superconvergent symmetric SIAC filter in the interior.

This paper introduces a new piecewise constant PSIAC filter, that we will refer
to as the NP0 filter. On variants of the canonical hyperbolic test equation (2.2), the
simple NP0 filter outperforms, on different aspects, both the SRV and the RLKV filter.
Applied to the DG output, NP0 is more stable than the superconvergent, but larger-
support SRV filter [SRV11] – SRV requires quadruple precision to produce reliable
results when the DG polynomials are of degree d > 2 [RLKV15]; and NP0-filtered
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output converges faster than that of the small-support, stable but suboptimal RLKV
filter [RLKV15]. Fig. 1 shows results for four different x-mesh spacings. The RLKV-
error in the boundary region exceeds the error in the interior where the symmetric
SIAC filter is applied; and for large mesh spacing, the pointwise RLKV error in Fig. 1a
even exceeds that of the unfiltered DG error in Fig. 1c. By contrast Fig. 1b shows
NP0 consistently reducing the error in [0..λ+], the boundary regionaugmented by the
transition region to symmetric SIAC filter, even below the error of the symmetric
SIAC filter. This message is condensed in Fig. 1d. Here the maximal error of the
symmetric SIAC filter of degree d in the interior is displayed as dashed lines and the
error near the left and right boundary by B, respectively C.

Let d be the polynomial degree of the DG output and k the degree of the spline
filters. The theory of [JvRV14] guarantees a convergence order of d+1+k for the NPk
filter. However, extensive numerical experiments, presented in detail in the Appendix
B, indicate optimal super-convergence of order 2d+1 for the NP0 filter (k = 0) applied
to the canonical hyperbolic equation uτ + ux = 0 for a range of final times T of the
DG computation. Yet, this paper does not aim to establish this super-convergence or
sharp theoretical convergence bounds. Rather it establishes properties and practical
formulas that make it easy to apply the NP0 filter, e.g. explicit formulas for stably
computing the convolution with the data based on a symbolic formula provided by
[NP16]. PSIAC-filtering of DG output at a point x in the left boundary region [0..λ]
amounts to forming a linear combination of the vector of DG coefficients u[x] whose
functions have support at x:

ufiltered(x) := u[x] · Vx.(1.1)

By Eq. (2.11) of Theorem 2.5 of this paper,

(1.2) Vx := Qhλλλλx, λλλx :=
[
(λ− x)0 · · · (λ− x)3d

]t
,

where Qhλ is a matrix with rational entries that depend only on the space of DG
polynomials and on the space of filter kernels, not on x. For efficient implementation,
the local DG coefficient vector is therefore multiplied with the matrix Qhλ in advance
yielding a vector of size 3d+ 1 to be multiplied with λλλx. The central four entries Vx

of Vx are its largest in absolute value. For the NP0 and the SRV filter (in PSIAC
form), d = 3 and x = 0, the four entries are respectively

V0(NP0) = 10080−1
[
70381 70381 −56627 −56627

]
(1.3)

V0(SRV) = 15256200960000−1
[

3549982809648204 9809076669570393

11473452075703833 6592494198365004
]
.

While the fractions of integers have at most 5 digits for NP0, the fractions of the SRV
filters have up to 17 digits and their absolute value is much larger: Fig. 2 shows that
for d = 3 the alternating coefficients of the SRV filter are two orders of magnitude
larger than those of the NP0 filter.

In summary,
B applying the PSIAC boundary filter NP0 is efficient: one multiplies the

boundary DG data with the matrix Qλ and then forms, for each x, hence
λλλx, the dot product between the two short vectors;

B numerical experiments in double floating point precision on the canonical
wave equation indicate that NP0 has a convergence rate of 2d+ 1, where d is
the piecewise degree of the DG output.
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Fig. 2. Size of the entries of V = Qh=1
λ λλλ for filtering d = 3 DG output at a boundary point

x = 0. Note the 100-fold difference in scale between (a) and (b).

Organization. Section 2 introduces notation, spline convolution and the canonical
test equations, followed by a review of the literature in more detail. Section 3 focuses
on the new NP0 filter and compares it to the existing SRV and RLKV filters in their
improved symbolic PSIAC form. Equation (3.11) and Appendix A provide explicit Qλ
for degree d ∈ {1, 2, 3}. Section 4 compares the SRV, RLKV, NP0 and the symmetric
SIAC filters numerically on three variants of the canonical hyperbolic equation.

2. Notation and Definitions. This section establishes the notation for filters
and DG output, exhibits the canonical test problem, the DG method, and reproducing
filters and reviews one-sided and position-dependent SIAC filters in the literature.

We denote by f ∗ g the convolution of a function f with a function g, i.e.

(f ∗ g)(x) :=

∫
R
f(t) g(x− t) dt = (g ∗ f)(x),

for every x where the integral exists. Filtering means convolving a function f with a
kernel g.

2.1. Sequences, Splines, and Reproduction. The goal of SIAC filtering is
to spatially smooth out the DG output u(x, τ) by convolution in x with a linear
combination of B-splines. Typically filtering is applied after the last time step when
τ = T . Specifically, we will focus on piecewise polynomial SIAC spline kernels f :
R→ R such that convolution of f with monomials (·)δ reproduces the monomials up
to degree r. Let J := (0, . . . , jr) be a sequence of strictly increasing integers between
0 and jr, abbreviate the sequences of consecutive integers as

i : j :=

{
(i, i+ 1, . . . , j − 1, j), if i ≤ j,
(i, i− 1, . . . , j + 1, j), if i > j,

si:j := (si, . . . , sj).

Let B(x|tj:j+k+1) denote the unit integral B-spline with (non-decreasing) knot se-
quence tj:j+k+1 (see [dB02]) related to the recursively defined B-spline N(t | ti:i+k+1)

by N(t | ti:i+k+1) = ti+k+1−ti
k+1 B(t | ti:i+k+1). Then a SIAC spline kernel of degree k

and reproduction degree r with index sequence J and knot sequence t0:n is a spline

f(x) :=
∑
j∈J

fjB(x|tj:j+k+1),
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of degree k with coefficients fj chosen so that(∑
j∈J

fjB(·|tj:j+k+1) ∗ (−·)δ
)

(x) = (−x)δ, δ = 0 : r.(2.1)

We reserve the following symbols:

d degree of the DG output;
m number of intervals of the DG output;
s0:m prototype increasing break point sequence, typically integers;

the break sequence of the DG output is hs0:m;
k degree of the filter kernel;
r + 1 number of filter coefficients

for reproduction of polynomials up to degree r;
J := (0, . . . , jr) index sequence;

if the B-splines of the filter are consecutive, then jr = r;
n number of knot intervals spanned by the filter;

n = jr + k + 1;
t := t0:n prototype (integer) knot sequence of the filter;

the input knot sequence of the filter is ht0:n + ξ
where ξ is the shift and h scales.

This notation is illustrated by the following example.
Example 2.1. A linear DG output sequence on 200 uniform segments of the

interval [−1..1] implies d = 1, m = 200, h = 1
100 and s0:m = −100 : 100. A degree-

one spline filter defined over the knot sequence t := 0 : 6 and associated with the index
set J := {0, 3, 4} corresponds to k = 1, n = 6, r = 2 and jr = 4. The two B-splines
defined over the knot sequences 1 : 3 and 2 : 4 are skipped.

2.2. The canonical test problem and the Discontinuous Galerkin method.
To demonstrate the performance of the filters on a concrete example, [RS03] used the
following univariate hyperbolic partial differential wave equation:

du

dτ
+

d

dx

(
κ(x, τ)u

)
= ρ(x, τ), x ∈ (a..b), τ ∈ (0..T )(2.2)

u(x, 0) = u0(x), x ∈ [a..b]

subject to periodic boundary conditions, u(a, τ) = u(b, τ), or Dirichlet boundary
conditions u(e, τ) = u0(τ) where, depending on the sign of κ(x, τ), e is either a or
b. Subsequent work [RS03, SRV11, RLKV15] adopted the same differential equation
to test their new one-sided filters and to compare to the earlier work. Eq. (2.2) is
therefore considered the canonical test problem. We note, however, that SIAC filters
apply more widely, for example to FEM and elliptic equations [BS77].

In the DG method, the domain [a..b] is partitioned into intervals by a sequence
hs0:m of break points a =: hs0, . . . , hsm := b. Assuming that the sequence is rational,
scaling by h will later allow us to consider a prototype sequence s0:m of integers. Let
Pdh be the linear space of all piecewise polynomials with break points hs0:m and of
degree less than or equal to d. We use modal or nodal scalar-valued basis functions
φi(. ; hs0:m) 0 ≤ i ≤ m of Pdh that are linearly independent and satisfy the scaling
relations

(2.3) φi(hx ; hs0:m) = φi(x ; s0:m).
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Relation (2.3) is typically used for refinement in FEM, DG or Iso-parametric PDE
solvers. Examples of basis functions φi are Bernstein-Bézier basis functions [dB05],
Lagrange polynomials dependent on Legendre-Gauss-Lobatto quadrature points [HW07],
and Legendre polynomials.

The DG method approximates the time-dependent solution of Eq. (2.2) by

(2.4) u(x, τ) :=

m∑
i=0

ui(τ)φi(x ; hs0:m), φi ∈ Pdh.

Multiplying the two sides of Eq. (2.4) with a test function v and integrating by
parts yields the weak form of Eq. (2.2):

(2.5)

∫ b

a

(du
dτ

v − κ(x, τ)u
dv

dx

)
dx =

∫ b

a

ρ(x, τ) v dx−
(
κ(x, τ)u(x, τ)v(x)

)∣∣∣x=b

x=a
.

Substituting u on the left of Eq. (2.5) by (2.4), treating the rightmost, non-integral
term of Eq. (2.5) as a numerical flux, and choosing v(x) := φj(x ; hs0:m), yields a
system of ordinary differential equations in τ with the coefficients ui(τ), 0 ≤ i ≤ m,
as unknowns. This system can be solved by, e.g., a standard fourth-order four stage
explicit Runge-Kutta method (ERK) [HW07, Section 3.4].

2.3. A synopsis of DG filtering. Since convolution with a symmetric SIAC
kernel of a function g at x requires g to be defined in a two-sided neighborhood of
x, near boundaries, Ryan and Shu [RS03] proposed convolving the DG output with
a kernel whose support is shifted to one side of the origin: for x near the left domain
endpoint a, the one-sided SIAC kernel is defined over (x−a)+h

(
−(3d+1),−3d, . . . , 0

)
where d is the degree of the DG output. The Ryan-Shu x-position-dependent one-
sided kernel yields optimal L2-convergence, but its point-wise error near a can be
larger than that of the DG output.

In [SRV11], Slingerland-Ryan-Vuik improved the one-sided kernel by increasing
its monomial reproduction from degree r = 2d to degree r = 4d. This one-sided
kernel reduces the boundary error when d = 1 but the kernel support is increased
by 2d additional knot intervals and numerical roundoff requires quadruple precision
calculations to determine the kernel’s coefficients. ([SRV11] additionally required
quadruple precision for computing the DG output.) Indeed, the coefficients of the
boundary filters [RS03, SRV11, MRK12, RLKV15, MRK15] are computed by inverting
a matrix whose entries are determined by Gaussian quadrature; and, as pointed out
in [RLKV15], SRV filter matrices are close to singular.

Ryan-Li-Kirby-Vuik [RLKV15] therefore suggested an alternative one-sided position-
dependent kernel that has the same support size as the symmetric kernel and has
reproduction degree higher by one, enriching the spline space by one B-spline. This
RLKV kernel is stably computed, as has been verified numerically, in double preci-
sion, up to input data degree d = 4 and joins the symmetric SIAC filter, applied in
the interior, without a jump in error. However, the error of the RLKV kernel at the
boundaries can be higher than that of the symmetric SIAC filter and the L2 and L∞

superconvergence rates are sub-optimal [RLKV15] (c.f. Fig. 9,10,11). [LRKV16] ad-
ditionally states that RLKV has a poorer derivative approximation than SRV filters.

[NP16] reinterprets the published one-sided filters in an explicit, symbolic form
as position-dependent PSIAC spline filters. Symbolic expression of coefficients for
spline filters have recently been developed in [MRK15] for uniform knot sequences
and in [Pet15] for general knot sequences. Reinterpretation of the published filters in
symbolic form improves their numerical stability.
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2.4. Symbolic formulation of the filters. We split the DG data at any known
discontinuities and treat the domains separately. Then convolution can be applied
throughout a given closed interval [a..b]. A SIAC spline kernel with knot sequence
t0:r+k+1 is symmetric (about the origin in R) if t` + tr+k+1−` = 0 for ` = 0 : d(r+k+
1)/2e. Note that, unlike the (position-independent) classical symmetric SIAC filter,
the position-dependent boundary kernel coefficients have to be determined afresh for
each point x.

Lemma 2.1 (SIAC coefficients [NP16]). The vector f := [f0, . . . , fr]
t ∈ Rr+1 of

B-spline coefficients of the SIAC filter with index sequence J := (0, . . . , jr) and knot
sequence t0:n is

f := first column of M−1, M := Mt0:n,J =

[ ∑
|ω|=δ

tωj:j+k+1

]
δ=0:r, j∈J

(2.6)

where tω0:p := tω0
0 . . . tωpp and |ω| :=

n∑
j=0

|ωj |

This characterization yields the following formula for the filter coefficients.
Theorem 2.2 (Scaled and shifted SIAC coefficients are polynomial [NP16]). The

SIAC filter coefficients fξ;` associated with the knot sequence ht0:n+ξ are polynomials
of degree r in ξ:

(2.7) fξ := [fξ;`]`=0:r = M−1
t0:n,J diag

( [
(−1)`

(
`+k+1
`

)]
`=0:r

)[( ξ
h

)0:r
]t
.

The following corollary implies that the kernel coefficients fξ;`, can be pre-computed
stably, as scaled integers.

Corollary 2.3 (Coefficient polynomials fξ,` have rational coefficients [NP16]).
If the knots t0:n are rational, then the filter coefficients fξ,` are polynomials in ξ and
h with rational coefficients.

We can now define the PSIAC kernel.
Definition 2.4 (PSIAC kernel). A PSIAC kernel with index sequence J =

(0, . . . , jr) and knot sequence ht0:n + x has the form

(2.8) fx(s) :=
∑
j∈J

fx;jB(s |htj:j+k+1 + x), s ∈ h[t0, tn] + x.

The DG output is convolved with a PSIAC kernel fx−hλ(s) of reproduction degree
r, associated with an index sequence J and defined over shifted knots ht0:n + x −
hλ – where the constant hλ adjusts the filter kernel to the left or right boundary.
Example 2.2 illustrates the simple explicit form of the PSIAC coefficients according to
Theorem 2.2 and verifies that the corresponding PSIAC filter reproduces as predicted
by the derivation.

Example 2.2 (Reproduction by PSIAC filtering). Let h = 1, k = 0 and fx be
the least degree PSIAC filter with t0:n = {−2,−1, 0}, r = 1, J = (0, 1). According to
(2.8) of Definition 2.4:

fx(s) : = fx;0B(s | {−2,−1}+ x) + fx;1B(s | {−1, 0}+ x)(2.9)

= fx;0 χ[−2,−1]+x + fx;1 χ[−1,0]+x, χ[α,β](s) :=

{
1, if s ∈ [α, β];

0, else
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where χ[α,β] denotes the indicator function of the domain [α, β]. Equation (2.7) of
Theorem 2.2 provides the formula[

fx;0

fx;1

]
:=

[
1 1

−2− 1 −1 + 0

]−1 [
1 0
0 −2

] [
1
x

]
=

1

2

[
2x− 1
3− 2x

]
.(2.10)

This choice of filter coefficients fx;0 and fx;1 satisfies Eq. (2.1). For δ = 0:

(fx ∗ 1)(x) =

∫
R
fx(s)ds = fx;0

∫
R
χ[−2,−1]+x(s) ds+ fx;1

∫
R
χ[−1,0]+x(s) ds = 1.

For δ = 1: (fx ∗ (−·))(x) =

∫
R
fx(s) (s− x) ds

= fx;0

∫
R
χ[−2,−1]+x(s) (s− x) ds+ fx;1

∫
R
χ[−1,0]+x(s) (s− x) ds

= fx;0

∫ −1+x

−2+x

(s− x)ds+ fx;1

∫ 0+x

−1+x

(s− x)ds

= fx;0

(
s2

2

∣∣s=−1+x

s=−2+x
− x
)

+ fx;1

(
s2

2

∣∣s=0+x

s=−1+x
− x
)

= fx;0(−fx;1 − x) + fx;1(fx;0 − x) = −x.

Leveraging Theorem 2.2, we can efficiently compute the convolution as follows.
Theorem 2.5 (Efficient PSIAC filtering of DG output [NP16]). Let fx(s) be

a PSIAC kernel of reproduction degree r with index sequence J = (0, . . . , jr) and
knot sequence ht0:n + x − hλ. Let u(x, τ) :=

∑m
i=0 ui(τ)φi(x ; hs0:m), x ∈ [a, b] and

τ ≥ 0, be the DG output. Let I be the set of indices of basis functions φi(. ; hs0:m)
with support overlapping h[λ − tn, λ − t0]. Then the filtered DG approximation is a
polynomial in x of degree r:(

u ∗ fx
)
(x) = uI Qλ

[(x
h
− λ
)0:r
]t
.(2.11)

uI := [ui(τ)
]
i∈I ,

Qλ := Gλ AM
−1
0,t,J diag(

[
(−1)`

(
`+k+1
`

)]
`=0:r

),

Gλ :=

[∫ λ−t0

λ−tn
φi(s ; s0:m)B(s |λ− tn−j:jr−j) ds

]
i∈I, j∈J

.(2.12)

A is the reversal matrix with 1 on the antidiagonal and zero else.
The factored representation implies that instead of recomputing the filter coef-

ficients afresh for each point x of the convolved output as was the practice prior to
[NP16], we simply pre-compute the coefficients corresponding to one prototype knot
sequence t and, at runtime, pre-multiply with the data and post-multiply with the
vector of shifted monomials scaled by h according to Eq. (2.11).

Increased multiplicity of an inner knot of the symmetric, position-independent
SIAC kernel reduces its smoothness, and this, in turn, reduces the smoothness of the
filtered output. By contrast, Theorem 2.5 shows that when the PSIAC knots are
shifted along evaluation points x then PSIAC convolution yields a polynomial, i.e. the
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representation near the boundary is infinitely smooth regardless of the knot multi-
plicity. That is, we may view position-dependent filtering as a form of polynomial
approximation. For example, the RLKV-filtered output is a single polynomial over
the boundary region where it applies.

Example 2.3 (Coefficients of the RLKV-filtered DG output polynomial). Let
d = k = 3. Consider the canonical partial differential equation uτ+ux = 0 of (2.2) for
x ∈ [0, 1] at final time T = 1 for mesh-sizes hi := 2−i/10, i = 1, 2, 3. The analytical
solution of this equation is ue(x) = sin 2π(x − T ). Let λL,i := 5hi, λR,i := 1 − 5hi
and fL,i,x be the RLKV filters with respect to the left boundary regions. Applying the
RLKV-filter to the DG output uhi computed for mesh size hi yields a polynomial in
x as predicted by Theorem 2.5:

PL,i(x) := (fL,i,x ∗ uhi)(x) =

7∑
k=0

ak,i(x− λL,i)k, x ∈ [0, λL,i],(2.13)

where[ a0,1 ··· a3,1
a4,1 ··· a7,1

]
=
[

0.999999901374753 0.000021494468508 −19.738996791744032 −0.008053345774016
64.88630724285224 0.623484670536888 −82.011046997856752 −11.875898409510508

][ a0,2 ··· a3,2
a4,2 ··· a7,2

]
=
[

0.707106780904271 4.442883051171333 −13.95772600673645 −29.233165736223864
45.9166940244231 57.754323004960845 −59.8089096658096 −57.790782092166637

][ a0,3 ··· a3,3
a4,3 ··· a7,3

]
=
[

0.382683432364482 5.804906304724222 −7.553868156289703 −38.194755175826380
24.85114895244633 75.39658368210462 −32.618972790201198 −71.729391408995241

]
.

Analogously, by symmetry, the filtered data of the right boundary region is

PR,i(x):=(fR,i,x ∗ uhi)(x)=

7∑
k=0

(−1)k+1 ak,i(x− λR,i)k, x∈[λR,i, 1].

Fig. 3a plots the polynomials PL,i and PR,i, the difference between the polynomials and
the exact solution (note the scale 10−5 in Fig. 3b) and the error in log scale Fig. 3c.
Fig. 3c matches the error graphs of [RLKV15, Figure 5,top-right] that were pointwise
computed numerically.

The polynomial characterization directly provides a symbolic expression for the
derivatives of the convolved DG output.

Corollary 2.6 (Derivatives of PSIAC-filtered DG output [NP16]).

(2.14)
d`

dx`
(
u ∗ fx

)
(x) = uI Qλ diag(h−(0:r))

( d`

dx`
(x− hλ)0:r

)t
.

2.5. Boundary filters as PSIAC filters. The symmetric knot sequence of the
symmetric kernel of degree d is

t := h(−µ,−µ+ 1, . . . , µ), µ :=
r + d+ 1

2
, r := 2d.(2.15)

On [a..b], this symmetric kernel can only be applied at evaluation points x where

λL,d := a+ µ,≤ x ≤ b− µ =: λR,d.(2.16)

The boundary SIAC kernels RS [RS03] and SRV [SRV11] of reproduction degree
r + 1 are of degree k = d, the degree of the DG output. Their index sequence J is
consecutive, and they are defined over the shifted knots

t∗,d(ξ) :=
(
− µ,−µ+ 1, . . . , µ

)
+ ξ − λ∗,d, ∗ ∈ {L,R}(2.17)
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Fig. 3. RLKV-filtered boundary region of the DG output for d=3 of Example 2.3. The
graphs in red, green, and blue correspond to i=1, 2, 3 respectively, i.e. to N=20, 40, 80 DG segments.
(a) Three segments of degree 7 partially cover one another, representing the RLKV-filtered output,
superimposed with the exact solution (black dashed). At this resolution all four are visually indistin-
guishable where their domain overlaps (the x-domain of the boundary filter halves with doubling N).
(b) Fine sampling of difference between the filtered output and the exact solution. (c) The canonical
log scale display of the absolute error left: |PL,i(x)−ue(x)|, x∈[0, λL,i] and right: |PR,i(x)−ue(x)|,
x∈[λR,i, 1] at computational resolution 6N . If the sampling were as fine as (b), the arches would
reach down to zero.

that form a symmetric support about the origin when ξ = λ∗,d. The two kernels differ
in their degree: r(RS) = 2d and r(RV) = 4d. Explicit forms of the matrix Gλ, that is
defined in Theorem 2.5 to efficiently construct the filter, are presented in [NP16].

The index sequence J of the boundary kernel RLKV [RLKV15] is non-consecutive.
The left and right kernels are of degree 2d+ 1 and are defined over the shifted knots,
symmetric about the origin:

tL,d(ξ) :=
(
− µ, . . . , µ− 1, µ, . . . , µ︸ ︷︷ ︸

d+ 1 times

)
+ ξ − λL,d,(2.18)

JL := {1 : (2d+ 1), 3d+ 1};

tR,d(ξ) :=
(
−µ, . . . ,−µ︸ ︷︷ ︸
d+ 1 times

,−µ+ 1, . . . , µ,
)

+ ξ − λR,d,(2.19)

JR := {1, d : (3d+ 1)}.

Explicit forms of the matrix Gλ, that is defined in Theorem 2.5 to efficiently construct
the filter, are presented in [NP16].

Theorem 2.5 shows that a PSIAC filter need not have the same degree as the sym-
metric SIAC filter and it shows that PSIAC filters may have multiple knots without
reducing the continuity of the filtered DG output. To illustrate this, [NP16] intro-
duced filters with multiple interior knots. This class of filters is denoted NPk and has
knot sequences

tL := x− λL +
(
− µ, . . . , µ− 3, µ− 2, µ− 1, · · ·, µ− 1︸ ︷︷ ︸

k + 1 times

, µ, · · ·, µ︸ ︷︷ ︸
k + 1 times

)
,

tR := x− λR +
(
−µ, · · ·,−µ︸ ︷︷ ︸
k + 1 times

,−µ+ 1, · · ·,−µ+ 1︸ ︷︷ ︸
k + 1 times

,−µ+ 2,−µ+ 3 . . . , µ
)
.(2.20)

3. New least-degree DG filters. The symbolic formulation (2.11) applies to
kernels of degree different from the degree d of the DG output. We may therefore
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consider a piecewise-constant (k = 0) PSIAC filter. The NP0 filter has a consecutive
index sequence J and is defined over the shifted knots

t∗,d(ξ) :=
(
− µ,−µ+ 1, . . . , µ

)
+ ξ − λ∗,d, µ =

3d+ 1

2
, ∗ ∈ {L,R}.(3.1)

Therefore the piecewise constant NP0 filter has reproduction degree r+1 = 3d+1 and
the same support size as the symmetric kernel. (Numerical experiments show that a
filter with 2d+ 1 constant pieces still achieves optimal superconvergence – albeit with
a larger error than using 3d+ 1 pieces. We choose 3d+ 1 since this is the number of
pieces that the symmetric SIAC filter of the interior uses).

While the smoothness of the filtered output of position-independent filters, e.g.
symmetric SIAC filters, depends on the filter degree, position-dependent PSIAC fil-
ters yield maximally smooth output regardless of their degree: by Theorem 2.5, the
DG output filtered by a PSIAC filter is a polynomial over the respective boundary
region independent of the degree or smoothness of the PSIAC filter. That is, even
our piecewise constant NP0 PSIAC filter increases the smoothness to infinity in the
boundary region. Example 3.1 illustrates the remarkable fact that PSIAC filtering
yields a single polynomial. This is in contrast to the finite smoothness at break points
of data filtered with position-independent SIAC filters.

Example 3.1 (PSIAC-filtering yields polynomial output). Let h = 1, χ[α,β] be
the indicator function of [α, β] and

uh0
(x) := χ[0,1](x) + χ[3,4](x), x ∈ [0, 7] =: Ω.

the discontinuous DG output. Convolving uh0
(x) at x in the interior region [2, 5] of Ω

with the symmetric (position-independent) SIAC filter of reproduction degree r = 1,

K(s) :=
1

2
B(s | − 1 : 0) +

1

2
B(s | 0 : 1) =

1

2
χ[−1,1](s),

yields

(K ∗ uh0
)(x) =

1

2
B(s | 2 : 4) +

1

2
B(s | 3 : 5), x ∈ [2, 5].(3.2)

That is, convolving with K yields a C0 output, as predicted by the SIAC theory devel-
oped by Ryan et al. [RS03, SRV11].

By contrast, at x in the left boundary region [0, 2] of Ω, convolving uh0
(x) with

the left-sided least-degree position-dependent PSIAC filter fx defined in Example 2.2
yields

for x ∈ [0, 2]: (fx ∗ uh0
)(x) =

∫
R
fx(s)uh0

(x− s)ds

by Eq. (2.9)
========= fx;0

∫ −1+x

−2+x

uh0
(x− s)ds+ fx;1

∫ 0+x

−1+x

uh0
(x− s)ds

0 ≤ x− s ≤ 2
========== fx;0

∫ −1+x

−2+x

χ[0,1](x− s)ds+ fx;1

∫ 0+x

−1+x

χ[0,1](x− s)ds(3.3)

change: t = x− s
============= fx;0

∫ 2

1

χ[0,1](t)dt+ fx;1

∫ 1

0

χ[0,1](t)dt

= fx;1
by Eq. (2.10)

==========
1

2
(3− 2x).
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The equality Eq. (3.3) holds because when 0 ≤ x ≤ 2 and −2 + x ≤ s ≤ 0 + x
then 0 ≤ x − s ≤ 2. Hence uh0

(x − s) = χ[0,1](x − s). As Theorem 2.5 predicts

(fx ∗ uh0)(x) = 1
2 (3− 2x), x ∈ [0, 2], is a polynomial over the boundary region [0, 2].

Fig. 4 graphs instances of the SRV, RLKV and NP0 kernels. Note that the NP0

filter remains piecewise constant, while the degree of the other two filters increases
with the degree d of the DG data.
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Fig. 4. Graphs of the three kernels defined at the left boundary x = a. By construction the
degree of [SRV11] and [RLKV15] increases with d while the degree of the new NP0 kernel remains
piecewise constant. The NP0 kernel (blue) has the same support as the RLKV kernel (red), shorter
than the SRV kernel (green).

3.1. Symbolic form. We reduce the convolution of the DG data with the NP0

kernels to an inner product of two short vectors. The inverse of the SIAC reproduction
matrix Mt,J and the matrix Gλ∗ , of the formulation (2.11) in Theorem 2.5, are
explicitly derived for NP0 based on the following two propositions.

Proposition 3.1. (SIAC reproduction matrix for degree k = 0) The SIAC
reproduction matrix for least degree filters with index sequence J := (0, . . . , jr) and
knot sequence t0:n is

Mt0:n,J =
[
tδ+1
j+1−t

δ+1
j

tj+1−tj

]
δ=0:r, j∈J

.(3.4)

If the knot sequence t0:n is uniform, i.e. h1 := tj+1 − tj, then

Mt0:n,J = h−1
1

[
(tj + h1)δ+1 − tδ+1

j

]
δ=0:r, j∈J .(3.5)
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Proof. Since k = 0, each entry of Mt0:n,J given by Eq. (2.6) is the sum of all
monomials in tj+1 and tj of total degree δ, and hence of the form (3.4). Eq. (3.5) is
a direct consequence of Eq. (3.4).

Proposition 3.2 (Gλ∗ for degree k = 0 and uniform DG intervals). Assume that
the DG break point sequence s0:m is uniform, hence after scaling consists of consecu-
tive integers. Without loss of generality, the DG output on each interval [si, si+1] is
defined in terms of Bernstein-Bézier polynomials Bi` of degree d, where the superscript
i indicates the interval and ` = 0 : d, i.e.

(3.6) Bi`(x) :=

{(
d
`

)
(x− si)`(si+1 − x)d−` if x ∈ [si, si+1]

0 otherwise.

Let I be the 3d+ 1 identity matrix and 1 the (d+ 1) column vector of ones. The
matrix GλL for the left-sided kernel and the matrix GλR for the right-sided kernel
defined by Eq. (2.11) are
(3.7)

GλL = GλR = I ⊗ 1 =
1

d+ 1

[
1 ... 1 0 ... 0 ... 0 0 ... 0
0 ... 0 1 ... 1 ... 0 0 ... 0
...
. . .

...
...
. . .

...
. . .

...
...
. . .

...
0 ... 0 0 ... 0 ... 0 1 ... 1

]t
∈ N(d+1)(3d+1) × N(3d+1).

Proof. First we derive Eq. (3.7) for GλL . In Eq. (2.12), we change to the
variable t = s − λL + tn. Since the B-splines are translation invariant and k = 0
(hence n = jr + 1)

(3.8) B(s |λ− tn−j:jr−j) = B(t | tn − tn−j:n−j−1) = B(t | j : j + 1).

Consequently, Eq. (2.12) can be rewritten as

(3.9) GλL(i, j) =

∫ 3d+1

0

φi(t ; s0:m − λL + tn)B(t | j : j + 1) dt.

Since s0 = a
h , the one-sided condition λL = tn+ a

h implies that the first point of the
sequence of translated DG break points s0:m−λL+ tn equals 0, i.e., s0−λL+ tn = 0.
Since the break points are consecutive integers starting from 0 and the B-splines
B(t | j : j+1) are supported over [0, 3d+1], the relevant DG break points are 0 : 3d+1.

We re-write the basis functions φj(s ; s0:m − λL + tn), that are supported on an
interval [i..i+1], in terms of DG output Bernstein-Bézier basis functions Bi`, ` = 0..d.
Since each B-spline B(t | j : j + 1) is supported on [j, j + 1] and each Bi` is supported
on [i, i+ 1], the entries of GλL are non-trivial only if i = j. Therefore

(3.10) GλL
(
(d+ 1)i+ `, i

)
=

i+1∫
i

Bi`(t)B(t | i : i+ 1) dt =
1

h
× h

d+ 1
=

1

d+ 1
.

The second last equality in Eq. (3.10) holds since B(t | i : i + 1)|[i,i+1] ≡ 1
h and the

integral of Bi`(t) over [i, i + 1] equals h
d+1 [dB02]. Eq. (3.10) shares the entries of

Eq. (3.7) for GλL .
A similar argument for deriving GλR but starting with the substitution t :=

−(s− λR + t0) proves Eq. (3.7) for GλR .
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We note that GλL = GλR uniquely holds for the piecewise constant one-sided
filter and not for any of the higher-degree filters in the literature.

Formula (3.7) of Proposition 3.2 makes it easy to explicitly list the matrix Qd,hλ
for computing the filtered DG output u[x] · Qd,hλ λλλx for meshsize h and DG-degree d
at x (cf. Eq. (1.1)). For d = 1,

Q1,h
λ = Q1,1

λ diag([1, h−1, . . . , h−r]), Q1,1
λ =

1

24


−1 1 3 −2
−1 1 3 −2
7 −15 −3 6
7 −15 −3 6
7 15 −3 −6
7 15 −3 −6
−1 −1 3 2
−1 −1 3 2

 .(3.11)

The Appendix A lists Qd,1λ for d = 2 and d = 3.

3.2. Filter transition. Let Lx ∗ uh denote the DG output uh filtered by the
left boundary PSIAC filter Lx and K ∗ uh the DG output filtered by the symmetric
SIAC filter K of the interior. These two filtered outputs overlap on the interval
[a1, a2] = a+ cL + [0..2h] where cL separates the interior and left boundary. Without
loss of generality, after substituting z := (x − a1)/(a2 − a1), we may assume that
a1 := 0, a2 := 1. [SRV11] suggests a smoothness-preserving transition filtering scheme
that we state succinctly as

u?h(x) := (1− α(x))
(
Lx ∗ uh

)
(x) + α(x)

(
K ∗ uh

)
(x),(3.12)

α(x) :=

2ρ∑
i=0

αiBi(x), αi :=

{
0 if i ≤ ρ;

1 else.

where Bi(x) =
(

2ρ
i

)
(1−x)2ρ−ixi are Bernstein-Bézier polynomials of degree 2ρ defined

over the unit interval [0..1]. The Bernstein-Bézier representation guarantees that u?h
Hermite-interpolates both filtered DG output up to order ρ. The degree 2ρ need not
be twice the minimum degree of the boundary filter and the symmetric SIAC filter
but can be chosen to further smooth out the transition. That is, one may choose
ρ = 2 even though d = k = ds = 1. The transition for ρ = 2 is less abrupt at 0 and 1
than for ρ = 1.

4. Numerical Comparison of the SRV, RLKV, NP0 and the symmetric
SIAC filter. This section compares numerical results on post-filtering DG output for
(2.2) using the new NP0 filters as well as the state-of-the-art filters, SRV [SRV11] and
RLKV [RLKV15]. We implemented SRV and RLKV in their PSIAC form [NP16] and
verified that the output of our RLKV implementation matches that of a numerical
code provided by the authors [RLKV15]. Our measurements compare the absolute
error e(x, T ) as a function of domain points x and final times T . DG output is
computed until time T before the filters are applied. Fig. 1a.b.c showed graphs for
T -slices of e(x, T ) for fixed T = 0.7 and x ∈ X = [0..1]. The graphs of the Appendix
display, as functions of T , the Lp norm of the slices

eX(T ) := ‖e(x, T )‖p,X , p ∈ {2,∞}, x ∈ X.

That is, each point on the graphs succinctly represents the max-norm or L2-norm
error over the support X of the filter. Denote by [0..λ+] the left boundary region
[0..λ] plus the transition region. Then for each boundary filter the graphs show
e[0..λ+](T ) on the left and e[1−λ+..1](T ) on the right and replicate in both left and
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right e[λ+..1−λ+](T ) for the symmetric SIAC filter and e[0..1](T ) for DG. The graphs
in the Appendix B summarize ca. 15,000 measurements, some of which are graphed as
T -slices in the technical addendum [NPdf]. (Showing all T -slices would fill 100 pages
in the compressed display format of [NPdf]).

The graphs plot errors for three instances of the canonical problem (2.2),

du

dτ
+

d

dx

(
κ(x, τ)u

)
= ρ(x, τ) x ∈ (a..b), τ ∈ (0..T ).

The filters are applied at time T for final times T ∈ [0..1] for Test 4.1 and for final
times T ∈ [0..2π] for the other two Test problems.

Test 4.1 (Constant wave-speed, periodic boundary conditions). Consider
the specializations of Eq. (2.2):

κ(x, τ) ≡ 1, ρ(x, τ) ≡ 0, 0 ≤ τ ≤ T,(4.1)

a := 0, b := 1, periodic boundary conditions, u0(x) := sin(2πx). The exact solution
at the final time T is u(x, T ) = sin(2π(x− T )).

Test 4.2 (Constant wave-speed, Dirichlet boundary conditions). Con-
sider Eq. (2.2) with specializations (4.1), but a := 0, b := 2π, Dirichlet boundary
conditions, u0(x) := sin(x), u(0, τ) := − sin(τ). The exact solution is at the final
time T is u(x, T ) = sin(x− T ).

Test 4.3 (Variable wave-speed, periodic boundary conditions). Consider
Eq. (2.2) with the specializations

κ(x, τ) := 2 + sin(x+ τ), ρ(x, τ) := cos(x− τ) + sin(2x), 0 ≤ τ ≤ T,(4.2)

a := 0, b := 2π, and periodic boundary conditions, u0(x) := sin(x). The exact solution
at the final time T is u(x, T ) = sin(x− T ).

The comparison of the filters yields broadly the same qualitative results for all
three test scenarios.

Fig. 6, 7 and 8 juxtapose the maximal point-wise errors ‖e(x, T )‖∞,X for each
final time T on the abcissa and resolutions of [0..2π] into N = 80 segments (dashed)
and N = 160 segments (solid) for d = 1, 2 and half the N -resolution for d = 3.
The region X for the DG output is the whole domain, the left, respectively right
boundary and transition regions for the boundary filters SRV, RLKV, NP0, and the
interior [λ+..1 − λ+] for symmetric SIAC filter. In Fig. 5 ( a copy of Fig. 6a,b) the
filter error for Test 4.1 and the left boundary regions is plotted in (a) and the right
boundary regions in (b). For example, for N = 160 and Test 4.2 solved up to final
time T = 1/3 before filters were applied, we can read off in (a) the maximal absolute
error of the left RLKV-filter as approximately 10−4, less that the top grey dotted
DG-error and the error of the SRV-filter, the NP0 and the symmetric SIAC filter as
approximately 10−6. (The numbers for DG, RLKV and NP0 match those of of the
graphs in Section 1.1, Ex.1 of [NPdf] for fixed T = 1/3.).

Fig. 9, 10 and 11 display, for various final times T on the abscissa, the convergence
rate

(4.3) ρ = ρ(T, h) := ln
(eX(T ) for mesh size 2h

eX(T ) for mesh size h

)
/ ln 2.

for the L2 and the L∞ norm, for the left boundary region and the right boundary
region, and for several h = 1/N where N is the sampling of the spatial domain. Fig. 9
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Fig. 5. Example graphs from Fig. 6a,b for L∞ error ‖e(x, T )‖∞,X vs final time for Test 4.1
(constant wave-speed, periodic boundary condition), d = 1, T = [0..1]. The L∞-error of PSIAC
filters RLKV (red), SRV (green), NP0 (blue) is computed only over the respective region: [0..λ+]
in (a) and [1 − λ+, 1] in (b). The top-most grey dash-dotted graphs in (a) and (b) are identical
and represent e[0..1](T ) for the raw DG output for N = 160 x-segments. The dotted grey graph
in the middle is e[λ+..1−λ+](T ) for symmetric SIAC filter over the interior. Graphs for boundary
filter errors are dashed when the overall partition is N = 80 and solid for N = 160. Each point on
the abscissa therefore represents one final time 0 ≤ T ≤ 1 and each ordinate represents a maximal
absolute error over the domain for that final time.

and Fig. 10 each show #(degrees×norms×boundary regions×final times×filter types
or DG output ×refinements) = (3×2×2×50×5×2) = 6000 convergence rates. Fig. 11,
with 30 final times, shows 3600 convergence rates. The graphs help us spot that
convergence rates are higher for some isolated T than in general.

For d = 1, Fig. 6 of the Appendix B shows for all final times T that both SRV
and NP0 filtering result in lower errors than RLKV-filtering. For d = 2, 3, Fig. 7 and
for d = 3, Fig. 8 point to the instability of the SRV filter at double precision: for
certain final times T , the SRV-error even increases above that of the raw DG output.
Instability also causes the SRV-error to exceed that of the NP0 filter in Fig. 6. For
d = 1, 2, the maximal point-wise errors of the RLKV filter are noticeably larger than
those of the SRV filter and the NP0 filter. The point-wise errors of the NP0 filter are
on par with the symmetric SIAC filter (in gray).

We note the consistency between L2 and L∞ convergence and therefore clearly
higher rates for SRV, NP0 and the symmetric SIAC filters over RLKV. When d = 1
and d = 2, the NP0 and SRV filters show optimal L2 and L∞ super-convergence rates
of order 2d + 1 in the boundary region. The convergence rate of 2 for the boundary
regions for RLKV and d = 1 has been verified also with the original RLKV code.
Fig. 12 in Appendix B compares the convergence orders for different end times T and
DG input of degree d = 1, 2, 3.

For d = 3 the point-wise errors and convergence rates of all filters oscillate since
calculations are close to machine precision. However, the point-wise errors and con-
vergence rates of the NP0 filter are on par with that of the symmetric SIAC filter,
while the errors of the SRV filters are notably higher and convergence rates become
sub-optimal, and even lower than d+ 1 for some T when d = 3. Fig. 2 helps explain
the instability of the SRV filters. Plotting the alternating entries of the convolution
vector V = Qλλλλ at a boundary point x (e.g., x = 0 when a = 0), we find the entries
of the SRV filters to be two orders of magnitude larger than those of NP0.
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5. Conclusion. PSIAC NP0 filters enjoy three positive properties. First, ex-
plicit tabulated integer-based formulas make the computation of the NP0 filters and
their application for convolution more stable and efficient. Second, on canonical test
equations, applying NP0 filters reduces the errors of the DG output to that of opti-
mal symmetric SIAC filters. Third, the support of the NP0 filters matches that of the
symmetric SIAC filter, making them naturally compatible.

Acknowledgement. This work was supported in part by NSF grant CCF-
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Appendix A: Explicit filter matrix Qλ for NP0. For d = 1, Q1,1
λ is listed in

(3.11). For d = 2,

Q2,1
λ =

1

967680



−225 −7252 3108 7840 −2800 −1344 448
−225 −7252 3108 7840 −2800 −1344 448
−225 −7252 3108 7840 −2800 −1344 448
2862 62608 −38808 −58240 30240 5376 −2688
2862 62608 −38808 −58240 30240 5376 −2688
2862 62608 −38808 −58240 30240 5376 −2688
−22863 −264740 288540 92960 −95760 −6720 6720
−22863 −264740 288540 92960 −95760 −6720 6720
−22863 −264740 288540 92960 −95760 −6720 6720
363012 0 −505680 0 136640 0 −8960
363012 0 −505680 0 136640 0 −8960
363012 0 −505680 0 136640 0 −8960
−22863 264740 288540 −92960 −95760 6720 6720
−22863 264740 288540 −92960 −95760 6720 6720
−22863 264740 288540 −92960 −95760 6720 6720

2862 −62608 −38808 58240 30240 −5376 −2688
2862 −62608 −38808 58240 30240 −5376 −2688
2862 −62608 −38808 58240 30240 −5376 −2688
−225 7252 3108 −7840 −2800 1344 448
−225 7252 3108 −7840 −2800 1344 448
−225 7252 3108 −7840 −2800 1344 448



.

For d = 3, Q3,1
λ = 1

14515200

2880 −1152 −12300 3280 6825 −1638 −1050 240 45 −10
2880 −1152 −12300 3280 6825 −1638 −1050 240 45 −10
2880 −1152 −12300 3280 6825 −1638 −1050 240 45 −10
2880 −1152 −12300 3280 6825 −1638 −1050 240 45 −10
−33120 16848 139020 −47160 −72975 22302 9870 −2880 −315 90
−33120 16848 139020 −47160 −72975 22302 9870 −2880 −315 90
−33120 16848 139020 −47160 −72975 22302 9870 −2880 −315 90
−33120 16848 139020 −47160 −72975 22302 9870 −2880 −315 90
182880 −127152 −737400 342360 338100 −142128 −33600 13680 900 −360
182880 −127152 −737400 342360 338100 −142128 −33600 13680 900 −360
182880 −127152 −737400 342360 338100 −142128 −33600 13680 900 −360
182880 −127152 −737400 342360 338100 −142128 −33600 13680 900 −360
−681120 736848 2408280 −1754760 −644700 447552 52080 −35280 −1260 840
−681120 736848 2408280 −1754760 −644700 447552 52080 −35280 −1260 840
−681120 736848 2408280 −1754760 −644700 447552 52080 −35280 −1260 840
−681120 736848 2408280 −1754760 −644700 447552 52080 −35280 −1260 840
2342880 −5311152 −1797600 3853080 372750 −773388 −27300 55440 630 −1260
2342880 −5311152 −1797600 3853080 372750 −773388 −27300 55440 630 −1260
2342880 −5311152 −1797600 3853080 372750 −773388 −27300 55440 630 −1260
2342880 −5311152 −1797600 3853080 372750 −773388 −27300 55440 630 −1260
2342880 5311152 −1797600 −3853080 372750 773388 −27300 −55440 630 1260
2342880 5311152 −1797600 −3853080 372750 773388 −27300 −55440 630 1260
2342880 5311152 −1797600 −3853080 372750 773388 −27300 −55440 630 1260
2342880 5311152 −1797600 −3853080 372750 773388 −27300 −55440 630 1260
−681120 −736848 2408280 1754760 −644700 −447552 52080 35280 −1260 −840
−681120 −736848 2408280 1754760 −644700 −447552 52080 35280 −1260 −840
−681120 −736848 2408280 1754760 −644700 −447552 52080 35280 −1260 −840
−681120 −736848 2408280 1754760 −644700 −447552 52080 35280 −1260 −840
182880 127152 −737400 −342360 338100 142128 −33600 −13680 900 360
182880 127152 −737400 −342360 338100 142128 −33600 −13680 900 360
182880 127152 −737400 −342360 338100 142128 −33600 −13680 900 360
182880 127152 −737400 −342360 338100 142128 −33600 −13680 900 360
−33120 −16848 139020 47160 −72975 −22302 9870 2880 −315 −90
−33120 −16848 139020 47160 −72975 −22302 9870 2880 −315 −90
−33120 −16848 139020 47160 −72975 −22302 9870 2880 −315 −90
−33120 −16848 139020 47160 −72975 −22302 9870 2880 −315 −90

2880 1152 −12300 −3280 6825 1638 −1050 −240 45 10
2880 1152 −12300 −3280 6825 1638 −1050 −240 45 10
2880 1152 −12300 −3280 6825 1638 −1050 −240 45 10
2880 1152 −12300 −3280 6825 1638 −1050 −240 45 10



.
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Appendix B: Numerical experiments - Error Graphs and Convergence
Rates. Our measurements compare the absolute error e(x, T ) as a function of domain
points x and final times T . DG output is computed until time T before the filters
are applied. Fig. 1a.b.c showed graphs for T -slices of e(x, T ) for fixed T = 0.7 and
x ∈ X = [0..1]. The graphs of the Appendix display, as functions of T , the Lp norm
of the slices

eX(T ) := ‖e(x, T )‖p,X , p ∈ {2,∞}, x ∈ X.

That is, each point on the graphs succinctly represents the max-norm or L2-norm error
over the support X of the filter. Denote by [0..λ+] the left boundary region [0..λ] plus
the transition region. Then for each boundary filter the graphs show e[0..λ+](T ) on the
left and e[1−λ+..1](T ) on the right and replicate in both left and right e[λ+..1−λ+](T )
for the symmetric SIAC filter and e[0..1](T ) for DG. Fig. 9, 10 and 11 show L∞ and
L2 convergence rates of filtered DG output plotted against the final time T .

The errors in Fig. 6, 7, and 8 are computed for DG output of degree d = 1, 2, 3
and for uniform partitions of the x-domain into intervals of length h := 1/N . A fixed
number of points, depending on d but not N , in the boundary regions are the result
of PSIAC-filtering with one of SRV, RLKV, NP0. (We verified correctness of RLKV
by comparison with a certified numerical RLKV implementation.) We emphasize
that all boundary filters are measured only in the boundary regions inclusive of the
transition region. Errors of the symmetric filter are computed only for the interior
exclusive of the transition region. With increasing N the interior converges to the full
domain and symmetric SIAC filter contributes an increasing number of values. The
number of values generated by boundary filters does not increase with N but stays
fixed. Regardless of the choice of boundary filter, the L2 error over the full domain is
dominated by the symmetric SIAC filter. Therefore errors and rates for the boundary
filters are not combined with those of the symmetric filter.

The L∞ errors in (Test 4.1, Test 4.2, Test 4.3) have been computed for (50, 50, 30)
different final times T in ([0, 1], [0, 2π], [0, 2π]) respectively. (Due to scaling by 2π, the
test problems have different final times T .) For example, the value of the RLKV error
for Test 4.1 for N = 80 and DG element degree d = 1 (dashed red graph in Fig. 6a)
at final time T = 0.4 is ca. 0.0002. This value is obtained by solving Test 4.1 using
DG of degree d = 1 up to time T = 0.4 and then convolving with the RLKV filter to
obtain s = 6 samples per boundary region interval for a total of 3s error samples. The
maximum absolute sampled value is 0.0002. The error of the symmetric SIAC filter
is computed from the remaining interior N − 2 ∗ 3s samples. The s samples within
the intervals are uniformly distributed. Sampling instead at Gauss-Legendre points
does not noticeably change the outcome.

All graphs share the same color and style assignments. In Fig. 6, 7, and 8, the
raw DG output for N = 160 in (a–d) and N = 80 in (e,f) is the top-most dash-dotted
graph (largest error). In Fig. 9, 10 and 11 the DG convergence-rate is at the bottom.
The dotted grey graph represents symmetric SIAC filter for N = 160 in (a–d) and
N = 80 in (e,f). The boundary filters are RLKV (red), SRV(green) and NP0 filter
(blue). Dashed graphs correspond to N = 80 in (a–d) and N = 40 in (e,f) and solid
graphs to N = 160 in (a–d) and N = 80 in (e,f), halving the interval length h.

Fig. 9 for Test 4.1 and Fig. 10 for Test 4.2, and Fig. 11 for Test 4.3 display the
L∞ and the L2 convergence rates of the filtered DG outputs. All computations are
performed in double precision.
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Fig. 6. L∞ error vs final time Test 4.1 (constant wave-speed, periodic boundary condition).
Abscissa: final time T at which the DG output was computed. Ordinate: maximum point-wise
errors. Red (RLKV), green (SRV), blue (NP0) dashed graphs correspond to N = 80 in (a–d) and
to N = 40 in (e,f). All other graphs correspond to N = 160 in (a–d) and to N = 80 in (e,f), with
top dot-dashed grey (DG output) and lower dotted grey (symmetric SIAC filter).
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Fig. 7. L∞ error vs final time Test 4.2 (constant wave-speed, Dirichlet boundary condition).
Abscissa: final time T at which the DG output was computed. Ordinate: maximum point-wise
errors. Red (RLKV), green (SRV), blue (NP0) dashed graphs correspond to N = 80 in (a–d) and
to N = 40 in (e,f). All other graphs correspond to N = 160 in (a–d) and to N = 80 in (e,f), with
top dot-dashed grey (DG output) and lower dotted grey (symmetric SIAC filter).
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Fig. 8. L∞ error vs final time Test 4.3 (variable wave-speed, periodic boundary condition).
Abscissa: final time T at which the DG output was computed. Ordinate: maximum point-wise
errors. Red (RLKV), green (SRV), blue (NP0) dashed graphs correspond to N = 80 in (a–d) and
to N = 40 in (e,f). All other graphs correspond to N = 160 in (a–d) and to N = 80 in (e,f), with
top dot-dashed grey (DG output) and lower dotted grey (symmetric SIAC filter).
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Fig. 10. Convergence rates Test 4.2 (constant wave-speed, Dirichlet boundary condition).
L2- and L∞ convergence of the convolved DG data in the left, respectively right boundary region.
Rows 1, 2, 3 show rates for degree d = 1, 2, 3. Upper, dotted grey: symmetric SIAC filter; lower
dash-dotted: DG rate.

1
0 1 2 3 4 5 6

final time T

1.5

2

2.5

3

3.5

4

4.5

L
1

 c
on

ve
rg

en
ce

 r
at

e

h=1/80
h=1/160

0 1 2 3 4 5 6

final time T

2

2.5

3

3.5

4

4.5

L
2
 c

on
ve

rg
en

ce
 r

at
e

DG
symmetric filter
NP

0
 filter

SRV filter
RLKV filter

h=1/80
h=1/160

0 1 2 3 4 5 6

final time T

2

2.5

3

3.5

4

4.5

L
2
 c

on
ve

rg
en

ce
 r

at
e

h=1/80
h=1/160

0 1 2 3 4 5 6

final time T

2

2.5

3

3.5

4

4.5

L
1

 c
on

ve
rg

en
ce

 r
at

e

h=1/80
h=1/160

2
0 1 2 3 4 5 6

final time T

4

6

8

10

L
1

 c
on

ve
rg

en
ce

 r
at

e

h=1/80
h=1/160

0 1 2 3 4 5 6

final time T

4

6

8

10

L
2
 c

on
ve

rg
en

ce
 r

at
e

DG
symmetric filter
NP

0
 filter

SRV filter
RLKV filter

h=1/80
h=1/160

0 1 2 3 4 5 6

final time T

3

4

5

6

7

8

L
2
 c

on
ve

rg
en

ce
 r

at
e

h=1/80
h=1/160

0 1 2 3 4 5 6

final time T

3

4

5

6

7

8

9

L
1

 c
on

ve
rg

en
ce

 r
at

e

h=1/80
h=1/160

3
0 1 2 3 4 5 6

final time T

0

5

10

15

20

L
1

 c
on

ve
rg

en
ce

 r
at

e

h=1/40
h=1/80

0 1 2 3 4 5 6

final time T

0

5

10

15

20

L
2
 c

on
ve

rg
en

ce
 r

at
e

h=1/40
h=1/80

0 1 2 3 4 5 6

final time T

5

10

15

20

L
2
 c

on
ve

rg
en

ce
 r

at
e

h=1/40
h=1/80

0 1 2 3 4 5 6

final time T

5

10

15

20

L
1

 c
on

ve
rg

en
ce

 r
at

e

h=1/40
h=1/80

.
L∞: left L2: left L2: right L∞: right

Fig. 11. Convergence rates Test 4.3 (variable wave-speed, periodic boundary condition).
L2- and L∞ convergence of the convolved DG data in the left, respectively right boundary region.
Rows 1, 2, 3 show rates for degree d = 1, 2, 3. Upper, dotted grey: symmetric SIAC filter; lower
dash-dotted: DG rate.
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Fig. 12. L2 error and convergence rates for the left boundary region for (top) end times
T ∈ {1/3, 2/3} and periodic boundary constraints Test 4.1 and (bottom) T ∈ {2π/3, 4π/3} for
Dirichlet constraints Test 4.2. The ordinate measures the L2 error on the transition and boundary
region, the abcissa counts the number of input DG pieces for the total interval [0..1]. Only a constant
fraction of these pieces is used by the boundary filters and hence to compute the L2 norm. The grey
downward lines in each graph indicate the slopes for optimal super-convergence order 2d + 1 that
are attained by symmetric SIAC filter of DG degree d that is applied in the interior: from top to
bottom they correspond to d = 1, 2, 3. The larger, black symbols indicate the (typically larger) error
for RLKV: The smaller, red symbols indicate the error and rate for NP0. The symbols are for d = 1
‘◦’, for d = 2 ‘+’ and for d = 3 ‘O’. The graphs for the L∞ error look alike. Individual pointwise
error, i.e. error-vs-x graphs are available at [NPdf].


