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(a) control net (central valence
n = 7)

(b) G1 guide surface (c) C2 subdivision rings (d) embossed pattern
based on refinement

(e) Catmull-Clark: highlight line distribution and zoom (f) Guided Subdivision: highlight line distribution and zoom

Figure 1: Construction and comparison of guided subdivision: (a) input quad mesh (c-net) that is converted to (c) a regular (green) bi-3

region and an irregular subdivision region following a (b) guide surface. The guide surface does not match the bi-3 spline but defines the

shape by joining polynomial pieces with curvature continuity (G2); (c) shows six subdivision rings (alternating gold and cyan) completed by

a finite polynomial (red) surface cap; (d) the embossed pattern exploits the degrees of freedom in the subdivision rings. (e) Catmull-Clark vs

(f) guided subdivision: improving the highlight line distribution.

Abstract

Converting quadrilateral meshes to smooth manifolds, guided subdivision offers a way to combine the good highlight line

distribution of recent G-spline constructions with the refinability of subdivision surfaces. This avoids the complex refinement of

G-spline constructions and the poor shape of standard subdivision. Guided subdivision can then be used both to generate the

surface and hierarchically compute functions on the surface.

Specifically, we present a C2 subdivision algorithm of polynomial degree bi-6 and a curvature bounded algorithm of degree bi-5.

We prove that the common eigen-structure of this class of subdivision algorithms is determined by their guide and demonstrate

that their eigenspectrum (speed of contraction) can be adjusted without harming the shape.

For practical implementation, a finite number of subdivision steps can be completed by a high-quality cap. Near irregular points

this allows leveraging standard polynomial tools both for rendering of the surface and for approximately integrating functions

on the surface.

Categories and Subject Descriptors (according to ACM CCS):
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of regular nodes and the c-net has n 6= 4 sectors. For example the
interior nodes of Fig. 1a form a c-net.

The subdivision surface will be expressed piecewise in terms of
tensor-product polynomials p of bi-degree d in Bernstein-Bézier
(BB) form

p(u,v) :=
d

∑
i=0

d

∑
j=0

pi jB
d
i (u)B

d
j (v), (u,v) ∈� := [0..1]2,

where Bd
k (t) :=

(

d
k

)

(1 − t)d−ktk are the Bernstein-Bézier (BB)
polynomials of degree d and pi j are the BB coefficients [Far02,
PBP02]. A central role will be played by the corner jet constructor

[[[ f ]]]dj× j(u0,v0)

that expresses the expansion of a function f at (u0,v0) up to order
j − 1 in u and j − 1 in v in BB-form of degree bi-d, i.e. by j × j

BB-coefficients (see Fig. 3).
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(a) jet data (b) [[[ f ]]]d3×3

Figure 3: The partial derivatives in (a) are represented by BB-

coefficients of the corner jet in (b).

Fig. 4a displays four corner jet constructors [ f ]53×3 merged to
form a bi-5 patch and Fig. 4b displays four corner jet constructors
[ f ]64×4 merged to form a bi-6 patch by averaging the overlapping
BB-coefficients.

(a) bi-5 (b) bi-6

Figure 4: (a) bi-5 patch assembled from 3× 3 jets; (b) bi-6 patch

assembled by averaging 4×4 jets.

3. Construction of guided surfaces

The key to good shape is to construct and judiciously reparameter-
ize a guide surface so that the jet constructors can form well-shaped
subdivision rings, i.e. a sequence of surface annuli in R

3 that join
smoothly leaving an ever smaller central hole (see Fig. 2). Our final
implementation combines pre-computed tables for the generating
functions so that no system of equations needs to be solved and the
response is immediate just like B-spline surfaces.

This section covers the more complex, but once and for all
derivation of the construction. The derivation consists of two con-
ceptual stages. Section 3.1 shows how to define a G2 surface g that
has the correct structure to serve as a subdivision guide surface and
closely approximates the G1 surface of [KP15]. (Constructing good
guiding shapes is possible without reference to [KP15] but presen-
tation takes considerably more space than the current one.) Sec-
tion 3.2 shows how to repeatedly sample g to generate a sequence
of nested subdivision rings with continuity properties summarized
in Proposition. 1.

After Section 3.2 formally states the algorithm, Section 3.3 out-
lines how one can use pre-tabulation and the well-known de Castel-
jau algorithm to efficiently implement guided subdivision. Sec-
tion 3.4 points out that in practice it may be useful to apply only a
finite, user-chosen number of subdivision steps since the remaining
minuscule hole can be capped by a G-construction of finitely many
polynomial pieces. All localized refinement can then take place in
the regular setting of the C2 joined rings.

3.1. Guide surface

In this section, we create a G2 guide surface g of degree bi-5 for
filling a multi-sided hole by a series of rings sampled from g.

Denote by L the linear shear that maps a unit square to the unit
parallelogram with opening angle 2π

n . Abbreviating c := cos 2π
n set

f̀ := L and let f́ be its reflection across the edge v = 0, Fig. 5a. Then,
along the common boundary v = 0,

∂v f́+∂v f̀−2c∂u f̀ = 0, (1)

∂2
v f́−∂2

v f̀+4c∂u∂v f̀−4c2∂2
u f̀ = 0. (2)

The constraints (1) and (2) are ‘unbiased’ in the sense that exchang-
ing f́ and f̀ does not alter the equations. For degree bi-5 polynomials
f̀ and f́, the equations (1) and (2) yield a system of 12 linear equa-
tions in the BB-coefficients p̀i j and ṕi j . These equations are solved
symbolically, leaving as unconstrained the BB-coefficients marked
in Fig. 5b by red or black bullets plus one circled cross.

v v

u

L

(a) shearing

00
01

02

p̀ := pk ṕ := pk+1

01
02

10

22 22
30

52 52
50

(b) sector-symmetric index

Figure 5: (a) Linear shear L; (b) bi-5 solution to the local G2

constraints: the unconstrained BB-coefficients are marked as red

or black bullets or a circled cross.
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Figure 6: Rotationally-symmetric indexing of the set P of the G2

guide g. BB-coefficients marked as cyan disks are unconstrained by

local G2 requirements.

The interactions between the n local systems of equations at the
irregular point p̀00 are resolved by selecting six BB-coefficients pk

i j ,
0 ≤ i+ j ≤ 2 for k = 0 and so defining a quadratic expansion at the
central extraordinary point; the BB-coefficients pk

i j , 0 ≤ i+ j ≤ 2,
for k > 0, are then defined recursively as

ṕ00 :=p̀00 , ṕ10 := p̀10 , ṕ20 := p̀20 ;

ṕ01 :=− p̀01 +2cp̀10 +2(1− c)p̀00 ;

ṕ11 :=− p̀11 +
8c
5

p̀20 +(2−
6c
5
)p̀10 −

2c
5

p̀00 ;

ṕ02 :=p̀02 −5cp̀11 +4c2
p̀20 +(5c−4)p̀01 + c(9−8c)p̀10

+(4−9c+4c2)p̀00 .

(3)

Assigning, in each local system,

ṕ12 :=p̀12 −2cp̀21 +2cṕ21 + cp̀01 +(3c−4)p̀11 +
4
5
c(4−3c)p̀20

+(4−
27
5
c+

4
5
c

2)p̀10 +
c

5
(8c−9)p̀00, (4)

yields a circulant system of n linear equations in pk
12 (since pk

12 =

p̀21, pk+1
12 = ṕ12; see rotationally-symmetric indexing in Fig. 6).

This system has a unique solution (unless n = 3,6 when one pk
12,

say p0
12, is additionally free to choose). The explicit expressions for

p̀30, p̀31, ṕ31, ṕ32, p̀41, ṕ41, p̀51, ṕ51 are presented in Appendix A.

Denote by P the set of BB-coefficients unconstrained by the G2

constraints. We define n∗ := n+1 whenever the valence n ∈ {3,6}
and n∗ = n otherwise. The elements of P are shown in Fig. 6: six
red bullets for the quadratic expansion, 8n+ n∗ black bullets, and,
in each sector corner, 3×3 cyan bullets that do not affect G2 conti-
nuity between sectors. The elements of P are pinned down to best
approximate the bi-5 surface G of the c-net as defined in [KP15].
Let σ : R2×n → R

2 be the 2π/n-rotationally symmetric map ob-
tained by applying the algorithm of [KP15] to the control points of
the planar characteristic c-net of Catmull-Clark-subdivision shown
in Fig. 7a. Fig. 7b, left, shows one sector of σ for n = 5 and Fig. 7b,
right shows L−1 ◦σ to be used for sampling the guide g.

Setting the central point of g to the central point of G, we collect

(a) c-net (b) a sector of σ and its image under L−1

(c) surrounding surface and G

(d) bi-5 guide g

Figure 7: Construction of the guide surface. (c) the surrounding

green bi-3 surface and in gold the bi-5 surface G of [KP15]. (d)

The net of control points gk
i j (not of final bk

i j).

the 5+ 8n+ n∗ + 9n=17n+ n∗ + 5 unconstrained BB-coefficients
of the set P . Sampling the kth sector according to [gk ◦L−1 ◦σ]53×3
at all four corners of each unit square sub-domain of σ, we obtain
the BB-coefficients bk

i j , k = 0, . . . ,n−1, i, j = 0, . . . ,5. The bk
i j are

linear expressions in P and we assemble them to form n patches bk

of degree bi-5. Then P is the least-squares solution of minimizing
the sum of differences between each bk

i j and its corresponding co-

efficient of G. This defines the G2 guide surface for C2 subdivision
(of the chosen degrees bi-6, bi-5, bi-4 or bi-3).

3.2. Parameterization and guided surface rings

The guide g was constructed to facilitate filling the multi-sided hole
by a contracting sequence of sampled guided rings. The construc-
tion, see Fig. 8, leverages the fact that the characteristic ring χ of
Catmull-Clark subdivision joins C2 to its scaled copy λ χ, where
λ := 1

16

(

c+5+
√

(c+1)(c+9)
)

is the subdominant eigenvalue of

Catmull-Clark subdivision. Since the shear L is linear, also L−1 ◦χ

is C2-connected to its scaled copy λ(L−1 ◦χ) (see Fig. 8d). More-
over, the outer second-order Hermite data of L−1 ◦ χ (underlaid
gray in Fig. 8a) is determined by the C2 prolongation L−1 ◦ (λ−1χ)
and binary splitting (see Fig. 8c).

Subdivision Algorithm.

Input: a sector gk of guide g.
Output: BB-coefficients of three bi-d (d = 5 or d = 6) patches in
the k-th sector of the lth subdivision ring xl , l = 0, . . ..
Bi-5 Algorithm: sample [gk ◦ (L−1 ◦λlχ)]53×3 at the inner corners
marked by bullets in Fig. 8a to obtain the bi-5 coefficients of Fig. 8c
underlaid white; sample [gk ◦(λl χ̃)]53×3 at the outer corners marked
by circles in Fig. 8b and mid-split the resulting bi-5 data to obtain
the bi-5 coefficients of Fig. 8c underlaid gray. The first of these
gray sets of BB-coefficients (l = 0) is replaced by C2 prolongation
from the surrounding surface.
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(a) image of χ under
L−1

(b) L−1 ◦ χ̃

(c) sampled bi-5 sector (d) L−1 ◦χ scaled by λ

Figure 8: Construction of guided ring.

The bi-6 algorithm is identical, except that [gk ◦ (L−1 ◦λlχ)]64×4 is
sampled and assembled according to Fig. 4b.

In summary, guided subdivision has the following continuity
properties.

Proposition 1 The Subdivision Algorithm fills a multi-sided hole in
a spline surface C2 up to the central extraordinary point. If the de-
gree is bi-6, the surface is C2; if the degree is bi-5, the surface is C2

except for the central point where it is C1 and curvature bounded.

Proof Since χ is C2 and since the G1 and G2 constraints (1) and
(2) that tie together pieces of L tie together adjacent sectors of g,
adjacent sectors join C2. Due to prolongation, consecutive rings
are C2-connected and so is the first ring to the surrounding spline
surface. The limit point characterization follows by the arguments
of [KP07, Thm 1] applied to (g◦L−1)◦χ.

The good shape of G constructed according to [KP15] is retained
since the guide g closely approximates the surface G.

3.3. Efficient Implementation

An efficient implementation focuses on the generating functions gk

of the guided subdivision surface defined as follows. It suffices to
look at one coordinate. Assign to all c-net nodes the value 0 except
for c0

m = 1 for one of m = 1, . . . ,7 (see Fig. 7(a) for the labeling).
Apply the algorithm to compute for each m the scalars

h
k,m
i j ∈ R, k = 0, . . . ,n−1, m = 1, . . . ,7, i, j ∈ {0, . . . ,5},

where h
0,7
i j = . . .= h

n−1,7
i j . Then BB-coefficients of the surface are

g
s
i j := h

0,7
i j c

0
7 +

n−1

∑
k=0

6

∑
m=1

h
k,m
i j c

s−k
m ,

where the superscript of cs−k
m is interpreted modulo n.

Computing [[[gk ◦ (L−1 ◦λχ)]]]53×3 for the bi-5 Subdivision Algo-

rithm is equivalent to (i) linearly mapping S : [0..1]2 → [0..λ]2 and

(ii) sampling [[[(gk ◦S)◦ (L−1 ◦χ)]]]53×3 and [[[(gk ◦S)◦ (L−1 ◦ χ̃)]]]53×3.
In Step (i) applying de Casteljau’s algorithm at u = λ = v yields the
BB-coefficients of gk ◦S as an affine combination of gk. This affine
62 ×62 map is tabulated.
For (ii), for each valence n, a generic sector of the guided subdivi-
sion ring is pre-computed. This sector consists of three patches of
degree bi-5 and is stored as a table of size 3(62 × ·62), by sam-
pling [[[gk ◦ (L−1 ◦χ)]]]53×3 and [[[gk ◦ (L−1 ◦ χ̃)]]]53×3 in terms of sym-

bolic gk
i j. Analogously, for bi-6 subdivision, we pre-compute for

each valence n a table of size 3(72 ×72).

If the storage of the pre-computed data is a concern, the ma-
jority of the entries can be derived by C2 prolongation from the
previous ring. The remainder is defined by two jets in each sector,
one of which has diagonal symmetry. For bi-5 subdivision, per-
forming these simple extra steps reduces the tabulation for each
valence by a factor of ∼ 7 from 3(62 × 62) to 15∗ 62. Computing
[[[gk ◦(L−1◦λχ)]]]64×4 analogously yields an efficient implementation
for the bi-6 variant.

(a) bi-6 (b) bi-5

Figure 9: G1 caps for n = 5. The cap is surrounded by the last ring

produced by guided subdivision (light blue background).

3.4. A Practical Hybrid

Being able to cap the subdivision surface after a few steps is use-
ful in practice, already for visualization (see the next section). For
Catmull-Clark subdivision the first refinement steps introduce high-
light line distortions that no cap can repair. By contrast, guided
subdivision retains good shape and enables capping without loss
of shape quality. Fig. 9 shows the natural structure of these bi-6
and bi-5 caps (bi-5 caps with one patch per sector lead to reduced
quality, hence the split). A prototypical construction, of a bi-6 cap,
is detailed in Appendix B. The good shape of this finite hybrid rep-
resentation makes them aesthetically useful in their own right and
the finite number of polynomial surface pieces simplifies their use
for downstream applications and to serve as a domain for surface-
based computations.

c© 2017 The Author(s)
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(a) n = 5 (b) n = 5 (c) n = 6 (d) n = 7

(e) n = 8 (f) n = 9 (g) n = 3 (h) n = 6

Figure 10: Some challenging c-nets.

(a) 4 bi-5 guided rings (b) highlight lines (c) Gauss curvature

(d) 4 bi-6 guided rings (e) 6 guided rings (f) highlight lines

(g) zoom of (d): highlights and mean curvature

Figure 11: Guided rings and central cap (in red) for n = 5: top
row: c-net of Fig. 10a middle, bottom rows: c-net of Fig. 10b.

(a) 4 guided rings of degree bi-6 (b) zoom; mean curvature

(c) 4 guided rings of degree bi-5 (d) zoom; Gauss curvature

Figure 12: Guided subdivision rings, highlight lines and curva-

ture; top row: bi-6 surfaces, n = 6, c-net Fig. 10c; bottom row: bi-5

surfaces, n = 7, c-net Fig. 10d.

4. Examples

The Subdivision Algorithm is applied to the challenging c-nets
presented in Fig. 10. Displaying the surrounding spline surface in
green in Fig. 11 for valence n= 5, Fig. 12 for valences n= 6,7, and
Fig. 13 for valences n = 8,9 and n = 3, demonstrates that we do
not just create good caps for the various n, but caps that transition
well from the input data. The finite caps of the hybrid representa-
tion are red. ’Zoom’ indicates that innermost guided ring and the
finite cap are displayed. The zoom demonstrates that even the caps
have a calm curvature distribution, quite in contrast to Catmull-
Clark-subdivision, where the shape deficiencies are acerbated at
each step. Fig. 14 juxtaposes the G1 surface [KP15] that defines
the shape via the guide g and the corresponding guided subdivision
surface. This illustrates the fact that the highlight line distribution
of [KP15] and the subdivision surface are visually almost identical,
even on very challenging input nets.

(a) 4 guided rings, n = 8, bi-5 (b) 5 guided rings, n = 9, bi-5

(c) 3 guided rings, n = 3, bi-5, Gauss curvature

Figure 13: Bi-5 guided subdivision surfaces for (a) n = 8, c-net

Fig. 10e; (b) n = 9, c-net Fig. 10f; (c) n = 3, c-net Fig. 10g.

(a) [KP15] surface and zoom (b) 4 guided rings, bi-5

Figure 14: Surfaces corresponding to c-net Fig. 10h: (a) [KP15] vs

(b) this algorithm, bi-5 with 4 guided rings, zoom to the innermost

two rings.

5. Eigen-decomposition

The eigen-decomposition of guided subdivision differs from that
of conventional subdivision such as Catmull-Clark, in that it is
defined by the guide surface: any guided subdivision inherits the
guide’s eigen-decomposition. Therefore the decomposition does
not overtly involve the specification of large circulant matrices
or of characteristic polynomials; and the same analysis applies to

c© 2017 The Author(s)
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guided subdivision constructions of different polynomial degree. If
we consider just one bi-5 patch of g without neighbor-interaction,
the scaling by λ to the next-level subdivision ring (Section 3.2)
yields, due to the monomial structure, eigenvalues λs for total de-
gree s = 0, . . . ,10 and eigenfunctions uiv j of tensor-degree (i, j),
0 ≤ i, j ≤ 5 (see Fig. 15). The eigen-analysis of a full ring is more
complex due to the interaction between neighbors, but retains this
basic structure.

1

v

v2

s = 3

s = 4

s = 8

s = 9

uu2

uv

v5

u5

u5v5

u2v3

u2v5

u4v3

u5v2

Figure 15: Monomial structure of the local eigen-decomposition.

The Subdivision Algorithm constructs the ℓth surface ring from
a vector of BB-coefficients Pℓ corresponding to the set P of the
guide g restricted to [0..λℓ]2. With M the map so that Pℓ = MPℓ−1,
the eigen-decomposition determines w and µ so that Mw = µw. Ap-
pendix C shows that all eigenvalues µ are of the form λs where
0 < λ < 1 is free to choose:

λs,s = 0 1 2 3 4 5,6,7,8 9 10
multiplicity 1 2 3 n∗ 2n 3n 2n n

(5)

where n∗ = n + 1 when n ∈ {3,6} and n∗ = n otherwise. The

(a) λ0 = 1 (b) λ2 (c) λ2 (d) λ2

(e) λ (f) λ3 (g) λ4 (h) λ4

(i) λ5 (j) λ6 (k) λ7 (l) λ8

Figure 16: Some bi-5 eigenfunctions for n = 5.

bi-5 eigenfunctions for n = 5 shown in Fig. 16 are determined by
setting one free parameter xs

k (see Fig. 26) to 1 and all others to 0,
completing this determining set to a smooth eigenring according to
the Subdivision Algorithm, and generating six scaled copies before

filling the center with a (red) cap. For λ2 the functions in Fig. 16 are
scaled in height and, at each level, we formed, linear combinations
of the eigenrings to show the typical cup and two saddle shapes
of the quadratic terms. After assembling the surface, the outermost
BB-coefficients were set to zero.

Due to the index-rotational symmetry, for s = 3, . . .10 only 23
(= 17 + 1 + 5) eigenfunctions (besides the constant one for the
eigenvalue 1) need to be tabulated. An exception to this symme-
try is s = 3 when n = 3,6 and 26,29 functions are required. Since
the eigen-ring ℓ is obtained by multiplying the initial eigen-ring by
(λs)ℓ, it suffices to store the initial eigen-ring. The ℓth surface ring
is a linear combination of these (λs)ℓ-scaled eigen-rings.

6. Discussion

Here we discuss alternatives and options that were not given promi-
nence in the main construction. We discuss reducing the degree
of the guide (to simplify the eigenstructure), reducing the degree
of the overall guided subdivision scheme, changing the speed of
the contraction of the subdivision rings and refining functions on a
guided subdivision surface.

6.1. Guides of lower degree

The degree of the subdivision surfaces is not strongly coupled to the
degree of the guide surface. We can choose guides of degree bi-4 or
bi-3 where the enforcement of (1) and (2) and the eigendecomposi-
tion are analogous to bi-5 case. Corresponding to the unconstrained
control points for the guides g (cf. Fig. 17), we count

degree of g eigenfunctions
bi-5 17n+6+n∗

bi-4 9n+6+n∗

bi-3 3n+6+n∗

(a) bi4 (b) bi-3

Figure 17: The control points of G2 guides of degree bi-4 and bi-3.

Unconstrained points are marked as red and black disks.

On one hand, lower degree simplifies the analysis while on the
other hand, lower degree of an n-patch guide harms the surface
quality as illustrated in Fig. 18 (no caps are added since the poorer
highlight line distribution shows clearly in the subdivision rings).
Fig. 18a shows that even an optimized bi-3 guide yields oscillating
and sharp highlight lines.

We tested two approaches to improving the shape. Applying one
step of bi-5 subdivision followed by a bi-3 guide improves results,
see Fig. 18b; and twice repeating the bi-5 subdivision improves
the highlight line distribution to Fig. 18c. The c-net of Fig. 10h, a
single off-center spike, is notorious for revealing shortcomings of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Page 7 of 11 Computer Graphics Forum
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(a) 4 rings (guide bi-3) (b) (bi-5) + 3 (bi-3) (c) 2 (bi-5) + 2 (bi-3)

(d) rings (e) 4 (bi-5) (f) 4 (bi-4) (g) 2(bi-5) + 2
(bi-3)

Figure 18: Comparison of bi-5 surfaces with 4 guided rings sam-

pled from guides of different degrees. The central gap is not filled

with a cap. The highlight line distribution of guided subdivision

surfaces from top row: net Fig. 10b, bottom row: net Fig. 10h (5×
pdf zoom recommended).

surface constructions. Yet, the results (see Fig. 18 bottom row) of
applying a bi-4 guide (after zero or one step of bi-5 subdivision) are
difficult to distinguish from those of the bi-5 guide. By contrast,
(full enlargement of) Fig. 18g shows oscillations of the highlight
lines for a bi-3 guide even after two bi-5 preprocessing steps.

6.2. Bi-4 and bi-3 guided subdivision surfaces

For some applications, degree bi-5 may be considered a drawback.
Leveraging the weak link between shape and smoothness, we intro-
duce 2× 2 macro patches for degree bi-4 and 3× 3 macro patches
for degree bi-3 (see Fig. 19) to enforce the C2 prolongation between
rings. The resulting surfaces are curvature bounded at the central
point and preserve the highlight line distribution of the bi-5 con-
struction well – at the cost of increasing the number of polynomial
pieces by a factor of 4, respectively 9.

Notably, for the corresponding hybrid construction, the G1 bi-
3 caps are formally only C0-connected to the last guided ring.
Yet, the resulting highlight line distribution is without flaw (right-
most zoomed image of Fig. 20b); by contrast, enforcing exact C1-
continuity reduces the uniformity of the highlight line distribution.

(a) bi-4 ring and cap (b) bi-3 ring and cap

Figure 19: Macro-patches: one sector of the last guided subdivi-

sion ring and a cap, consisting of 2×2 respectively 3×3 pieces.

(a) bi-3: c-net, 4 guided rings, highlight lines and Gauss curvature

(b) bi-4: c-net, 4 guided rings, highlight lines and Gauss curvature

Figure 20: Macro-patch constructions with (red) cap. Rightmost

figures are zoomed in to the last ring plus cap.

6.3. Changing the contraction speed

Using the subdominant eigenvalue λ of Catmull-Clark subdivision
for σ implies that the contraction of guided rings becomes slower
when the valence increases ( Fig. 13b vs c). Using instead the char-
acteristic map of [KP09], the eigenvalue can be set to 1

2 for all
valencies n > 4 to yield a uniform contraction speed. Fig. 21 top vs
bottom contrasts the characteristic map for Catmull-Clark subdivi-
sion and λ, with the uniform contraction by 1

2 of [KP09]. Fig. 22a
shows the same surface as Fig. 13a while Fig. 22b is constructed
with contraction speed 1/2. The latter has visually identical high-
light lines, an observation that holds for all c-nets that we tested,
including all of Fig. 10 (The increased contraction is evident from
the size of the red caps.) Fig. 13b compares to Fig. 22d. All c-nets
of Fig. 10 have a more uniform curvature distribution in the vicinity
of the caps when using speed 1/2.

n = 5 n = 6 n = 8

Figure 21: Characteristic maps. top: Catmull-Clark-subdivision

[CC78]; bottom: adjustable speed subdivision [KP09] with λ := 1
2 .

6.4. Refinement for functions on guided subdivisions surfaces

With the shape of the subdivision surface determined by the c-net
via P of the guide, here we define a nested space of refinable func-
tions on the surface. The combinatorial layout of the functions is
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(a) [CC78] (b) [KP09]

Figure 22: Four guided rings are generated before adding the red

cap. The guided subdivision surface in (a) leverages the character-

istic map of [CC78] while (c) uses the more uniform contraction

of the characteristic map of [KP09]. (a,b left) net from Fig. 10e, (b

right) net from Fig. 10f.

123

(a) d.o.f. of bi-5 C2 ring (b) P and P of refined

Figure 23: Structure of refinable functions on guided subdivision

surfaces. (a) Degrees of freedom (brown bullets) in the C2 bi-5 ring

not influenced by the refined P . The BB-coefficients in the gray

layers are defined by C2 expansion from the surrounding surface.

(b) A guide set P exists at each refinement step.

identical to that of the surfaces. For example, each refinement of the
bi-5 construction yields 18n new degrees of freedom. In Fig. 23a,
the BB-coefficients determined by C2 extension inwards are under-
laid in gray and the 18n free coefficients of the outermost subdivi-
sion ring that is no longer influenced by a once-refined set P are
shown as brown bullets. Functions corresponding to the markers
1,2,3 are displayed in Fig. 24,b,c,d. (Standard bi-5 respectively bi-
6 spline subdivision with triple knots can be applied to these rings
in subsequent refinements.) In addition to the 18n new degrees of
freedom, each subdivision step offers N degrees of freedom corre-
sponding to the set P . If the identity function is to be represented,
the refined set P is obtained from its coarser predecessor Fig. 23b
via de Casteljau’s algorithm.

While eigendecomposition can be used to obtain finite expres-
sions for computations on subdivision surfaces, the considerable
number of terms make us think that most numerical computations
are better served by computing with the hybrid representation after
a suitable number of refinement steps.

7. Conclusion

The new guided subdivision surfaces offer an automatic conversion
of quad meshes with irregular vertices into C2 surfaces of good
shape and built-in refinability. The construction of guided subdi-
vision surfaces is conceptually simple, and has been implemented

(a) filling (b) f1 (c) f2 (d) f3

Figure 24: (a) BB-coefficients of the innermost ring from Fig. 23a

and the filling by subdivision. (b), (c), (d) Bi-5 functions f j with the

meaning of the subscripts indicated in Fig. 23a.

and tested on challenging examples. The shape resulting from the
tabulated refinement formulas of guided subdivision is generally
better than that of small-stencil standard subdivision algorithms.
Due to the guide shape, curvature distribution of the C2 bi-6 and
the near-C2 bi-5 construction are typically indistinguishable. Alter-
natively, a hybrid surface consisting of finitely many polynomial
pieces preserves the shape but is more readily amenable to subse-
quent computations on the surface. The eigen-structure of this class
of subdivision algorithms is determined by the guide and fully an-
alyzed. The speed of contraction can be adjusted without harming
the shape.
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[KP09] KARČIAUSKAS K., PETERS J.: Adjustable speed surface sub-
division. Computer Aided Geometric Design. 26 (2009), 962–969. 8,
9

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Page 9 of 11 Computer Graphics Forum
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A. Appendix

Let

d1 :=4+8c+5c2, d2 := 4+5c, d3 := 36+45c+5c2,

d4 :=20+36c+9c2 −15c3, d5 := 32+48c+15c2,

d6 :=16+36c+36c2 +15c3, d7 := 32+64c+72c2 +48c3 +15c4.

Then

p̀30 :=
2
3

p̀10 +
c−5

3c
p̀20 +

5
6c

(

p̀21 + ṕ21
)

;

ṕ32 :=p̀32 −
d6

3d1

(

p̀11 − ṕ11
)

+
d7

3cd1

(

p̀21 − ṕ21
)

−
d6

3cd1

(

p̀22 − ṕ22
)

−
cd2

2d1

(

p̀42 − ṕ42
)

+
c

2

2d1

(

p̀52 − ṕ52
)

;

p̀31 :=
2c
15

p̀00 +
8c
15

p̀10 +
2
3

p̀11 −
25+16c2

15c
p̀20

+
1+2c

6c
p̀21 +

3
2c

ṕ21 +
1
3c

(

p̀22 − ṕ22
)

+
2c
5

p̀40;

p̀41 :=
2c

15d1

(

cd2p̀00 −d3p̀10 +5d2p̀11
)

+
4d4

15d1
p̀20 −

d5

6d1
p̀21 −

c(16+25c)
6d1

ṕ21 +
d2

3d1

(

p̀22 − ṕ22
)

+(1+
3c
5
)p̀40 +

d2

4d1

(

p̀42 − ṕ42
)

+
c

5
p̀50 +

c

4d1

(

p̀52 − ṕ52
)

;

p̀51 :=
2c2

3d1

(

cp̀00 +(3c−5)p̀10 +5p̀11
)

+
c

6d1

(

−16c2
p̀20 +5(c−4)(p̀21 − ṕ21)+10(p̀22 − ṕ22)

)

− cp̀40 +
5c
4d1

(

p̀42 − ṕ42
)

+(1+ c)p̀50 +
4+3c

4d1

(

p̀52 − ṕ52
)

.

For i = 3,4,5, we get ṕi1 from p̀i1 by swapping p̀ with ṕ.

B. Appendix: hybrid caps of degree bi-6

The bi-6 caps are internally G1 according to

∂v f́+∂v f̀−2c(1−u)2∂u f̀ = 0. (6)

and they are C1-connected to the last guided bi-6 surface ring. With
the notations and indexing of Fig. 25a in the guide construction
of Section 3.1, the unconstrained coefficient of the local solution
to (6) are marked as bullets in Fig. 25a. The interactions between

00
01 01

11 11

21 21

61 61

10

20

30

60

p̀ ṕ

(a) indexing (b) reparameterization σ̂

Figure 25: (a) Local symmetric indexing: the unconstrained BB-

coefficients are marked as red and black disks. (b) bi-6 reparame-

terization σ̂ for sampling the guide.

the n local G1 systems of equations at the irregular point ṕ00 :=
p̀00 are resolved by selecting three BB-coefficients in one sector
(red disks in Fig. 25a) to define the tangent plane at the irregular
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point and define the corresponding BB-coefficients in other sectors
recursively as

ṕ10 := p̀10 , ṕ01 :=−p̀01 +2cp̀10 +2(1− c)p̀00 . (7)

The explicit formulas for the dependent points of the local solution
are

p̀20 :=
3
5c

(

p̀11 + ṕ11
)

+
(6

5
−

6
5c

)

p̀10 −
1
5

p̀00 ;

ṕ30 :=
1
20

(

p̀00 + p̀60
)

−
3
10

(

p̀10 + p̀50
)

+
3
4

(

p̀20 + p̀40
)

;

p̀40 :=
1
2

(

p̀41 + ṕ41
)

+
c

15

(

p̀50 − p̀60
)

;

p̀50 :=
1
2

(

p̀51 + ṕ51
)

, p̀60 :=
1
2

(

p̀61 + ṕ61
)

;

ṕ21 :=− p̀21 −
c

15
p̀00 +

2c
5

p̀10 +(2− c)p̀20 + cp̀40 −
2c
5

p̀50 +
c

15
p̀60 ;

ṕ31 :=− p̀31 +
1
10

p̀00 −
3
5

p̀10 +
3
2

p̀20 +
3− c

2
p̀40 +

1− c

10

(

p̀60 −6p̀50
)

.

(8)
A bi-6 reparameterization σ̂ for sampling the guide is ro-
tationally and sector bisectrix symmetric and the outer BB-
coefficients (blue underlay in Fig. 25b) C1-extend the character-
istic ring of Catmull-Clark-subdivision. This leaves 14 free pa-
rameters that are set to minimize the sum up to fifth derivatives,
∫ 1

0
∫ 1

0 ∑i+ j=5,i, j≥0
5!

i! j! (∂
i
s∂

j
t f (s, t))2dsdt. Applying de Casteljau’s

algorithm at u = λℓ = v to the sector of the guide and sampling
[[[gkλr ◦ σ̂]]]64×4 at all four corners of σ̂ to form the bi-6 patch accord-

ing to Fig. 4b implies that the resulting cap ĝk inherits the unique
quadratic expansion of the guide. C1-extending the last guided ring
leaves p̀21, p̀31, ṕ21, ṕ31 (see Fig. 25a) to be the least squares best
fit to the corresponding BB-coefficients of ĝk and ĝk+1. As for g

pretabulation simplifies practical computation.

Although the construction is formally only G1, it is curvature
continuous at the center and this partly accounts for its good shape.

C. Appendix: Eigenanalysis of the subdivision algorithm

Since the central point stays fix, the dominant eigenvalue is 1.
Fig. 26 lists the indices of the other unconstrained control points
P of the guide g (recall that red bullets labeled 1, . . . ,5 are only
unconstrained for sector k = 0 and that for n = 3,6 there is an addi-
tional degree of freedom at the location marked by a circled cross
in Fig. 5b). With the abbreviations

n
∗ :=

{

n+1, for n ∈ {3,6},

n, else ,
, m := 6+n

∗,

k̄ := 6+ k; k̂ := m+ k; dn
+ := dn+ k̂, d = 1, . . . ,16,

we label the N := 17n + m − 1 elements of P as illustrated in
Fig. 26.

After application of de Casteljau’s algorithm at λ, the linearly-
reparameterized bi-5 patches satisfy the unchanged constraints (1)
and (2); this was intended and is verified by inspection. The map-
ping of P to its next-level counterpart yields systems of linear
eigen-equations eqs

i in unknowns xs
j , i, j = 1, . . . ,N, that form the

eigenvectors corresponding to eigenvalues λs, s = 1, . . . ,10. Solv-
ing the large and highly underconstrained systems with symbolic

13

24

5

k̄

k̂
k̄+1

k̂+1

n+

2n+

5n+

8n+

3n+

4n+

7n+

6n+

10n+

13n+

9n+

12n+

15n+

11n+

14n+

16n+

pk

pk+1

Figure 26: Indices for the eigen-analysis.

entries λ defies the capabilities of Maple, hence requires some care-
ful guesses based on an observed pattern for concrete n and λ. The
underconstrained systems are reduced by judiciously setting var-
ious xs

i to zero and solving, for the specific λ := 1
2 , a subset of

(system, variables)-pairs (eqs
i , xs

j). We abbreviate

a : b := a,a+1, . . . ,b, κ(α,β) := (m+αn : m+βn−1).

For s = 1 : 10, we list parameters set to zero, pairs of equations and
variables, and the free parameters that will characterize the eigen-
vectors:

s = xs
1: j = 0 (eqs

i:N ,x
s
i:N) xs

k free
j = i = k =

1 3 1,2
2 2 6 3 : 5
3 5 m 6 : m−1
4 m−1 2n+m κ(0,2)
5 2n+m−1 (I5,J5) κ(2,4)∪κ(5,6)
6 4n+m−1 7n+m κ(4,7)
7 7n+m−1 (I7, I7) κ(7,8)∪κ(9,11)
8 11n+m−1 14n+m κ(11,14)
9 14n+m−1 16n+m κ(14,16)
10 16n+m−1 κ(16,17)

(9)

For s = 5, system indices and variables differ: I5 := κ(5,17) and
the variables are the union of labels J5 := κ(4,5)∪ κ(6,17). For
s = 7, I7 := κ(8,9)∪ κ(11,17). The system of equations eq10

i is
not listed since it is satisfied by setting x10

1: j = 0. The solutions of
these systems are substituted into the initial systems with symbolic
λ to verify that they solve the equations for any choice of λ. This
yields explicit formulas for the eigenvectors in terms of the free
parameters listed in the right column of (9). The eigenvectors, one
per free parameter, span the eigenspace with the eigenvalues listed
in Table (5).
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