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Abstract

C1 splines over box-complexes generalize C1 degree 3 (cubic) tensor-product splines. A box-complex is a collection
of 3-dimensional boxes forming an unstructured hexahedral mesh that can include irregular points and irregular edges
where the layout deviates from the tensor-product grid layout. For example, an edge shared and enclosed by five boxes
is irregular. Where the mesh is locally regular, the restriction of the space to each box is a polynomial piece of the
C1 tri-cubic tensor-product spline, by default initialized as a C2 tri-cubic. Boxes containing irregularities have their
polynomials binarily split into 23 pieces to isolate the irregularity. The pieces join with matching derivatives. The
derivatives are zero at irregularities, but these singularities are removable by a local change of variables. The space
consists of 23 linearly independent functions per box and is refinable.

Keywords: trivariate C1 spline; unstructured hex-mesh; singular parameterization; tri-cubic; tensor-product;
removable singularity

1. Introduction1

The grid points of a regular partition of 3-space into boxes can be interpreted as the control points of a tri-2

variate tensor-product spline with one polynomial piece per cube. The theory of such splines is well-understood3

de Boor (1978, 1987). By contrast, for box-complexes where the tensor-grid gives way to an irregular arrangement of4

boxes including irregular points and irregular edges, there is to date no simple prescription to join the corresponding5

polynomial pieces with more than C0 continuity. Efficiently modeling C1 fields over general box-complexes is of6

interest in areas ranging from scientific data visualization to solving higher-order differential equations. For example,7

to visualize a flow computed by the Discontinuous Galerkin approach currently requires substantial post-processing8

to extract stream lines that the theory predicts to be smooth Walfisch et al. (2009).9

Already in two variables – where the box-complex is a quad mesh and the only irregularities are points where10

more or fewer than four quadrilaterals meet – associating one or more bi-cubic polynomial pieces with each quad11

and joining them to form a C1 space is far from trivial. The main options developed over the past 30 years are:12

geometric continuity (change of variables between pieces) DeRose (1990); Peters (2002); Loop and Schaefer (2008);13

Karčiauskas and Peters (2016), generalized subdivision Catmull and Clark (1978); Doo and Sabin (1978); Peters14

and Reif (2008) or introducing singularities into the parameterization Peters (1991a); Neamtu and Pfluger (1994);15

Reif (1997); Nguyen and Peters (2016). Each option encounters challenges. Geometric continuity requires increased16

polynomial degree near irregularities and careful book-keeping to adjust reparameterizations under refinement. Sub-17

division creates an infinite sequence of nested piecewise polynomial rings that complicate engineering analysis, e.g.18

computing integrals near irregularities. Singular corner parameterizations have shape deficiencies and must ensure19

that the singularity is locally removable so the resulting space can be certified C1 despite the vanishing of partial20

derivatives at irregularities.21

In three variables, there are few C1 constructions for box-complexes with irregularities. The work of the mesh-22

ing community to generate unstructured hex-meshes Meyers and Tautges (1998); Mitchell (1999); Eppstein (1999);23

Yamakawa and Shimada (2002); Gregson et al. (2011); Johnen et al. (2017); Owen et al. (2017) and the improved un-24

derstanding of fields and their singularity graph Nieser et al. (2011); Liu et al. (2018) is not matched by corresponding25

progress in more flexible spline representations. Trivariate subdivision rules analogous to Catmull-Clark subdivision26

Preprint submitted to Elsevier May 6, 2020



Catmull and Clark (1978) have been proposed in MacCracken and Joy (1996) and used in engineering applications in27

Burkhart et al. (2010) but come without guarantee of smoothness and approximation order. Geometric continuity in28

three variables, although well-understood in principle, is in practice barely explored: Birner et al. (2018) analyze one29

pair of face-adjacent boxes.30

This paper introduces a trivariateC1 space with singular parameterization, the third option. Wherever possible, the31

vertices of the box-complex are interpreted as B-spline coefficients de Boor (1978, 1987). Then, at each irregularity, a32

well-behaved linear function is determined and composed with a singular local volumetric re-parameterization x̆ that33

is consistent with the local layout of the box-complex and based on an polytope that is akin to a Voronoi diagram on34

a sphere enclosing the irregular point. All first derivatives of x̆ are continuous, albeit zero across irregularities. Apart35

from the irregularities, the Jacobian of x̆ is positive definite. This is a key ingredient to prove that the inverse x̆−1 is36

well defined and the local expansion of the linear function composed with x̆ can be reparameterized by x̆−1 to remove37

the singularity. The polynomial pieces of the spline space therefore join not just nominally C1, but smoothly over the38

whole box-complex. The spline space has a basis of 2× 2× 2 independent functions per hexahedral input box (after39

a dyadic split of irregular boxes, one for each of the 8 sub-boxes), can reproduce linear functions and is refinable.40

Overview. After a brief literature review of bivariate singular constructions, Section 2 defines basic tri-variate con-41

cepts, notation and setup. Section 3 initializes a spline space that is C2 except for zero first derivatives across ir-42

regularities. Section 4 defines linear maps at irregularities and Section 5 defines a parameterization that is invertible43

in a neighborhood of its singularity. Section 6 combines the linear maps and the singular parameterization into an44

algorithm for constructing a C1 spline complex. The construction is illustrated both trivariate and the simpler bi-45

variate case. Section 7 establishes C1 continuity, linear independence of 23 B-spline-like functions per box, linear46

reproduction and refinability of the C1 spline space. Section 8 briefly discusses alternatives and extensions.47

1.1. Bivariate polynomial singular C1 constructions48

To motivate the construction in the remainder of the paper, we first review the bivariate setting. In the bivariate49

setting, interior mesh points are irregular if they are surrounded, without overlap, by more or fewer than four quads;50

and quads are irregular if they have one or more irregular points. At irregularities, there is no consistent extension of51

the individual pieces’ parametric derivatives to the whole neighborhood unless their cross-product vanishes (Peters and52

Reif, 2008, Lemma 3.7). In contrast to geometrically smooth constructions, bivariate, polynomial, parametrically-C1
53

constructions therefore need to be singular. Singularly parameterized C1 surface constructions for irregular quad-54

layout can be sorted into three categories: subdivision surfaces, where the size of surface rings and hence their55

parametric derivatives shrink to zero; polar surfaces, where the derivatives along an edge are zero; and singular corner56

surfaces, where the low-order terms of the Taylor expansion at the corner are zero.57

Subdivision surfaces consist of an infinite sequence of nested spline rings. They can be viewed as spline surfaces58

with a singularity at its central ’extraordinary’ point Peters and Reif (2008). There are numerous subdivision variants59

with the most popular being Catmull-Clark subdivision Catmull and Clark (1978).60

Polar surfaces have quad patches with one edge collapsed into the irregular point, called the ‘pole’, see e.g.61

Karčiauskas et al. (2006); Karčiauskas and Peters (2007); Myles and Peters (2009, 2011); Shi et al. (2013); Toshniwal62

et al. (2017a). The patch layout of polar surface parameterizations differs structurally from that of standard subdivision63

and is most suitable for umbilic points where many pieces meet.64

Singular corner constructions collapse the Taylor expansion at the irregular point by setting derivatives to zero65

Peters (1991a); Pfluger and Neamtu (1993); Neamtu and Pfluger (1994); Reif (1997, 1998); Bohl and Reif (1997);66

Nguyen and Peters (2016); Karčiauskas and Peters (2017); Toshniwal et al. (2017b). The induced singularity side-67

steps the vertex enclosure problem Peters (1991b, 2002), a non-trivial algebraic requirement that arises from forcing68

the mixed parametric derivatives ∂u∂vf and ∂v∂uf to agree. Accordingly, ‘Parametrizing singularly to enclose ver-69

tices by a smooth parametric surface’ Peters (1991a) sets the mixed derivatives to zero. Reif (1997) proved that, if70

higher partial derivatives are suitably constrained, such singularities are locally removable. That is, the parametric71

singularity need not correspond to a geometric singularity. In contrast to subdivision, a finite number of polynomial72

pieces with singular parameterization are straightforward to include into existing CAD modeling environments. How-73

ever, the resulting C1 surfaces typically have poor shape when used for free-form design. A recent variant, proposed74

in Karčiauskas and Peters (2017), removes visible shape defects but at the cost of increased polynomial degree and75

overall complexity.76
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Gregory (1974); Warren (1992) impose rational singularities to avoid having to enforce ∂u∂vf = ∂v∂uf . The77

cost is increased complexity, rational representation and higher degree than singular corner constructions.78

After a gap of two decades, Nguyen and Peters (2016) renewed interest in the singular constructions by focusing79

on engineering analysis and functions on irregular bivariate 2-manifolds. Combining the singular splines with PHT-80

splines Kang et al. (2015), (a.k.a. bi-cubic finite elements with hanging nodes in the finite element literature) yields81

a bi-cubic C1 space with adaptive refinability. Nguyen and Peters (2016) demonstrate the space’s effectiveness for82

modeling and solving thin plate challenge problems of the finite element obstacle course, such as the ‘octant of a83

sphere’ and the ‘Scordelis-Lo roof’. Wei et al. (2018) adapts the bivariate approach to tri-cubic splines but with only84

C0 continuity across extraordinary edges and vertices.

(a) bivariate box-complex (b) trivariate csα

Figure 1: Bivariate box-complex (a) and one trivariate box (b). For each boxHs, blue bullets mark 2m control points csα := (csα, y
s
α), consisting

of control abscissae csα and associated data ysα, enumerated by the multi-index α. The control points csα scale the basis functions fsα of a piecewise
polynomial

∑
s,α csαf

s
α. (a) Dashed lines partition polynomial pieces near irregularities of valence n = 3 and 5. Each regular, unpartitioned

quad is associated with four control points and one bi-cubic polynomial. Each irregular quad is equally associated with four control points but four
polynomial pieces, one per sub-box (dashed quad). (b) The 8 control abscissae csα, 1 ≤ αi ≤ 2 of a tri-variate box.

85

Like its predecessors, the construction of Nguyen and Peters (2016) collapses the first-order jet and then projects86

the lowest-order non-zero expansion terms at the irregular point into a fixed plane. Unlike its predecessors, it as-87

sociates with each irregular quad not just one but four polynomial pieces (see Fig. 1a). This ’splitting’ localizes88

the operations that make the space C1 and so allows irregular points in close proximity. Moreover, splitting yields89

linearly independent functions, one per control point, and it simplifies the space’s use for computations: every input90

quad, regular or irregular, now contributes exactly 2×2 degrees of freedom, i.e. weights that scale linearly independent91

functions.92

The construction of this paper, too, leverages splitting to isolate irregularities. The resulting generalized spline93

basis will consist of 23 functions and their control points for each input box, see Fig. 1b. The construction differs94

from its predecessors in that, instead of projecting, C1 continuity is ensured by explicitly building the spline as a95

composition of a regular linear map with a singularly parameterized expansion that has a local inverse.96

2. Notation and Indexing97

In the following, we denote the number of variables by m to avoid any confusion with the polynomial degree 398

or an edge valence that might be ne = 3. Except for some illustrations that explicitly specify m = 2, by default99

throughout m := 3.100

Box-complex. Analogous to a simplicial complex, a box-complex in Rm is a collection of d-dimensional boxes,101

0 ≤ d ≤ m, called d-boxes. Boxes of any dimension overlap only in complete lower-dimensional d-boxes. A 0-box102

is a vertex, a 1-box an edge, a 2-box a quadrilateral and a 3-box is a quadrilateral-faced hexahedron. A box without103

prefix is a 3-box. Until the discussion of box faces on the global boundary in Section 8, we focus exclusively on104

interior d-boxes, i.e. boxes fully surrounded by boxes.105

Irregularities. For d < m, an interior d-box is regular if it is completely surrounded by 2m−d boxes and, for106

m > d̄ > d, all incident d̄-boxes are regular. For example, for a vertex to be regular, all edges incident to it must be107
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regular. Form = 3, a regular vertex (d = 0) is surrounded by 8 boxes, a regular edge (d = 1) by 4 boxes and a regular108

quadrilateral face (d = 2) by 2 boxes. Interior faces are always regular since they are shared by exactly 21 boxes.109

To simplify the treatment of essentially bi-variate irregularities, we define a 0-box to be semi-regular (blue point in110

Fig. 2b) if (i) it is shared by two edges that are each surrounded by ne 6= 4 boxes and (ii) it is fully surrounded by 2ne111

boxes. An edge connecting two semi-regular points is a semi-regular edge. A 1-box that is not a semi-regular edge112

but is surrounded by ne 6= 4 boxes is called an irregular edge. A point that is neither regular nor semi-regular is an113

irregular point. Boxes with one or more irregular points will be evenly split into 2m sub-boxes so that the sub-boxes114

contain at most one irregular point each.115

A box is regular if all its vertices are regular. Otherwise the box is irregular.

(a) m = 2, d = 0 (b) m = 3, d = 1 (c) m = 3, d = 0, n = 4

Figure 2: Irregularities of (a) irregular point: dimension d = 0 in R2 and (b) irregular edge: dimension d = 1 in R3. The blue point • in (b) is
semi-regular due to the tensored structure in the axis direction. (c) Four boxes in R3: one irregular point of valence n = 4 and four irregular edges
of valence n1 = 3.

116

Example: Fig. 2a shows five planar quadrilaterals surrounding a central irregular point without overlap or gap. When117

the quadrilaterals are extruded to form five pairwise-connected boxes, two layers of five boxes share a semi-regular118

point (blue in Fig. 2b). If the top and bottom 5-valent point are not semi-regular, the two edges forming the axis119

are irregular. If the stacked configuration continues to a third layer of five boxes, the middle edge is a semi-regular120

edge. The dotted lines in Fig. 2b hint at the partition of the C1 spline construction into polynomial pieces near edge121

irregularities. Fig. 2c illustrates an irregular point enclosed by four boxes. �122

Polynomial pieces, corner and inner coefficients. We abbreviate

ej(l) :=

{
1, if l = j,

0, else
e0 := 0 := (0, . . . , 0),

where the size of the vectors is determined by context. By default ej ∈ Nm0 . Each regular box is associated with one
polynomial piece. Each irregular box is associated with 2m polynomial pieces. Each piece x will be represented in
m-variate tensor-product Bernstein-Bézier (BB) form of polynomial degree 3 in each variable (see Farin (2002) or
Prautzsch et al. (2002)):

x(u) :=
∑

α: 0≤αi≤3

xα

m∏
i=1

B3
αi(ui), u ∈ [0..1]m, α := (α1, . . . , αm),

whereB3
k(t) :=

(
3
k

)
(1−t)3−ktk are the Bernstein-Bézier (BB) polynomials of degree 3 and the row vectors xα ∈ Rm

are the BB-coefficients. Specifically, for m = 3, α := (i, j, k), u := (u, v, w),

x(u, v, w) :=

3∑
i=0

3∑
j=0

3∑
k=0

xijkB
3
i (u)B3

j (v)B3
k(w). (1)
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De Casteljau’s algorithm can be used to evaluate the BB-form (1) and to re-express a polynomial on a subdomain123

of [0..1]m. Connecting xα to xα+ej whenever xα+ej is well-defined, yields a mesh called the BB-net (see e.g.124

Fig. 4a). The BB-coefficients are associated with d-boxes. Setting αi := 0 (or, symmetrically αi := 3) for exactly125

one i ∈ {1, 2, 3} leaves 4 × 4 BB-coefficients that define x restricted to a quad face of the domain cube. Setting126

αi := αj := 0 for i 6= j yields the BB-coefficients of a polynomial restricted to an edge Ek in the direction ek,127

i 6= k 6= j. The 2m BB-coefficients xα with α ∈ {0, 3}m are called corner BB-coefficients since they are the values128

of x in the domain corners u ∈ {0, 1}m. By default we arrange the domain axes so that the irregular point under129

consideration corresponds to x0 and an irregular edge to xγ,0,0. The 2d BB-coefficients xγ,α, with 0 < αi < 3,130

1 ≤ i ≤ d and γj ∈ {0, 3} are called inner with respect to a d-box (see e.g. Fig. 5b). For example x001 and x002 are131

inner with respect to the 1-box (edge) associated with the univariate polynomial
∑3
k=0 x00kB

3
k(w).132

Let Hs, s = 1, . . . , n, be the n boxes joining at and surrounding an irregularity. Then their BB-coefficients are133

labeled xsα.134

BB-coefficients x̆sα, with indices α in a setG defined below, define the Taylor expansion x̆ of a tri-cubic at (0, 0, 0)135

to at most second-order in each variable.136

BB-net neighborhoods and their index sets. To render the description of the construction more intuitive, we
define index sets and corresponding groups of BB-coefficients, called neighborhoods (see also Fig. 3 and Fig. 4). The
tangent-neighborhood of a point x0, surrounded by boxes Hs, s = 1, . . . , n, is

x̆T := {x̆sα : α ∈ T, s = 1, . . . , n}, T := {ej ∈ Nm0 : j = 0, . . . ,m}.

The bivariate γ tangent-neighborhoods of edge Ei surrounded by boxes Hs, s = 1, . . . , ni is

x̆Tγ,i := {x̆sα : α ∈ Tγ,i, s = 1, . . . , ni}, Tγ,i := {γei + ej , j ∈ {0, . . . ,m}, j 6= i, }.

The 1-neighborhoods are

x̆A := {x̆sα : α ∈ A, s = 1, . . . , n}, A := {α : 0 ≤ αj ≤ 1, for j = 1, . . . ,m},
x̆Aγ,i := {x̆sα : α ∈ Aγ,i, s = 1, . . . , ni}, Aγ,i := {α : αi = γ, 0 ≤ αj ≤ 1, for j ∈ {1, . . . ,m}, j 6= i}.

For edges Ei, i = 1, 2, 3, emanating from x0 and boxes Hs, s = 1, . . . , n, the projection neighborhood consists of

x̆Γ := {x̆sα : α ∈ Γ, s = 1, . . . , n}, Γ :=
{
ei +

m∑
l=1

el + (ej if Ei is irregular) : i, j = 1, . . . ,m, j 6= i
}
.

That is, for

m = 2, Γ := {2ei + ej : i = 1, 2, {ei, ej} = {1, 2}};

m = 3, Γ :=
{{2ei + ej + ek if Ei is regular;

2ei + 2ej + ek and 2ei + ej + 2ek if Ei is irregular;
, i = 1, 2, 3, {ei, ej , ek} = {e1, e2, e3}

}
.

The index set Γ does not include (222), or indices of BB-coefficients that will be determined as an average of their
index-wise nearest neighbors. (Two BB-coefficients xsα and xsβ are index-wise nearest if there is no xsγ with ‖α −
γ‖1 < ‖α− β‖1 in the `1-norm). The union of neighborhoods is denoted

G := A ∪ Γ ∪mi=1 A2,i.

Example: For m = 2, the only irregularities are points,

A = {(0, 0), (1, 0), (0, 1), (1, 1)}, A2,1 = {(2, 0), (2, 1)} and Γ = {(2, 1), (1, 2)},

see Fig. 3. The algorithm in Nguyen and Peters (2016) can be reformulated in terms of A and Γ. �137
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(a) x̆T (b) x̆A (c) x̆Γ

Figure 3: m = 2: BB-coefficients of a local box-complex for with neighborhoods x̆T , x̆A and x̆Γ.

(a) irregular edges (b) x̆sA∪Aγ (c) x̆sΓ

Figure 4: BB-coefficient neighborhoods of a single box Hs: the expansion x̆ consists of terms up to order 2 in tri-cubic BB-form.

Example: For m = 3, let 0 := (0, 0, 0) be the index of the irregular point, the edge-indices (γ, 0, 0) and (0, γ, 0) be
irregular and (0, 0, δ) regular, see Fig. 4a. Then at the irregular point, see Fig. 4,

A = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)},
Γ = {(2, 2, 1), (2, 1, 2)} ∪ {(2, 2, 1), (1, 2, 2)} ∪ {(1, 1, 2)}

Γ has only four distinct entries and x̆s is displayed on the full tri-cubic grid but only consists of terms up to degree 2
from the bottom front irregular point. For the irregular edge E1

A2,1 = {(2, 0, 0), (2, 1, 0), (2, 0, 1), (2, 1, 1)}.

�138

3. Initialization of control points and of a C0 tri-cubic spline complex139

This section describes the default initialization of the control points csα of the splines over the box-complex, and140

the BB-points bsα of the BB-form pieces of the spline. Treating the location and associated value(s) of each box141

vertex as a control point, we can interpret, where regular, the box-complex with values as a control mesh of a tri-cubic142
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csα

xsα

1
3

2
3

2
3

1
3

←→

(a) ◦ = 1
2
• + 1

2
• = 1

6
• + 4

6
• + 1

6
• (b) • = 1

2
◦ + 1

2
◦

Figure 5: CubicC2 B-spline control vertices • to BB-net xsα conversion. The inner BB-coefficients • initialize the control abscissae csα of Fig. 1a.

C2 spline in B-spline form with uniform knots (see de Boor (1978, 1987)). Expressing the spline pieces in BB-form,143

(by knot insertion, weighted averaging) is called B-to-BB-conversion. Fig. 5a depicts the formulas for converting the144

uniform degree three C2 B-spline control points, marked as • (top), to BB-coefficients marked as • and ◦ (bottom).145

Fig. 5b illustrates the tensored version. The B-to-BB conversion can be broken into averaging steps, first initializing146

the inner 2m BB-coefficients as uniform tri-linear averages of the vertices and then setting the inner BB-coefficients147

of faces, the edges and finally the vertex as the average of their index-wise nearest neighbors.148

=⇒

Initialization of the control points csα from the box-complex + data.149

For each box Hs with its 2m vertices labeled j, locations xsj and data ysj ,150

initialize csα := (xsα, y
s
α) ∈ Rm+1, 1 ≤ αi ≤ 2 by uniform tri-linear151

interpolation of the (xsj , y
s
j ) (for m = 2 see the illustration to the right.)152

Definition 1. The csα := (xsα, y
s
α) ∈ Rm+1, 1 ≤ αi ≤ 2 are called control points,153

the bsα := (xsα, y
s
α) ∈ Rm+1, 0 ≤ αi ≤ 3 are called BB-points.154

3.1. The operator S: csα → bsα155

The operator consists of two steps: an averaging step that generalizes B-to-BB-conversion and – only if the box is156

irregular – a binary split to isolate singularities.157

→ →

(i) Set inner box, inner face, inner edge and cor-
ner BB-points bsα, 0 ≤ αi ≤ 3: for 1 ≤ αi ≤ 2,
bsα := csα; for d = 2 down to d = 0, for each
d-box Q shared by nQ d+ 1-dimensional boxes
H1, . . . ,HnQ do as follows. Re-arrange the do-
main axes so that the bsα have indices α := (γ, e0),
γ ∈ {1, 2}d where e0 is the zero in Nm−d0 . Aver-
age (for m = 2 see the illustration to the right)

bγ,e0 :=

nQ∑
s=1

bsγ,e1/nQ. (2)

(ii) For each irregular box, re-represent its tri-cubic on each eighth of the domain by evenly subdividing (e.g. apply de158

Casteljau’s algorithm to the BB-net at parameters u = v = w = 1
2 ).159

After Step (ii), we refer to the sub-boxes that contain the least-dimensional irregularity of the original box as160

irregular sub-boxes. For m = 2, i.e. for a bivariate mesh of quadrilaterals, Fig. 6 shows in color the BB-control161

polyhedra of three irregular sub-boxes.162
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Figure 6: Illustration for m = 2: Initial and
fine BB-net (with with bi-cubic BB-net inter-
polating facets colored) of the irregular sub-
box for valence n = 3.

Step (i) computes each BB-coefficient inner with respect to Q as163

the average of the closest BB-coefficients that are inner with respect to164

the boxes H1, . . . ,HnQ of one dimension higher. That is, for d = 0,165

(γ, e0) = (0, 0, 0) and bs000 is initialized as the average of the index-166

wise nearest inner BB-coefficients of the edges emanating from bs000. For167

d = 1, γ enumerates two coefficients bs100 and bs200 of an edge E, and168

each bsγ00 is initialized as the average of the inner BB-coefficients index-169

wise nearest to bsγ00 of the faces including the edge E. For d = m − 1,170

Eq. (2) is the regular (univariate) C1 constraint (2’), i.e. the average of171

two BB-coefficients, one for each of the two boxes sharing the face.172

Example: For d = 2 and m = 3, consider adjacent boxes H0, H1 whose
shared quad-face Q has 16 associated BB-coefficients b0

γ1γ20 = b1
γ1γ20,

γi ∈ {0, 1, 2, 3}. Then (2) simplifies to

b0
γ1γ20 = b1

γ1γ20 = (b0
γ1γ21 + b1

γ1γ21)/2 for 0 < γ1, γ2 < 3. (2’)

For d = 1, the inner BB-coefficients bsγ100 on an edge surrounded by quads Hs, s = 1, . . . , nQ, are initialized to

bs100 =

nQ∑
k=1

bs110/nQ, bs200 =

nQ∑
k=1

bs210/nQ (3)

For d = 0, for a point bs000 surrounded by boxes Hs, s = 1, . . . , n,

bs000 =

n∑
k=1

bs100/n for 0 < γ1 < 3. (4)

�173

3.2. Interpretation and properties of S174

In the context of solving differential equations on a fixed manifold defined by xsα, the ysα serve as degrees of175

freedom associated with functions fsα (formally defined in Section 7).176

Lemma 1 (C2 where regular). If the box Hs is regular then Initialization followed by the operator S gnerates a177

tri-cubic polynomial piece joined C2 to its neighbors.178

Proof Since the vertices of a regular box are regular, any regular box provides the 2× 2× 2 interior nodes of a regular179

4 × 4 × 4 grid that can be interpreted as C2 tricubic B-spline control points. The claim follows since, for a regular180

box, S acts on the surrounding 4 × 4 × 4 grid as B-to-BB conversion for an m-variate C2 spline of degree 3 (whose181

control points are the grid points) de Boor (1987); Farin (2002). |||182

Corollary 1. The output of S is a spline complex of tensor-product degree 3 that is C2 wherever boxes are regular183

and at least C0 across irregularities.184

Moreover, the operator S converts any choice of csα, not just csα generated by the default Initialization, into a C1
185

spline in BB-form. Calling the csα control points is motivated by the following fact.186

Observation 1. The B-spline control points of a C1 cubic spline coincide with the inner BB-coefficients of its pieces.187

We note that, while each Bernstein-Bézier basis function B3
α1
B3
α2
B3
α3

associated with bsα is restricted to one box,188

csα is associated with a smooth piecewise polynomial function supported on several boxes, as illustrated in Fig. 7.189

Observation 1 generalizes to the larger box-complex whereever a d-box is regular.190

Corollary 2. If a d-box Hs is regular then the operator S defines the BB-net of a C1 d-cubic tensor-product spline.191

To ensure that the spline-complex controlled by the csα is everywhere at least C1, not just where regular, the next192

section shows how to place the BB-coefficients with index in Γ into a linear subspace.193
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(a) control point c21

=⇒
256128

12864

(b) BB-coefficients bij

H

=⇒
32

56

80

96

64y∗=

48

84

120

144

96

40

70

100

120

80

28

49

70

84

56

16

28

40

48

32 us

↓
↓

←←

(c) split

H

Figure 7: Example m = 2. The only irregularity in the 2-box is marked as H. (Splitting of boxes guarantees that there is at most one irregular
point per (sub-)box.) In the example, (a) the only control point with a non-zero value is c12 = (c12, y12) with Greville abscissa c12 and value
y12 = 28. (b) The four non-zero yα of bα for α ∈ {02, 12, 03, 13}. (c) The non-zero BB-coefficients after splitting at u = v = 0.5. The
parameter us will be used in the proof of Theorem 2 and the arrows hint at derivatives, e.g. ∂2

−e1y(us) = 3 · 2 · 32 6= 0. Of the 22 bi-cubic maps
surrounding and overlapping the corner marked by y∗ = 64, only one has a non-zero inner coefficient index-wise nearest the corner (marked as
144) in the displayed polynomial piece.

4. Local linear expansion and composition (projection)194

To enforce C1 continuity, we derive for each irregularity a linear map that will be shared by the polynomial195

expansions joining at the irregularity. Since boxes containing an irregular point were split into 2m sub-boxes, each196

resulting sub-box will have a most one singularity, and the linear maps (and constructions) at different irregular points197

will not interfere with one another.198

4.1. A linear map `199

We determine a linear map ` that best fits the tangent data ysα, α ∈ T , at xsα.200

One way to compute ` is as follows. For a local box-complex surrounding an irregular point, wlog. x0 = 0,
choose the four vertices ∆0 := σ [−1, 1, 1], ∆1 := σ [1,−1, 1], ∆2 := σ [1, 1,−1], ∆3 := σ [−1,−1,−1], of a
regular simplex ∆ to form the matrix

M :=


∆0 1
∆1 1
∆2 1
∆3 1

 ∈ Rm+1,m+1, σ :=

n∑
s=1

m∑
j=1

‖xs0 − xsej‖
nm

. (5)

201

Figure 8: Illustration for m = 2 and va-
lence n = 3. The central triangle represents
the least-squares fit to the data and defines `.

The simplex provides a local coordinate system and helps to make the
linear function concrete. Equi-distance of its vertices and scaling by σ
aim to ensure numerical stability of the following fitting process (by pro-
portionately covering the tangent neighborhood T ); formally, the simplex
shape and scaling do not affect volume or shape of the construction. The
barycentric coordinates of xsα with respect to ∆ form the row vector

bsα := [xsα, 1]M−1 ∈ Rm+1. (6)

Denote by bT ∈ Rnm×(m+1) the matrix of barycentric coordinates bsej ,
s = 1, . . . , n, j = 1, . . . ,m and by yT ∈ Rnm the column vector of
associated data ysej . Then the column vector

`̀̀ := (btT bT )−1btT yT ∈ Rm+1 (7)

is the minimizer of min`̀̀
∑n
s=1

∑
α∈T

(
ysα − bsα`̀̀

)2
. The values `̀̀j , j = 0 . . .m at the vertices ∆j of ∆ determine a202

linear map ` : Rm → R. For example, we can interpret (∆j , `̀̀j) as the abscissae and coefficients of a linear polynomial203

` in total degree Bernstein-Bézier form (Farin, 2002, Chapter 17).204
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In the next section, we apply ` to the expansion x̆ by computing the barycentric coordinate vectors b̆sα of the205

coefficients x̆sα of x̆ and setting ysα := b̆sα`̀̀ ∈ R, for α ∈ G. Then the BB-coefficients (x̆sα, y
s
α) will define abscissae206

and ordinates of the expansion `s in tensor-product BB-form of ` in sector s, i.e. in the box Hs.207

Example: Continuing the previous bivariate example with ysα the third coordinate, we compute the best linear approx-208

imation in the form of a function over a 2-simplex. That is, we determine `̀̀ ∈ R3 at the vertices of a triangle (see209

Fig. 8). Fig. 9 shows the initial BB-coefficients (vertices of thin lines) and their projection onto `s (vertices of thick210

lines in the plane). �211

(a) partial BB-net with coefficients • and `s (b) two views of the input BB-net and projection `s(xs)

Figure 9: Illustration for m = 2. Mapping the partial BB-net (of BB-coefficients • with index in A ∪ Γ) of an m-cubic onto a sector `s of the
linear map `. The BB-coefficients in A will later be coalesced.

4.2. Projection along semi-regular edges212

Let bγ00 be the BB-coefficients associated with a semi-regular edge. We need only consider γ ∈ {1, 2} since b000213

and b300 will be set, in the last step of Algorithm C1 in Section 6, by regular C1 constraints between the polynomial214

pieces of adjacent boxes. One option is to replicate the previous simplex-based construction for each fixed γ ∈ {1, 2}215

and m = 2 as done for the illustrations in Fig. 8 and Fig. 9. Alternatively, we apply the following projection.216

Planar projection Pn. The projection Pn applies to each coordinate k of Rm+1 separately and to one (inner)
index γ of one edge at a time. For fixed ij ∈ {00, 01, 10, 11, 12, 21} and γ, after suitable re-arrangement of domain
axes, denote by cij := (csij)s=1,...,n ∈ Rn the vector of the kth coordinate of the input BB-coefficients bsγij ; and
by xab := (xsab)s=1,...,n ∈ Rn the kth coordinate of the output BB-coefficients. We index so that cs20 = cs−1

02 (s
is interpreted modulo n) and denote by c←ij the cyclic backward permutation of cij with respect to s and by c→ij the
forward permutation. Then Pn maps the vectors cij to vectors xab with entries xsab given by

xs11 := xs10 := xs01 := xs00 :=
1

3n

n∑
σ=1

cσ11 + cσ21 + cσ12 ∈ R, s = 1, . . . , n, (8)

x21 := x00 + κQn

(
2(c21 + c←12) + c→21 + c12

)
∈ Rn, Qn :=

(
cos

2π(i− j)
n

)
i=1..n,j=1..n

∈ Rn×n,

x12 := x00 + κQn

(
c21 + c←12 + 2(c→21 + c12)

)
∈ Rn, κdefault :=

√
2

4n cos πn
.

(9)

Equation (8) coalesces the 1-neighborhoods of all sectors s into one central point and (9) places (them = 2-dimensional217

projection neighborhood consisting of) x̆sγ12, x̆sγ21, s = 1, . . . , n, into a plane anchored at x̆sγ00.218

5. Singular reparameterization219

Here we focus on the x coordinates of bsα initialized by the operator S for an irregular sub-box. A local box-220

complex surrounding p consists of n boxes Hs, s = 1, . . . , n, that surround an irregular point p without gap and221

overlap. The singular expansion x̆ at p is defined by BB-coefficients x̆sα, α ∈ G, of the polynomial pieces x̆s; x̆s222

corresponds to Hs and is singular at the common point x̆s000. Since boxes with one or more irregular points are split223

into 2m (sub-)boxes, the singular expansions of irregular points will not interfere with one another.224
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The singular construction is motivated by the fact that, already form = 2 and n 6= 4, parametricC1 continuity and225

non-zero first derivatives imply loss of injectivity at the irregularity (Peters and Reif, 2008, Lemma 3.7). The basic226

idea is then to set the first derivatives to zero, and to have the second derivatives define a common tangent space that227

is parameterized with a singularity at the irregularity but can locally be equivalently represented by a regular smooth228

parametrization `.229

qsq13
q23

E2
E1

E3

(a) intersection polyhedron

qs

q23

q13

E1
E2

E3

(b) one box: intersecting planes

qs

(c) x̆Γ + C1 averages •

Figure 10: Intersection points qs. (a) Polyhedron with n = 12 facets, one for each edge Ek , k = 1, . . . , 12. The irregular edges of one box are
labeled E1, E2, E3. (b) The BB-net of x̆ is shown completed to a tensor-product cubic. In the example the edges emanate from 0 at right angles
and the qjk are on a regular grid. The irregular point, marked H, is the superposition of all 2m BB-coefficients in A. Two irregular edges have
their coalesced BB-coefficients with index in Aγ marked H, respectively H. (c) The four BB-coefficients marked as larger, darker green • form
the x̆Γ and define the BB-coefficients of x̆Aγ,i , marked by smaller, light green •, by enforcing the regular univariate C1 averaging constraints.

5.1. Intersection polyhedron230

Central to the construction of the singular parameterization is a polyhedron that has one face for each edgeEk that
emanates from the irregular point, see Fig. 10a. (The polyhedron is akin to the Voronoi diagram of the intersections
of theEk with a sphere enclosing the irregular point.) The polyhedron is spanned by n intersection points qs, one per
box Hs. Each qs is computed from m planes as follows. For each edge Ek, k = 1, . . . ,m of Hs, let H1, . . . ,Hnk be
the boxes surroundingEk. For fixed j 6= k, denote by x2ek+ej ∈ Rnk×3 the matrix with rows xs2ek+ej , s = 1, . . . , nk,
and by x2ek ∈ Rnk×3 the matrix with repeated entries xs2ek . Then with Qnk defined by (9), the points

x2ek +Qnk(x2ek+ej − x2ek) ∈ Rnk×3

are co-planar and define a plane Pk anchored at x2ek . Specifically, since Qnk is of rank 2, each plane Pk is spanned
by the first two rows Ck of Qnk(x2ek+ej − x2ek) and xs2ek . Therefore, for a pair of scalars µik, µjk per k we have
qs = xs2ek − [µik, µjk]Ck and qs can be computed by solving the 9× 9 system

[qs, µ]


I3 I3 I3
C1 0 0
0 C2 0
0 0 C3

 =
[
xs2e1 ,x

s
2e2 ,x

s
2e3

]
, 0 ∈ R2×m, µ ∈ R2m. (10)

Since each xs2ek is obtained by repeated averaging (B-to-BB conversion followed by de Casteljau’s algorithm) that231

tend to equi-distribute points, solvability can be guaranteed under mild assumptions of non-degeneracy of the original232

box-complex.233

An alternative construction of intersection points, that is simpler but less responsive to the xsα, is to translate so that234

xs000 = 0 and define the planes to be orthogonal to the xs2ei : qs := [ν1, ν2, ν3][xs2e1 ,x
s
2e2 ,x

s
2e3 ]−t, νi := xs2ei · x

s
2ei .235

(Well-formedness, Definition 2, guarantees the existence of the inverse matrix.)236
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5.2. The BB-coefficients x̆sα of the singular parameterization237

The expansion x̆s, at the irregular point x̆s0 for box Hs, is represented by a collection of BB-coefficients x̆sα with
index α ∈ G. The expansion is defined as follows. Let Ei and Ek be two edges of Hs emanating from x̆s0 (see
Fig. 10). Denote as Hik the box that shares with Hs the face spanned by Ei and Ek and as qik the intersection point
of Hik. Denote by nk the number of boxes surrounding Ek (i.e. the edge Ek is regular iff nk = 4). Then for α ∈ G
and all {i, j, k} = {1, 2, 3},

x̆sα :=


x̆s0 :=

∑n
j=1 qj/n, if α1, α2, α3 < 2;

xsα if αk = 2, αi, αj ∈ {0, 1}; and nk = 4;

x̆s2ek :=
∑nk
j=1 qjk/nk, if αk = 2, αi, αj ∈ {0, 1}; and nk 6= 4;

qs + 2−αi
4 (qjk − qs) if αk = 2, αj = 2, αi ∈ {0, 1} and nk 6= 4.

(11)

Case 1 coalesces the coefficients of the trivariate 1-neighborhood A of x̆s0. Case 2 simply copies the bivariate 1-238

neighborhoodA2,k of x2ek to x̆2ek if Ek is regular. If Ek is irregular, cases 3 and 4 establish a bivariate neighborhood239

of x̆2ek . Case 3 coalesces a bivariate 1-neighborhood of x̆2ek . Case 4 places BB-coefficients of the 2-ring about x̆2ek ,240

e.g. 022 and 122, uniformly on (one half of) the line segment qs to qjk (shown purple in Fig. 10 and Fig. 12). Case 3241

and 4 enforce a planarity constraint for a bivariate C1 construction with locally removable singularity across irregular242

edges.243

Example: Fig. 10b,c show x̆s when the edges emanating from 0 are at right angles and the relevant qjk are on a regular244

grid. The second-order expansion x̆s is shown as part of a tri-cubic BB-net, for reference. Besides the irregular point245

there are two irregular edges (red, blue). The coalesced points indexed by A are represented by H. The coalesced246

points indexed by Aγ,1 are indicated by H, and Aγ,2 by H. The BB-coefficients marked as • are determined by247

univariate C1 constraints. Fig. 11 highlights the difference vectors of x̆s in Fig. 10b,c. The collection of red in248

Fig. 11 non-zero difference vectors in (a) are
[

0
2
0

]t
,
[

0
1
0

]t
,
[

0
2
1

]t
. The green non-zero difference vectors in Fig. 11 are249 [

0
0
2

]t
,
[

0
1
2

]t
,
[

1
0
2

]t
,
[

1
1
2

]t
,
[

0
0
1

]t
illustrating the separation of directional derivatives emphasized in Fig. 10c. �

0
(a) BB differences

0

(b) view of (c) from ei + ej + ek

sector kqik qjk

qs

(c) differences in cones

Figure 11: Three views of the differences of the BB-coefficients near 0. (c) shows that the differences are zero or fall into separate cones.

250

Example: Fig. 12 illustrates the construction for m = 2 when the edges emanating from 0 are equally distributed in251

the plane. The point q of one sector of x̆ is the intersection of the lines dual to the edges. �252

To prevent the BB-pieces from deviating too much from their box and so rule out overlap and degeneracy of the253

polynomial pieces associated with the boxes, from now on we require that the local box-complex surrounding an254

irregular point consists of boxes Hs that are sufficiently cube-like, defined as ‘well-formed’.255

Definition 2 (well-formed box-complex). The local box-complex Hs, s = 1, . . . , n, surrounding an irregular point256

is well-formed if for each s257
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qs

xs3e1

xs3e2

0

(a) n = 3

qs

xs3e1

xs3e2

(b) n = 5

qs

xs3e1

xs3e2

0

(c) n = 8

qs

qs−1

qs+1

0

(d) n = 8, 3 sectors

Figure 12: m = 2: BB-net of a sector of a bivariate x̆ and equal angle 2π/n. For context, dotted grey lines outline a possible completion to a
bi-3 BB-net. (d) shows three sectors and the neighbor qi across edge ei The intersection point qs is only used for the construction and is not part
of the BB-net.

(a) the intersection qs is well-defined (exists);258

(b) x̆s2ei , i = 0, . . . ,m, form a coordinate system Xs that spans Rm;259

wlog. after shift x̆s2e0 = x̆s0 = 0 and we index so det(x̆s2e1 , x̆
s
2e2 , x̆

s
2e3) > 0.260

(c) all coordinates of x̆sΓ with respect to Xs are positive;261

and, if Ek is regular then additionally the coordinates of x̆s2ek+ej , j 6= k, are non-negative.262

Since the x̆s2ei are obtained from the vertices of the local box-complex by the uniform distribution (of the B-to-BB263

conversion) followed by repeated averaging (of the de Casteljau split at mid-points), well-formedness is not a severe264

imposition: the projection neighborhood is to lie in the cone of the x̆s2ei , i = 1, 2, 3 with apex 0, and, for any regular265

edge Ek, the tangent neighbors of x̆s2ek with index ej + 2ek lie in the same half space, anchored at x̆s2ek , as does x̆s2ej .266

The following lemmas record facts about the construction that will help prove injectivity of the singular C1
267

construction along an irregular edge.268

Lemma 2. Consider an irregular edge E1 emanating from the irregular point x̆a000. Let Ha and Hb be two boxes269

of a well-formed box-complex and share a face including E1 and another edge, E2, emanating from x̆a000 = x̆b000.270

Denote by x̆s, s ∈ {a, b} the corresponding expansions. Then271

(i) all x̆s2,β , βi ≤ 2,min{βi} < 2 lie in one plane.272

(ii) x̆a and x̆b stay on opposite sides of their shared bivariate boundary defined by x̆a000 = x̆b000, x̆a200 = x̆b200,273

x̆a020 = x̆b020, and x̆a220 = x̆b220 (plus x̆a210 = x̆b210 if E2 is regular).274

(iii) The derivatives of x̆a and x̆b across the shared face agree.275

Proof Let Hs, s = 1, . . . , n1, be the boxes that surround E1. (i) By construction as intersections with the plane P1276

of E1, all qs lie in P1 and, by (11), cases 3 and 4, so do all x̆s2,β , βi ≤ 2,min{βi} < 2. (ii) For a well-formed277

box-complex, the planar polygon formed by connecting the qs in order does not cross itself since, by definition,278

boxes do not overlap. The x̆a22i, x̆b22i, i = 0, 1, are evenly distributed along the edges of the polygon and the regular279

C1 constraint x̆a220 = x̆b220 = (x̆a221 + x̆b221)/2 holds. The bivariate 1-neighborhoods x̆A2,i , i = 1, 2 coalesce280

to the center of the planar polygon or satisfy regular C1 constraints as averages of x̆2ei+2ej+ek . The remaining281

BB-coefficients coalesce at x̆a000. Therefore and by Definition 2(c), the two BB-nets each stay to one side of their282

shared m − 1 dimensional boundary (whose BB-coefficients have subscripts 000, 200, 200, 220 if E2 is irregular or283

000, 200, 200, 220, 210 if E2 is regular). (iii) Since the 1-neighborhoods x̆Aγ,i and x̆A are coalesced, the derivatives284

across the boundary are a multiple (shrinking to zero at the irregularities) of the non-zero C1-matching differences285

x̆a221−x̆a220 and additionally, if E2 is regular, of the C1-matching differences x̆a121−x̆a120. |||286

Lemma 3. Except at the pre-images of irregularities the Jacobian determinant of x̆s is non-zero.287

Proof Without loss of generality, x̆s0 = 0. For easier reading of indices, we abbreviate the determinant of the
m×m matrix

D(ν1a, ν2b, ν3c) := det(x̆sν1ea ; x̆sν2eb ; x̆
s
ν3ec).
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For example, D(2i, 2j, 2i + k) := det(x̆s2ei ; x̆
s
2ej ; x̆

s
2ei+ek

). By well-formedness, and our sign convention D222 :=
det(x̆s200; x̆s020; x̆s002) > 0. Then, by symbolic computation, the lowest-order terms of the Taylor expansion of the
Jacobian determinant at 0 are

8u1u2u3D222 + o(u1u2u3) (12)

+ 4
∑

i:Eiregular

∑
j∈{1,2,3}\i

u3
i (ujD(2i, 2j, 2i+ k) + ukD(2i, 2i+ j, 2k)) + o(u3

i (uj + uk))

+ 2
∑

i:Eiregular

∑
j∈{1,2,3}\i

u5
iD(2i, 2i+ j, 2i+ k) + o(u5

i )

+ 4
∑

i,j:Ei andEj irregular

u3
iu

3
jD(2i, 2j, 2i+ 2j + k) + o(u3

iu
3
j ).

Due to the ordering of the arguments, all expressions D(. . .) have the same sign as D222 and hence, apart from the288

pre-images of the irregularities, the determinant of the Jacobian is positive over the domain of x̆s.289

Now consider an irregular edge and a fixed γ. By Lemma 2 the BB-coefficients x̆sγ21 and x̆sγ12, s = 1, . . . , n1 lie290

in one plane. They also match the assumptions of Reif (1998); Nguyen and Peters (2016) to define a locally invertible291

C1 bivariate expansion up to order 2 with an equivalent local regular parameterization (removable singularity) at the292

origin and non-zero Jacobian determinant apart from the origin. Since these expansions are tensored in the parameter293

along the irregular edge, the Jacobian only vanishes along the irregular edge. |||294

Lemma 4. For a well-formed box-complex, the leading principal minors of the Jacobian are positive.295

Proof Without loss of generality, we choose as the coordinate system x̆s2ei := ei, i = 0, 1, 2, 3. The first minor has
the expansion

2u1 + o(u1) +


x̆s122(1)u2

2u
2
3 + o(u2

2u
2
3), if Ei, i = 1, 2, 3, irregular;

x̆s102(1)u2
3 + o(u2

3), if Ei, i = 1, 2, irregular;
x̆s120(1)u2

2 + o(u2
2) + x̆s102(1)u2

3 + o(u2
3), if E1 irregular or all Ei are regular;

(13)

where (1) indicates the first coordinate, which is positive by Definition 2(c). The second minor has the expansion

4u1u2 + o(u1u2) (14)

+


x̆s122(1)u3

2u
2
3 + x̆s212(2)u3

1u
3
3 + o(u3

2u
2
3, u

3
1u

3
3) if Ei, i = 1, 2, 3, irregular;

2x̆s102(1)u2
3u2 + 2x̆s012(2)u1u

2
3 + o(u2

3u2, u1u
2
3) if Ei, i = 1, 2, irregular;

2x̆s102(1)u2
3u2 + 2x̆s012(2)u1u

2
3 + 2x̆s120(1)u3

2 + o(u2
3u2, u1u

2
3, u

3
2) if Ei, i = 1, irregular;

2x̆s102(1)u2
3u2 + 2x̆s012(2)u1u

2
3 + 2x̆s120(1)u3

2 + 2x̆s210(2)u3
1 + o(. . .) if Ei are regular;

which is also positive by Definition 2(c). The third minor is positive by Lemma 3 and the sign convention. |||296

Lemma 5. For a well-formed box-complex, the inverse x̆−1 of x̆ is well-defined and continuous in a neighborhood of297

its irregularities.298

Proof By Lemma 2 the BB-nets of adjacent boxes stay confined within their separate curved cones. Therefore, x̆−1

exists on the full neighborhood of x̆s0 = x̆(0) if the each piece x̆s, s = 1, . . . , n, is injective in a neighborhood of
0 ∈ [0..1]3. After affine transformation, by well-formedness, we may assume xs2ek = ek, k = 1, 2, 3. By Lemma 4,
applying Sylvester’s criterion, the Jacobian of x̆s is positive definite:

for any row vector v 6= 0 ∈ Rm and (u, v, w) 6= 0, v∇x̆s(u, v, w)vt > 0. (15)

Assume x̆s is not injective. Then there exist u0 6= u1 in Us so that x̆s(u0) = x̆s(u1). If we define g(t) :=299

(u1 − u0) · x̆s(u0 + t(u1 − u0)) then g(0) = g(1) and the mean value theorem implies that for v := u1 − u0,300
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g′(t) = v∇x̆s(u0 + tv)vt vanishes for some t ∈ (0..1). However, this contradicts positive definiteness of the301

Jacobian.302

Since the irregular point bijectively maps to 0 and any irregular edge Ek parameterized by u bijectively maps to303

x̆(uek), x̆ is injective and x̆−1 is well-defined and continuous in a neighborhood of the irregularities. |||304

Corollary 3. y := ` ◦ x̆ admits the reparameterization y(x̆−1) = ` near the origin.305

By Lemma 3 and inverse function theorem, x̆ is additionally bijectively C1 apart from the irregularities.306

6. Constructing the C1 spline307

The remaining task is to adjust, by an operator P, the BB-nets of BB-coefficients b̃sα ∈ Rm+1 of the irregu-308

lar sub-boxes generated by S so that the ensemble has matching derivatives and, locally, an alternative regular C1
309

parameterization.310

Operator P: b̃sα → bsα311

Input: b̃sα of irregular sub-boxes Hs, s = 1, . . . , n, surrounding and sharing an irregular point.312

Output: C1-adjusted bsα of the irregular sub-boxes.313

1. (`) Determine M by (5) and `̀̀ by (7).314

2. (qs) For each irregular sub-box Hs compute the intersections qs by (10).315

3. (x̆s) For each irregular sub-box Hs, compute the singular parameterization x̆s by (11).316

Issue a warning if the box-complex is not well-formed.317

4. (x, y) For each irregular sub-box Hs, for α ∈ G,

xsα := x̆sα, ysα := `(x̆sα) = b̆sα`̀̀ ∈ R, where b̆sα := [x̆sα, 1]M−1. (16)

For each semi-regular edge, apply Pn defined by (8) and (9), to set (xsα, y
s
α), α ∈ Γγ ∪Aγ , γ = 1, 2.318

5. (join irregular sub-boxes C1) For every face with BB-coefficients xij0 shared by an irregular sub-box Ha and
a (regular or irregular) sub-box Hb, enforce regular C1 continuity by averaging

baij0 = bbij0 := (baij1 + bbij1)/2. (17)

Remark: No coefficients are averaged between any sub-box and neighboring regular full-sized box since these319

transition are already C1 by S.320

Example: Fig. 13 illustrates the operator P for m = 2. BB-coefficients of Γ marked as disks • lie in one plane due to321

application of the projection P5. The BB-coefficients marked as circles ◦ are regular C1 averages (17) of the disks, as322

are the BB-nets marked as ◦ to guarantee a C1 transition to the (gray-dashed) surrounding sub-box bi-cubic. �323

Example: For m = 2, Fig. 14a illustrates an approximation of a quadrant of a disk where the irregular point is324

surrounded by n = 3 quadrilaterals. The value yi at the irregular point is 1, the values at the other box-complex325

vertices are 0. Initialization and the operator S yield the three BB-nets in Fig. 14b. Each of the three sectors is split326

into four subpatches of degree bi-3. Only the bi-3 BB-net of the irregular sub-boxes are shown in Fig. 14c, enlarged327

in Fig. 14d where the best fitting 2-simplex (central triangle) is added. Fig. 14e,f show the resulting function and its328

iso-contours. �329

Example: Fig. 15 illustrates the case m = 3. The four boxes model an octant of a solid ball (in Fig. 15a the red330

box is hidden). The octant has one 0-dimensional irregularity of valence n = 4 in the interior of the octant and four331

1-dimensional irregularities of valence n1 = 3. Each tri-cubic is split into 23 pieces. The refined pieces meeting332

at the irregular point are projected according to Step 4 of P. Along the four irregular edges, each bivariate control333

net defines a bivariate C1 expansion. Fig. 15b and c show smooth level sets and part of the BB-nets of the irregular334

sub-boxes. �335

Let nr be the number of regular boxes and ni be the number of irregular boxes. Then the overall algorithm is336

summarized as follows.337
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Ha Hb

Figure 13: Illustration of P for m = 2 and five sectors. All qs, marked as •, are in the same plane and determine the BB-coefficients x̆Γ marked
as • and regular (univariate) C1 constraints determine the BB-coefficients marked ◦. The central point is the superposition of all BB-coefficients
with indices in A. The last step of P sets the BB-coefficients marked ◦ as averages to enforce regular C1 constraints with the (first gray-dashed
inner layer of the) outer sub-box neighbor of the irregular sub-box.

0
0

0
0

0

0

1

(a) input quads + data (b) initial BB-control net (c) initial + split net

(d) split net + linear map (e) BB-patch near irregularity (f) Contour

Figure 14: Piecewise bi-3 C1 quadrant of a disk with irregularity of valence n = 3 with non-zero value at the center (bi-linearly interpolated in
(a) right).
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(a) local n = 4 box-complex (b) BB-net and level sets (c) nested level sets

Figure 15: C1 approximation of the positive octant of a solid ball. The only non-zero datum is associated with the only interior vertex, the
0-dimensional irregularity shared by the 4 boxes (see (a)). (b) Four (color-coded) tri-3 BB-nets of the irregular sub-boxes. Note the coalesced
BB-net along the four interior edges. (c) Three semi-transparent level sets of the function illustrate smoothness across singularities.

Algorithm C1.338

Input: The vector c of 2m(nr + ni) control points csα associated with the box-complex.339

Output: The vector b of 4m(nr + 2mni) BB-coefficients bsα of a C1 tri-cubic spline complex (x, y) over the box-340

complex.341

With P acting only on irregular sub-boxes, b := PSc.342

7. Properties343

For fixed outer boundaries, the dimension of the spline space over the box-complex with n boxes is n2m = 8n.344

The singular spline space is C1 with removable singularities in the sense that for any parameter where the spline has345

zero derivatives there locally exists an alternative non-singular C1 expansion of the spline.346

Theorem 1. For a well-formed box-complex, the piecewise tri-cubic spline generated from the control points csα by347

Algorithm C1 is C1 with removable singularities.348

Proof If all vertices of a box are regular, its vertices are interior to a 4 × 4 × 4 grid of vertices. Initialization and S349

convert the grid into a tri-cubic tensor-product spline piece [x, y] in BB-form that is C2-connected to its neighbors350

(Lemma 1). For irregular boxes, Steps 3 – 5 of P ensure that all derivatives of [x, y] across faces match, albeit351

with zero derivatives at irregularities; and, by Lemma 5, the inverse x̆−1 of x̆ is well-defined and continuous in a352

neighborhood of any irregularity. Step 4 of P sets y := ` ◦ x̆ so that the expansion coefficients yG are in the image of353

a linear map. Then [x̆, ` ◦ x̆](x̆−1) is a local linear expansion of the function without singularity, i.e. the singularity354

is removable. At semi-regular edges, Step 4 places the lowest-order non-zero terms of the expansion at xγ00 into355

a common linear subspace that satisfies the constraints for a removable singularity and bivariate C1 continuity Reif356

(1997); Nguyen and Peters (2016). The placement in a plane of x2ek+β1ei+β2ej , βi ≤ 2, β 6= (2, 2) by Step 3 is357

consistent with this bivariate C1 continuity. Since these bivariate C1 expansions are tensored along the semi-regular358

edge, Step 5 completes the proof by joining with C1 continuity any modified pieces to their neighbors on adjacent359

sub-boxes. |||360

For αi, α′i ∈ {1, 2}, i = 1, . . . ,m, a C1 generating function

fsα : Rm → R,

is defined by setting ysα = 1 and ys
′

α′ = 0 if either α′ 6= α or s′ 6= s (a different box) and applying Algorithm C1.361

Each function fsα is supported on several boxes Hk (cf. Fig. 7).362
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After one subdivision step applied to the box-complex (e.g. as in Burkhart et al. (2010)), each irregular box has at363

most one irregular point.364

Theorem 2. Consider a well-formed complex of boxes Hs with at most one irregular point per box. Then the gener-365

ating functions fsα are linearly independent.366

Proof To show that we can restrict attention to the linear independence of the n2m generating functions of a local367

sub-complex of n boxes sharing and surrounding one irregular point of valence n, we select any regular point of the368

sub-complex and show that the 2m generating functions fsα, s = 1, . . . , 2m, index-wise nearest to this regular point are369

linearly independent from one another. We choose the parameters and indices so that, for all s, fsα(0, 0, 0) = bs000 is370

the shared non-zero corner BB-coefficient, and define the functional Frf := (∂e1∂e2∂e3f
∣∣
Hr

)(0, 0, 0) that evaluates371

the mixed derivative of f restricted to the box Hr at the origin. Due to the de Casteljau split, the operator P at the372

irregular point does not reach the expansion up to degree two of fsα at bs000 and, as for regular B-splines, Frfsα = 0373

unless r = s (cf. Fig. 7c for m = 2). The functionals are therefore dual to the fsα, i.e. witness the linear independence374

of the fsα. The same functionals can be used to prove linear independence of the fsα at adjacent regular points. Since,375

by assumption, each irregular point is surrounded by regular vertices, in the remainder it suffices to consider one376

irregular point in isolation.377

We focus on one irregular point surrounded and shared by a local sub-complex of n boxes Hs s = 1, . . . , n with
n23 control points csα. Let Us be an s-labeled copy of [0..2]3 and so that [0..1]3 is the domain of the polynomial pieces
associated with the irregular sub-boxes. We consider the functional

Fsαf :=
(∏
i

∂4−2αi
−ei f

)
(us), us := (2, 2, 2) ∈ Us

that, at the point us, evaluates mixed partial derivatives, of order 2 when αi = 1 and 0 when αi = 2, in reverse378

parameter directions (illustrated by arrows in Fig. 7c). It is easy to check that within the local sub-complexFs′α′fsα > 0379

when s′ = s and α′ ≤ α, but Fs′α′fsα = 0 otherwise (cf. the non-zero coefficients in Fig. 7c).380

Clearly Fs′222f
s
α = fsα(2, 2, 2) is non-zero only for s′ = s and α = (2, 2, 2) showing that the fs222 are linearly381

independent from each other and from all n(23−1) fsα with α 6= (2, 2, 2). Therefore all fs222 can be removed from382

consideration of linear dependence on Hs, s = 1, . . . , n. Repeating this ‘peeling away’ argument, all fsα are removed383

in a descending order of the total sum α1 + α2 + α3. Finally, we observe that Fs′111f
s
111 = 0 except when s′ = s, i.e.384

also the fs111 are linearly independent. For a box with one semi-regular edge (and no irregular point) the analogous385

argument for m = 2, for fixed γ ∈ {1, 2}, proves linear independence of the fγ,β from all other generating functions.386

|||387

Remark. B-splines are not just linearly independent but locally linearly independent. No claim of local linear388

independence is made here, because too many fsα overlap near the irregular point. With more complex notation, a389

more general argument can apply the ‘peeling away’ approach to each maximal sub-complex of boxes with adjacent390

(non-isolated) irregular points.391

Adaptive refinement and convergence estimates in engineering analysis require hierarchical refinement of the392

data function y associated with a fixed volumetric parameterization x. To analyze hierarchical refinement of the393

space spanned by the fsα, the refinement operator can be restricted to the subset of nodes surrounding the irregular394

(extraordinary) point since the remainder is refined by uniform spline knot insertion (see e.g. Peters and Reif (2008)).395

So while the complete subdivision matrix has more rows (new refined nodes) than columns (old input nodes), for the396

operator it suffices to consider only a square sub-matrix that maps a fixed number of old nodes to the same number and397

layout of new nodes. Analogously, to characterize refinement of the space spanned by the fsα, only the mapping from a398

local complex of n irregular boxes surrounding an irregular point to n irregular sub-boxes is considered. Observation399

1, that the B-spline control points of a C1 cubic spline coincide with its inner BB-coefficients, motivates the following400

definition.401

Definition 3 (Subdivision Operator RP̃S̃). Given the vector c of control points csα of a local complex of n irregular402

boxes surrounding an irregular point, the vector c̃ of refined control points c̃sα of the complex of n irregular sub-boxes403

is c̃ := RP̃S̃ c. The connectivity follows from the 2m-split of the boxes.404
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- The operator S̃ equals S applied to the local complex with the output restricted to the n irregular sub-boxes.405

- The operator P̃ applies only to the y coordinate, and consists of Steps 4 and 5 of P, with the collapsed x̆T
replaced by the spanning x̆G in the definition (7) of `̀̀:

`̀̀ := (btGbG)−1btGyG ∈ Rm+1, (7’)

where bG ∈ Rng×(m+1) is the vector of barycentric coordinates of ng coefficients x̆sα, α ∈ G, and yG ∈ Rng406

the data coordinate of bsα, α ∈ G.407

- The operator R selects the inner BB-coefficients bsα, 1 ≤ αi ≤ 2.408

Since the irregular structure (number of irregular points and irregular edges) is unchanged after applying S̃, the409

operator P̃ remains the same regardless of level of refinement. For example, P̃S̃S̃c is well-defined.410

Theorem 3. The C1 spline space of the data y on the fixed geometry x constructed by Algorithm C1 is refined by the411

subdivision operator RP̃S̃.412

Proof The operator S̃ re-represents a spline on the n irregular sub-boxes surrounding an irregular point. The values413

ysα, α ∈ G have previously (in Step 4 of P or P̃) been determined by a unique linear map `. Therefore the least-414

squares fit (16) based on (7’) re-creates `, and P̃S̃ = S̃. The subdivision operator therefore re-represents y on the415

subdivided domain. |||416

Remark. While splitting at the midpoint yields the standard convergence of the control net of y to the function y by417

a factor 1/4, the radius of the tri-cubic pieces corresponding to the irregular sub-boxes does not halve but shrink by418

3/8. This is akin to many subdivision algorithms, except that subdivision contraction typically varies with n while419

the radius does not.420

Lemma 6. The splines constructed by Algorithm C1 reproduce linear functions.421

Proof Since tri-cubic splines reproduce polynomials of degree three, the claim holds where the box-complex is regular.422

Near irregularities, ` is the best fitting linear function to the linear data, hence reproduces the linear function, and (16)423

preserves linearity. |||424

Due to the local support also pieces of linear functions can be reproduced.425

The three theorems imply that the expressions
∑
s,α y

s
αf

s
α form a C1 spline space over a box-complex. Regardless426

of regularity, the space offers 2m uniformly distributed degrees of freedom ysα and is suitable, as has been verified, for427

finite element computations.428

8. Discussion of Alternatives and Extensions429

430

Fewer pieces. Since the goal of the splitting in S is to separate irregularities and so make P local, it is not necessary431

to split in directions where the spline space is a tensored space: if the box contains only semi-regular edges traced by432

the same parameter (parallel edges if the box is a cube) then there is no need to split along this parameter, see Fig. 16c.433

Example: Consider a box that contains only one semi-regular edge and no irregular point as in Fig. 2b. Such boxes434

need not be partitioned in the axial direction that tensors a bivariate (regular or irregular) mesh: the tri-cubic needs435

only be split into 22 pieces. �436

Lower degree. Can we lower the degree of the C1 tensor-product splines from cubic to quadratic? Due to coalescing437

BB-coefficients, quadratic boundary curves emanating from the irregular point become straight lines. This severely438

limits the polynomial reproduction of the space and is unacceptable for the shape of surfaces. Moreover, imposing439

smoothness leads to interdependence between the spline constructions at neighboring irregularities that may not be440

resolvable.441

Higher Smoothness. In place of the linear map for Ck, k = 1, we can compose a unique Taylor expansion up to442

order k + 1 with a k-fold coalesced, singular parameterization. In two variables, already Bohl and Reif (1997); Reif443
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(a) (b) (c) semi-regular
edge

Figure 16: Three cases for Step (ii) of S: (input mesh)→ (split mesh). The ×’s at either end denote irregular points connected by a sequence of
edges. The solid horizontal bars represent the original partition of the box-complex. The dashed bars indicate the partition due to splitting. (a,b)
show required splits near the irregular points. (c) illustrates the case when no partition is needed for the middle semi-regular edge.

(1998) explored k-fold degeneracy using composition. Compared to that complete composition, replacing only the444

local expansion as in this paper can lower the polynomial degree.445

Boundaries. A standard technique for modeling boundaries of manifolds is to virtually extend the original box-446

complex so that all original nodes are interior. One choice is to reflect the outermost boxes across their boundary faces447

and adjust for intersections and gaps; another is to replicate the boundary on top of itself to obtain an extension by448

zero-volume boxes. Algorithm C1 then applies to the original box-complex. To create a smooth the outer surface, the449

outermost layer of BB-coefficients can be replaced by those of a smooth bivariate construction, for example Nguyen450

and Peters (2016).451

Higher number of variables. The concepts, constructions and proofs were set up to carry over to m-variate C1
452

tensor-product splines for m > 3.453

AdaptiveC1 spline spaces. In the bivariate case, e.g. PHT splines Kang et al. (2015) provide simple adaptive bi-cubic454

C1 elements. We can apply the underlying principle: ‘coarse determines fine wherever unrefined and refined splines455

meet’ also to m-variate C1 elements to obtain adaptive C1 spline spaces.456

Robustness. In the bivariate case, i.e. for unstructured quad meshes, the space tolerates extreme aspect ratios and even457

degeneration of the underlying box-complex, when used to solve higher-order differential equation in the Galerkin458

framework. The trivariate space may similarly be a good choice for hex-dominant constructions Owen (2001); Gao459

et al. (2017) that can include degenerate cells. An assessment of robustness and efficiency of the new trivariate space,460

based on an implemented solver for higher-order differential equations, is in progress.461

Use as a manifold. If we define data ysα ∈ Rk, the construction yields a trivariate data manifold defined by462

y : R3 → Rk in k-space. The bivariate free-form surface construction Nguyen and Peters (2016) can be interpreted as463

choosing k = 3 and defining y : R2 → R3.464

9. Conclusion465

Tri-cubic splines represent an attractive combination of low polynomial degree, built-in smoothness and reproduc-466

tion. This paper generalized C1 tri-cubic splines to unstructured hex-meshes, guaranteeing smoothness also across467

irregular points and irregular edges. An explicit basis of 23 functions per hexahedral input box can reproduce linear468

functions, also locally, and is refinable. Data structures are not much more complex than those for tri-linear splines469

on hexahedral meshes and operations to evaluate position and derivatives are straightforward, based on the splines’470

tri-cubic Bernstein-Bézier pieces.471
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