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Abstract

For two high-quality piecewise polynomial geometrically smooth (G1) surface con-

structions, explicit G1 functions are derived that form the basis of a functions space

on the G1 surfaces. The spaces are refinable and nested, i.e. the functions can be re-

represented at a finer level. By choosing all basis functions to be first order smooth a

maximal set of degrees of freedom is obtained that have small support and near-uniform

layout.

1. Introduction

Subdivision surfaces are defined as a nested sequence of refined representations.

This allows for ever finer approximation of their limit and for a natural hierarchy. How-

ever, the infinite recursion also complicates the inclusion of subdivision surfaces into

existing industrial design infrastructure and postprocessing, such as computing inte-

grals near the extraordinary limit points. Geometrically smooth constructions for fill-

ing multi-sided holes, on the other hand, while compatible with existing infrastructure

seem to lack refinability, except for trivial splitting by de Casteljau’s algorithm. De

Casteljau splitting does not provide refined smooth spaces with additional degrees of

freedom. If the goal is to better match data, alter the design or to animate geometry

then re-arranging the initial patch layout can provide the required degrees of freedom.

However, when the purpose of the refinable space of compatible G1 functions [GP15]

is to compute on the surface, strict nestedness of the refined spaces is required – if only

to apply standard tools and estimates of finite element theory. A standard approach to

judge the accuracy of a finite element numerical solution is to compare the solutions

before and after nested refinement, and to conclude accuracy within error bounds when

the computed function does not change by more than a fraction of the acceptable er-

ror. If the refinement is not nested, i.e. if the function space changes at each iteration,

then such comparisons can not be made since it is not clear that the sequence with

shrinking error converges: the error may shift to different regions with each iteration,

increasing the error in some parts of the domain while reducing in others. Moreover,

the principles of isogeometric analysis on manifolds [GP15] additionally require that

the Gk-construction of the geometry and the analysis functions on the geometry have

identical reparameterizations across patch boundaries.

A further reason to investigate nested refinement is that some CAD processes re-

quire exact preservation of primary design surfaces when adding detail. Even though
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we will not recommend to use all additional degrees of freedom of the refined G-splines

directly as good handles for modeling, tools could be built to leverage them to support

localized adjustments for an otherwise vetted and immutable primary design surface.

While singular parameterization can yield both free-form surfaces and nested, re-

finable spaces [NP16], this comes at the cost of reduced surface quality. Therefore,

this paper exposes the refinability of functions on two recently-developed high-quality

G1 surface constructions: [KP15] of degree bi-5 and [KNP16] of degree bi-4. We

illustrate the trade-off between uniformity and locality of refinement for these two al-

gorithms and different choices of smoothness within the refined pieces. To maintain

its focus on nested refinability the paper does not present an implementation of appli-

cations such as isogeometric analysis on manifolds.

Overview After a brief review of the literature, Section 2 sets the stage for refined

multi-sided hole filling and explains the common components of refined constructions:

Section 2.1 specializes the G1 constraints for refining [KP15] and [KNP16], Section 2.2

shows how to preserve curvature continuity at the central point, Section 2.3 shows the

generic construction from the surrounding spline complex into the multi-sided surface

cap and the refinement away from the geometrically continuous boundaries. Section 3

establishes the properties of the refined functions and Section 4 adds a 2 × 2 refined

biquartic alternative for completeness that may be thought of as just one additional step

of refinement. The discussion Section 5 focuses on the choice of degrees of freedom

and implementation.

1.1. Literature

Starting with [COS00, CSA+02], subdivision functions have repeatedly been used

as finite elements, leveraging their natural ability to re-represent functions at a finer,

possibly adaptive level to improve solutions. The challenge concerning integration

near irregular points was pointed to e.g. in [HKD93, NKP14].

Since matched Gk-constructions always yield Ck-continuous isogeometric ele-

ments [GP15], a number of geometrically continuous constructions have been tested

for their use in solving higher-order partial differential equations on planar domains,

graphs and, without nested refinement, on smooth manifolds. Generalized iso-geometric

analysis elements were shown to be effective in [NKP14, KNP16, NKP16]. Geo-

metrically continuous surface constructions, including those of our focus [KP15] and

[KNP16], intentionally do not expose all Bézier degrees of freedom that exist after G1

constraints have been enforced. Rather they harness the asymmetrically-distributed de-

grees of freedom to optimize shape and provide high-level B-spline-like control points

that bake in not only formal smoothness but good shape as verified against a gallery of

challenging test cases. However, we do not know how to refine the control net so that

the algorithms generate the same surfaces at finer levels.

The present paper takes the approach that the surface (geometry) is determined by

the B-spline-like construction that is optimized for good shape – while a set of linearly

independent functions provides a maximal set of degrees of freedom for nested refine-

ment of functions on the surface. The goal is to explicitly exhibit these G1 continuous

functions (with the same reparameterizations as the underlying surface), not just count

them. This differs both from [MVV16] which, akin to the analysis of Ck functions

[LS07], computes the dimension of G1 spaces for various choices of connectivity and
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geometric layout; and from [KVJB15, CST15] that enumerate G1 transitions between

two patches, based on various choices of patch degree, connectivity and geometric lay-

out. This paper sorts the specific degrees of freedom into several classes, depending on

their distance to the geometrically continuous patch boundaries.

2. Notation and Geometric continuity

The constructions in [KP15] and [KNP16] focus on a submesh, called CC-net, that

consists of an irregular node, where n 6= 4 quads (4-sided facets or sectors) meet,

and 6n nodes that form two layers of quads surrounding it (the second layer may have

irregular nodes). Fig. 1a displays a CC-net plus one additional layer of quads that is not

used for the construction of the n-sided surface cap but provides, for context, a surface

ring (green in Fig. 1b) surrounding the cap. Only the C2 prolongation of this surface

ring towards the center, called a tensor-border of degree 3 and depth 2 and denoted t3
is needed for the constructions and their refinement.

While the initial geometric constructions [KP15], [KNP16] use, akin to the control

points of a tensor-product spline, as degrees of freedom only the nodes of the CC-net,

the refined constructions have a variety of different degrees of freedom: bi-cubic B-

spline control points, control points of a quadratic expansion at the center and Bézier

control points of tensor-product patches. While the additional degrees of freedom were

available also for the geometric constructions, they were used to improve shape and

simplify the manipulation handles of the surface to mimic a B-spline-net. Now, how-

ever, additional degrees of freedom along geometrically reparameterized edges will

be exposed – for computing on surfaces rather than for geometric manipulation. This

difference is discussed in more detail in Section 5.2.

(a) extended CC-net

.

(b) bi-3 ring + t3

Figure 1: Hole-filling setup from [KP15]. (a) An CC-net extended by one layer for n = 5. (b) A regular

bi-3 surface layer (green) surrounding a tensor-border t3 of depth 2.
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2.1. Geometric continuity under refinement

We construct surface pieces ṕ and p̀ mapping [0..1] × [0..1] → R
d that share a

boundary curve ṕ(u, 0) = p̀(u, 0). For geometric constructions typically d = 3 and

for the refinable function space to be constructed d = 1. Moreover, we construct ṕ and

p̀ so that along their common curve the G1 constraint holds:

∂vṕ− a(u)∂vp̀− b(u)∂up̀ = 0. (G1)

In our refinement constructions ∂vṕ(u, 0), ∂vp̀(u, 0) and ∂up̀(u, 0) will be piecewise

polynomial functions in u and a(u) and b(u) will be subdivided, hence entire poly-

nomials. Therefore, if ∂vṕ(u, 0), ∂vp̀(u, 0) are Cν-continuous, the boundary curve

ṕ(u, 0) = p̀(u, 0) must be Cν+1-continuous.

In our constructions there are two types of G-curves of a cap: sector separating

curves (schematically displayed as the right and the top edges of the subdivided square

in Fig. 2(a)) and input curves that form the degree 3 border of the cap (left and bottom

edge in Fig. 2(a)). Fig. 2(a) also labels, from the center point with index 0 to the corner

with index N = 2s, the breakpoints of the N × N partition of a sector at level sth

refinement. The points with indices k and k + 1 bound the kth segment.

Structural symmetry, i.e. invariance under reversing the labeling of sectors, across

the sector separating curves implies a(u) := −1. Both [KP15] and [KNP16] addition-

ally choose b(u) := 2c(1−u). To match the tensor-border, a second reparameterization

is applied across input curves. The reparameterizations will be subdivided along with

the surface.

N = 2s

N = 2s

N − 1

N − 1
0

1

1

(a) 2s × 2s sector partition

p̀k = p̀ ṕ = ṕk

p̀k−1 ṕk−1

p̀k+1 ṕk+1

00

01 0110

11 11

i0

i1 i1

m0
m1 m1

(b) BB-coefficient indices

Figure 2: (a) Uniform 2s × 2s partition (s = 2) of a sector at an irregular point (index 0). The right

edge corresponds to sector separating curves defined by p̀k
i0, k = 0, . . . , 2s−1 = N − 1. The left edge

corresponds to the input curve. (b) Indexing symmetric with respect to the sector separating curve for solving

(G1).

Denote by pij the BB-coefficients of a tensor-product patch p of bi-degree m de-
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fined in terms of the Bernstein-Bézier (BB) polynomials Bm
k (t) of degree m:

p(u, v) :=

m∑

i=0

m∑

j=0

pijB
m
i (u)Bm

j (v) , (u, v) ∈ � := [0..1]2.

The reparameterization along sector separating curves yields a smooth surface under

the following constraints.

Lemma 1 (linear (G1)). Let p̀, ṕ be adjacent patches of degree bi-m. For

i = 0, . . . ,m, a(u) := −1 and b(u) := w(1− u) + w̄u,

the G1 constraints (G1) are satisfied if (see Fig. 2(b) for indices)

ṕi1 := −p̀i1 −
i

m
w̄p̀i−1,0 +

(
2− (1−

i

m
)w +

i

m
w̄
)
p̀i0 + (1−

i

m
)wp̀i+1,0 . (1)

In the following it will be convenient to consider the λth BB-layer of p̀ consisting

of BB-coefficients p̀k
iλ where λ ∈ {0, 1} and i = 0, . . . ,m (and analogously for ṕ).

p̀k
i0 are coefficients on the kth curve segment shared by two patches p̀ and ṕ. We say

that the λth BB-layer of p̀ is Cν-connected if its pieces join Cν when interpreted as

curves, i.e. when
∑

j p̀
k
jλB

d
j and

∑

j p̀
k+1
jλ Bd

j join Cν for all k.

Noting that subdividing w amounts to choosing wk+1 = w̄k = 1
2 (wk + w̄k+1),

comparing differentiability establishes the following fact.

Proposition 1 (implied smoothness of G1 refinement). Assume that two consecutive

pairs of subpatches along the sector partition satisfy (1), {p̀k, ṕk} with (wk, w̄k)
and {p̀k+1, ṕk+1} with (wk+1, w̄k+1). Let 0 ≤ ν ≤ m − 1. Assume that the sector-

separating BB-layer λ = 0 of p̀ (and hence of ṕ) is Cν+1-connected and BB-layer

λ = 1 of p̀ is Cν-connected. If wk+1 = w̄k = 1
2 (wk + w̄k+1) then the BB-layer λ = 1

of ṕ is Cν-connected.

By setting a(u) = −1 and

b(u) := wk(1− u) + w̄ku, wk := 2(1−
k

N
)c , w̄k := 2(1−

k + 1

N
)c, (2)

for the kth segment subpatches of the refined constructions of [KP15] (bi-5) and [KNP16]

(bi-4), the assumption wk+1 = w̄k = 1
2 (wk + w̄k+1) of Proposition 1 holds.

2.2. Curvature continuity at the central point and refinement of quadratic expansion

In the next two sections, we refine near the irregular point and along the input curve

– in preparation for refining [KP15] and [KNP16] along sector separating curves. Fig. 3

shows, as green circles, the degrees of freedom of one sector of the tensor-border t3,

namely bi-cubic B-spline control points. The blue disks in the upper right corner mark

the sector’s BB-coefficients defined by a unique quadratic at the irregular point. The

quadratic provides another six degrees of freedoms.
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Figure 3: Degrees of freedom along the input curves and BB-coefficients of the quadratic expansion at

irregular point.

σ00

σ20

σ02

(a) domain triangle

00

02

10

11
20

20

01

qr qr+1

(b) indices of quadratic expan-

sion q

00

02 10
11

20

01

(c) indices of the reparameteriza-

tion σ

Figure 4: Quadratic expansion and reparameterization at the irregular point.

[KP15] and [KNP16] support high surface quality by curvature continuity at the

irregular point. Under refinement we retain curvature continuity at the irregular point

as follows. The rth sector of the quadratic expansion is expressed in total degree 2 BB-

form with BB-coefficients qr
ij (see Fig. 4a; the double subscript accounts for rotation

from sector to neighboring sector). Taking as free control point:

q0
00, q

0
01, q

0
10, q

0
02, q

0
11, q

0
20, (3)

the coefficients of the other sectors are calculated iteratively as

qr+1
00 :=qr

00, q
r+1
01 := qr

10, q
r+1
02 := qr

20,

qr+1
10 :=− qr

01 + 2cqr
10 + 2(1− c)qr

00, q
r+1
11 := −qr

11 + 2cqr
20 + 2(1− c)qr

10,

qr+1
20 :=qr

02 − 4cqr
11 + 4c2qr

20 − 4(1− c)qr
01 + 8c(1− c)qr

10 + 4(1− c)2qr
00.

Following [KP15] we define a reparameterization σ with BB-coefficients σij (Fig. 4b),

that is symmetric with respect to rotation and diagonal flip, to satisfy (1) when k = 0;
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i = 0, 1. (Recall that k enumerates the pieces starting at the irregular point).

σ00 := (0, 0), σ10 :=
1

2
(σ00 + σ20), σ11 :=µ

1

2
(σ02 + σ20) + (1− µ)σ00, (4)

w̄ := w̄0 := 2(1−
1

N
)c, µ :=

{
10+8c+w̄
10(1+c) for [KP15];
8+6c+w̄
8(1+c) for [KNP16];

.

The coefficients σ20 and σ02 are set to be the corner points of domain sector triangle of

the quadratic expansion q (see Fig. 4c). Then the second order Hermite expansion of

q ◦ σ at the origin has the bi-5 [KP15], respectively the bi-4 [KNP16] BB-coefficients

pr
00 :=qr

00, p
r
10 := −qr

00 + 2qr
10,

pr
20 :=

{

− 1
2q

r
00 − qr

10 +
5
2q

r
20 for [KP15];

− 1
3q

r
00 −

4
3q

r
10 +

8
3q

r
20 for [KNP16];

pr
11 :=(−1− 2τ)qr

00 + τ(qr
10 + qr

01) + 2qr
11,

τ :=

{
w̄−2c
5(1+c) for [KP15];
w̄−2c
4(1+c) for [KNP16];

(5)

Symmetric formulas define pr
01, pr

02. By construction, the pr satisfy (1) for i = 0, 1.

Since the refinement (q ◦ σ)(u/2, v/2) yields the same formula (5) except for N
in w̄ adjusted to the new refinement level s, we have the following lemma.

Lemma 2 (refinement of central quadratic degrees of freedom). The six central free

control point q̃0
ij at level s are obtained from the six q0

ij at level s−1 as if by de Castel-

jau’s algorithm:

q̃0
00 :=q0

00, q̃
0
10 :=

1

2
(q0

00 + q0
10), q̃

0
20 :=

1

4
q0
00 +

1

2
q0
10 +

1

4
q0
20,

q̃0
11 :=

1

4
(q0

00 + q0
10 + q0

01 + q0
11). (6)

Symmetry of formulas defines q̃0
01, q̃0

02.

2.3. G1 refinement along an input curve

Along the input curves, tm = t3 ◦β is of degree m and depth 1 (m = 5 in [KP15],

m = 4 in [KNP16]) with t3 ◦ β the input tensor-border t3 reparameterized by

β := (u+ b(u)v, a(u)v) : a(u) :=
m−3∑

i=0

aiB
m−3
i (u), b(u) :=

m−2∑

i=0

biB
m−2
i (u).

(7)

Fig. 3 shows as green circles (◦) the bi-3 B-spline coefficients of the CC-net for a

refinement at level s = 2. The refinement is based on de Casteljau’s algorithm and is

summarized in the following lemma.
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Lemma 3 (refinement of the tensor-border reparameterization). Abbreviating the re-

fined tensor-border pieces as

tleftr := tr(
u

2
,
v

2
), trightr := tr(

1

2
+

u

2
,
v

2
), r ∈ {3, 5},

then tleftm = t
left
3 ◦ βleft, trightm = t

right
3 ◦ βright, where

aleft(u) := a(
u

2
), aright(u) := a(

1

2
+

u

2
), bleft(u) := b(

u

2
), bright(u) := b(

1

2
+

u

2
).

The explicit expressions for the BB-coefficients of aleft, aright, bleft, bright, starting

with the choice of ai, bi from [KP15], respectively [KNP16], are

a0,0i :=ai, i = 0, . . . ,m− 3, b0,0i := bi, i = 0, . . . ,m− 2,

as,2ki :=a
(s−1,k)right
i , bs,2ki := b

(s−1,k)right
i ,

as,2k+1
i :=a

(s−1,k)left
i , bs,2k+1

i := b
(s−1,k)left
i ,

(8)

were the superscript (s, k) specifies the refinement level s and segment k, 0 ≤ k ≤
N − 1, N := 2s.

At each intersection p̀N−1
m0 of an input curve and a sector separating curve, the input

curve is degree-raised and hence (1) holds for i = m. The formulas of Appendix A

and

[KP15] : bs,03 = 0, as,01 =
1

4
as,02 (4− wN−1);

[KNP16] : bs,02 = 0, as,00 =
1

2
as,01 (2− wN−1)

(9)

imply that (1) holds for i = m − 1. Constraints (9) hold for s = 0 with the choice of

ai, bi of [KP15], [KNP16] and induction confirms that (9) holds under refinement.

00

01

10

11

Figure 5: The bi-3 coefficients t
s,0
3;ij are shown as black circles, bi-5 coefficients t

s,0
5;ij as green disks.

Some care has to be taken for the corner subpatch pN−1,N−1 to be well-defined.

The reparameterization must be diagonally symmetric:

t
s,N−1
m;̄ij̄

=
1∑

i=0

1∑

j=0

eīj̄ijt
s,N−1
3;ij , eīj̄ij = ej̄īji for {̄i, j̄, i, j} ∈ {0, 1} (10)
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(see Fig. 5) and (10) holds for

as,N−1
0 := 1, bs,N−1

0 := 0, as,N−1
1 :=

{

1 + 3
2b

s,N−1
1 , [KP15],

1 + 2bs,N−1
1 , [KNP16].

(11)

Since (11) holds for the initial

[KP15] : a0 := 1, a1 := (1−
c

2
)a2; a

def
2 := 1 + 0.413c+ 0.116c2 (12)

b0 = b2 = b3 := 0, b1 :=
(2− c)a2 − 2

3

[KNP16] : a0 := 1, a1 :=
1

1− c

, b0 = b2 := 0, b1 :=
c

2(1− c)
, (13)

induction verifies that (11) holds also after refinement.

For the refined tensor-border tm, we therefore obtain the following proposition.

Proposition 2 (smoothness along the input curve under refinement). If t
s,k
3 are C2-

connected and ts,km := t
s,k
3 ◦ β then ts,k−1

m , ts,km , ts,k+1
m are C1-connected.

2.4. G1 refinement along the sector separating curves

By Proposition 2, the refined sector is only C1 along the input curve. Therefore,

we set the smoothness to be ν = 1. Proposition 1 implies that the sector separating

curves are C2-connected. Since the layers under consideration all have knots of high

multiplicity when expressed in B-spline form, for m > 3 it is more convenient to

express the free control points in BB-form. We recall that two adjacent Bézier curves p

and p̃ of degree m are C1-connected if p̃0 = pm := 1
2 (pm−1+ p̃1) and C2-connected

if

p̃0 = pm, pm−1 := pm +
1

4
(pm−2 − p̃2), p̃1 := pm −

1

4
(pm−2 − p̃2) .

(For C1 curves, B-spline control points coincide with the ‘inner’ BB-coefficients, for

C2 curves, the B-spline control equals 2pm−1 − pm−2 = 2p̃1 − p̃2.)

Fig. 6 schematically displays the free control points along the sector separating

curve as well as the BB-coefficients derived from the central quadratic and the input

tensor-border:

• p̀0
i0, i = 0, 1, 2 and p̀0

i1, i = 0, 1 are defined by quadratic expansion, see Sec-

tion 2.2.

• p̀N−1
i0 and p̀N−1

i1 , i = m − 1,m are defined by the input bicubic B-spline, see

Section 2.3.

For k = 0, . . . , N − 1, the following BB-coefficients p̀k
ij can be independently set

while retaining G1 continuity (the generic cases for k = 1, . . . , N − 2 are listed first):

• p̀k
i1, i = 1, . . . ,m− 1, p̀0

i1, i = 2, . . . ,m− 1; p̀N−1
i1 , i = 1, . . . ,m− 2;
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0

1

2

3

4

5

p̀0

p̀1

p̀N−2

p̀N−1

(a) bi-5 [KP15]

0

1

2

3

4

p̀0

p̀1

p̀N−2

p̀N−1

(b) bi-4 [KNP16]

Figure 6: The free control points g• = gk
i1 and g• = gk

i0 along the sector separating curve, and the points

g• defined by the tensor-border and g• by the central quadratic. The number line to the left of each figure

shows the indices of the BB-coefficients of the BB-layer curves.

• [KP15]: p̀k
i0, i = 2, 3, 5; p̀0

i0, i = 3, 5; p̀N−1
i0 , i = 2, 3;

[KNP16]: p̀k
i0, i = 2, 4, p̀0

40; p̀N−1
20 .

Fig. 7 displays, as black disks, the internal free control point. The gray G1 strips rep-

resent the BB-coefficients of Fig. 6 as defined by Section 2.2, Section 2.3, Section 2.4.

Due to the G1 constraints, the refinement rules for the free control point gk
ij along

the input curve and the central quadratic are best obtained by construction rather than

tabulating a large, parameterized family of subdivision stencils.

3. Basis functions and their properties

Setting to 1 the value of one free control point g and to zero those of all other free

control points and then applying the algorithm yields, as a collection of polynomial

pieces represented in BB-form, the G-function gg of g. For simplicity, we denote, along

the sector separating curve, as gkij the G-function for the control point gk
ij . Although the

value of gk
ij coincides with that of p̀k

ij used in the previous section, we assign different

symbols to make clear that the function associated with gk
ij is a piecewise polynomial

G-function, whereas the function associated with p̀k
ij is a Bernstein polynomial.

3.1. Support and BB-coefficients of G-functions

Since interior G-functions are tensor-product B-splines, their support is well-known.

Near sector boundaries the additional knot line limits their support to the sector. Sim-

ilarly, the B-splines along the input curve and corresponding to the regular part, with

free control points g◦ (see Fig. 3), are well-understood. Fig. 8(c) shows only their sup-

port inside the cap at the intersection of the input boundary and the sector separating

curve. Fig. 8(d,e) display the generic supports along the sector separating curve. At

the ends, the support does not exceed the sector boundaries. For m = 5, we list, as
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(a) (b)

Figure 7: free control points of internal C1 refinement: (a) bi-5 [KP15]; (b) bi-4 [KNP16].

(a) bi-5 g• (b) bi-4 g• (c) g• (d) g• (e) g•

Figure 8: Supports of basis functions g: (a,b) quadratic expansions for m = 4, 5. (c) intersection of input

curve and sector separating curve, (d) first BB-layer (generic case) top four quads: for indices i = 1,m− 1,

bottom two quads for i = 2,m − 2; bi-4: top for indices i = 1, 3, bottom for i = 2, (e) sector separating

curve (generic case) top six quads: for i = 2 and m = 4, bottom four quads for i = 4.

explicit examples, the BB-coefficients of some G-functions. Noting that p̀k
5λ = p̀k+1

0λ

and that p̀k
j0 = ṕk

j0 is the sector separating curve, we only list nonzero rows. The

bold 1 marks the BB-coefficient of the G-function gkij that is obtained, as we recall, by
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setting gk
ij = 1 and all other free control points to zero.
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(14)

Leveraging symmetry and shift, there are relatively few different patterns for the BB-

coefficients of G-functions to store.

(a) Minimal mesh (valence 6) (b) free control point (green)

Figure 9: Directly adjacent caps. (b) The green circles represent B-spline control points of the first BB-layer

curve and the green squares are BB-coefficients on the curve.

Proposition 3 (Linear Independence). For each of [KP15] and [KNP16], for each

level of refinement, the G-functions gg associated with the free control points g form a

basis of a corresponding space of G1 functions.

Proof The linear independence of the G-functions gg associated with the free control

points g follows from four observations (color coded as in the previous bullet list).

g◦ The bi-3 B-splines of the tensor-border are linearly independent over the regular

region outside the cap. When caps abut directly there is no regular region. Then

the thick hollow markers in Fig. 9(b) (green circles for B-spline control points

and green squares for BB-coefficients) represent the free control points of the

first BB-layer curves to either side of the input curve. (The first BB-layer curves

determine the input curve via C1 constraints.)
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g• The interior G-functions are C1 B-splines of degree bi-m, hence linearly inde-

pendent.

g• The quadratic at the irregular point is defined by the six free control points of

(3). The corresponding six G-functions are linearly independent.

g•,g• The corresponding G-functions along the sector separating curve are linearly

independent since, by construction, only gkij has a non-zero BB-coefficient p̀k
ij .

No non-zero BB-coefficient of g• or g◦ is an independently-set BB-coefficient p̀k
ij

along the sector separating curve (cf. Section 2.4), and the interior G-functions g• do

not share non-zero BB-coefficients with any other type of G-function. Therefore the

four types of G-functions together are linearly independent. |||

4. G
1 refinement of 2 × 2 bi-4 surfaces

Although valences n = 3, 4, 5, 6 often suffice for design of free-form surfaces for

completeness, we discuss the structurally similar refinement of 2 × 2 bi-4 patches per

sector from [KNP16] intended for caps with higher valences such as Fig. 10(a). For

implementation, we may treat the resulting functions as one level more refined than the

‘unsplit’ bi-4 construction.

(a) CC-net and bi-4 cap of valence 9 saddle

p̀

p̀

(b) 2× 2 initial split

20
30

10
20

p̀N−1

p̀
0

(c) free control point along

sector separating curve

Figure 10: Initial 2× 2 partition and free control point.

According to [KNP16]

top: (p̀) a(u) := −1, b(u) := w(1− u) + w̄u;

bottom: (p̀) a(u) := −1, b(u) := w(1− u) + w̄u,
(15)

where w = w̄ = γ, w := 2c, w̄ = 0, γdef := 1.13 − 0.9c + 0.36c2. Since (1)

applies separately to the top and the bottom patches, the refinement of w, w̄ and p̀N−1
i1 ,

p̀
0

i0
(small cyan free control point) are those of the unsplit construction and we choose

ν = 1. However, since w̄ 6= 1
2 (w + w̄), the sector separating curve is only C1 across
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the split (cf. Fig. 10b) yielding additional free control point p̀N−1
30 and p̀

0

10
(big cyan

disks). The top and bottom pieces of the cap are C1-connected by setting

p̀N−1
40 = p̀

0

00
:=

1

2
(p̀N−1

30 + p̀
0

10
) .

p̀
0

20
:= p̀N−1

20 +
14w̄N−1 − wN−1 − w̄0

6w̄N−1
(p̀0

10
− p̀N−1

30 ).

• The quadratic expansion is refined according to the unsplit bi-4 construction ex-

cept that initially w̄ := γdef 6= 0.

• The tensor-border is refined according to the unsplit bi-4 construction, except

that (13) is replaced by the more general choice

a0 := 1, a1 :=
1

1− γc
, b0 = b2 := 0, b1 :=

γc

2(1− γc)
.

We note that since b(u) and b(u) join only with continuity, the remark following (G1)

on Cν+1 continuity of the sector separating curve therefore does not apply. Analo-

gously to Proposition 3, we can prove that the G-functions gg associated with the free

control points g form a basis of a corresponding space of G1 functions.

5. Discussion

Balancing the number of special cases of refinable basis functions against their

support size is an important choice when refining. Smaller support offers finer reso-

lution that, while undesirable in the context of high-quality surface constructions, can

reduce the number of refinement steps and yield more localized interaction of deriva-

tives in the finite element context. Moreover, increased internal smoothness to reduce

the growth of degrees of freedom can complicate implementation. We illustrate this

trade-off between uniformity and locality below.

5.1. Refinable functions with higher internal continuity

(a) sector (b) enlargements of

lower left corner

(c) first refinement (d) second refinement

Figure 11: Mixture of internal C1 and C2 continuity. The gray strips are neighborhoods of refined G1

curves (boundary and sector separating curves). Disks mark free control point of the internal C2 connected

patches.
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(a)

p̀0

p̀1

p̀N−2

p̀N−1

(b)

Figure 12: (a) The free control points of internally C3 bi-5 sector. (b) C3-connected cyan and C4-connected

red BB-layers.

Since the initial caps of [KP15] and [KNP16] are formally only G1 (although pro-

longing second order Hermite data), it seems unnecessary to increase internal smooth-

ness of the sectors beyond C1. Moreover increasing internal continuity complicates

implementation: with each refinement (cf. Fig. 11b,c,d) more BB-layers of patches

across the input curves inherit C1 continuity.

The growth of C1 BB-layers, which is caused by the refinement of C1-reparameterized

input data, can be avoided by adaptively refining only near the irregular point and not

along the input curve. For [KP15] bi-5 the internal continuity can then be ν ≤ 3 (by

Observation 1, the sector separating curve is C4 for ν = 3; see Fig. 12), while for

[KNP16] bi-4, ν ≤ 2 since a C4 quartic is global and yields no additional free control

point via refinement.

5.2. The computational rather than geometric role of the additional free control point

Fig. 13 shows raised a part of the sector separating curve at refinement level s = 2
of [KP15]. The closeup Fig. 13d shows that raising just the g• free control point along

the sector separating curve yields an asymmetric BB-net ( as expected from (14)). Only

if both g• and g• are used together is the new feature aligned with the sector separating

curve, Fig. 13e. We explain the nature of the asymmetry by reference to the curve

case. Consider a (u =const) parameter-curve perpendicular to the sector separating

curve. We simplify matters by stipulating that the two degree 3 curve segments b0 and

b1 (with BB-coefficients bk
j , j ∈ {0, 1, 2, 3}) join C1 at bk

0 = bk−1
3 = (bk−1

2 +bk
1)/2,

as in Fig. 14. The inner BB-coefficients bk
1 , bk

2 a co-located with the double-knot B-

spline coefficients (black disks in the top polygon of Fig. 14a). The endpoints bk
0 and

bk
3 (circles) are their averages due to the C1 join and Fig. 14a shows the corresponding

two-piece spline curve in the middle. Alternatively, the same spline curve is defined by

a less symmetric set of control points bk
2 (cyan) and bk

3 (red disks) (Fig. 14a bottom).

These control points also determine the remaining bk
1 (marked as circles) by the C1

constraints. However, manipulating the top control polygon by pulling up the B-spline
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(a) CC-net (b) [KP15] (c) perturbation

(d) closeup: BB-nets (e) closeup: BB-nets

Figure 13: (a) input n = 6 CC-net and (b) bi-5 [KP15] surface; (c,d) naive direct manipulation with free

control point; (e) modification via auxiliary ’height’ function.

(a) 2-piece cubic (b) bk
1 , bk

2 (c) bk
2 , bk

3

Figure 14: Univariate analogue explaining the geometric effects of different choices of free control point (cf.

Fig. 13).

control point b0
2 (black disk, Fig. 14b) changes the curve gently while applying the

same change to bk
2 (cyan disk in Fig. 14c) for the bottom choice of free control point,

results in a large oscillation and thus mimics perturbing g• and g•). We conclude that

the additional free control point obtained by refinement along the sector separating

curve are not for direct surface manipulation.

5.3. Implementation

Compared to generalized subdivision algorithms, such as Catmull-Clark subdivi-

sion [CC78], the implementation needs to keep track of the refinement level s and

location k ∈ [0, 1, . . . , N − 1, N := 2s with respect to the initial G1 patch boundaries.

However, in terms of s and k there are relatively few special G1 refinement patterns,

essentially of those of type (6), (14) and Appendix A.

6. Conclusion

By subdividing the reparameterization along the initial geometric G1 patch bound-

aries, we were able to explicitly generate a maximal set of G1 functions that refine the
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space of the initial high-quality geometric construction in a nested hierarchy. There are

four types of basis functions, each with localized support. Such a space can be used,

for example, to compute elastic shell properties for a given free-form geometry.

Acknowledgements The work was supported in part by NSF Grant CCF-1117695.

[CC78] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbi-

trary topological meshes. Computer-Aided Design, 10:350–355, Septem-

ber 1978.
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Appendix A

Along the input curve, the BB-coefficients tm;i0, i = 0, . . . ,m, (m = 4, 5) are

obtained from t3;i0, i = 0, . . . , 3, by degree-raising. For the first interior layer

t4;1 :=
1

16
A4;0t3;0 +

1

16
A4;1t3;1; t5;1 :=

1

50
A5;0t3;0 +

1

50
A5;1t3;1,

t3;0 := (t3;00, . . . , t3;30)
t, t3;1 := (t3;01, . . . , t3;31)

t,

t4;1 := (t4;01, . . . , t1;41)
t, t5;1 := (t5;01, . . . , t1;51)

t

A4;0 :=






16−12(a0+b0) 12b0 0 0
4−3(a1+2b1) 12−3(3a0+2b0−2b1) 6b0 0

−2b2 8−2(3a1+4b1−b2) 8−2(3a0+b0−4b1) 2b0
0 −6b2 12−3(3a1+2b1−2b2) 4−3(a0−2b1)
0 0 −12b2 16−12(a1−b2)




 ,

A5;0 :=







50−30(a0+b0) 30b0 0 0
20−6(2a1+3b1) 30−6(3a0+2b0−3b1) 12b0 0
5−3(a2+3b2) 30−9(2a1+2b1−b2) 15−3(3a0+b0−6b1) 3b0

−3b3 15−3(3a2−b3+6b2) 30−9(2a1+b1−2b2) 5−3(a0−3b1)
0 −12b3 30−6(3a2−2b3+3b2) 20−6(2a1−3b2)
0 0 −30b3 50−30(a2−b3)







,

A4;1 :=





12a0 0 0 0
3a1 9a0 0 0
0 6a1 6a0 0
0 0 9a1 3a0

0 0 0 12a1



 , A5;1 :=






30a0 0 0 0
12a1 18a0 0 0
3a2 18a1 9a0 0
0 9a2 18a1 3a0

0 0 18a2 12a1

0 0 0 30a2




 .
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