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Abstract

Graphs of pairwise incidences between collections of rigid bodies occur in many
practical applications and give rise to large algebraic systems for which all solu-
tions have to be found. Such pairwise incidences have explicit, simple and rational
parametrizations that, in principle, allow us to partially resolve these systems and
arrive at a reduced, parametrized system in terms of the rational parameters. How-
ever, the choice of incidences and the partial order of incidence resolution strongly
determine the algebraic complexity of the reduced, parametrized system – measured
primarily in the number of variables and secondarily in the degree of the equations.

Using a pairwise overlap graph, we introduce a combinatorial class of incidence
tree parametrizations for a collection of rigid bodies. Minimizing the algebraic com-
plexity over this class reduces to a purely combinatorial optimization problem that
is a special case of the set cover problem. We quantify the exact improvement of
algebraic complexity obtained by optimization and illustrate the improvement by
examples that can not be solved without optimization.

Since incidence trees represent only a subclass of possible parametrizations, we
characterize when optimizing over this class is useful. That is, we show what prop-
erties of standard collections of rigid bodies are necessary for an optimal incidence
tree to have minimal algebraic complexity. For a standard collections of rigid bodies,
the optimal incidence tree parameterization offers lower algebraic complexity than
any other known parameterization.
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1 Introduction and Motivation

A well-known approach in molecular conformation [4] and in kinematics is to
model a chain or cycle of pairwise incidences representing molecular bonds
or articulated robotic links in terms of ‘half-angle formulas’ (see e.g. [19,14]).
Each formula fixes the link except for a rotation about one axis: It is a ratio-
nal parameterization, based on the stereographic projection, that encodes the
relative degrees of freedom between two rigid bodies that share an axis de-
fined by two points. If the two rigid bodies share only one point, the resulting
three degrees of freedom can be rationally parameterized via a less well-known
quaternion motion. Completing the picture, if the two rigid bodies share three
points, they generically form one of two possible rigid bodies.

Challenge and Scope. Our goal is to resolve pairwise incidences between
rigid bodies in a more general setting than chains or cycles, namely for whole
graphs of rigid body interactions (see e.g. Figure 1). Such graphs are prevalent,
for example, in the modeling of protein backbones [21,10]: protein data bank
(pdb) files now contain information about how backbones decompose into
rigid parts. Such graphs also occur in constraint systems from mechanical
CAD and kinematics (see e.g. the survey paper [15]). We are interested in the
case where the entire system or collection of rigid bodies generically has at
most a finite number of distinct real solutions. In this case, the entire system
is called generically rigid [7] and if real solutions exist, we obtain several
distinct instances of the corresponding composite rigid body. In the above
applications, especially in molecular modeling, we are interested in finding all
of these solutions. If the rigid system generically has at least one solution, it
is called generically well-constrained (minimally rigid, in the terminology of
combinatorial rigidity).
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Fig. 1. Problem tetra. (left) Three rigid bodies (tetrahedra) ci, i = 1, 2, 3 with
points pi,j ∈ R3 for j ∈ {α, β, γ, δ}. Solid arrow-curves indicate incidences, i.e., the
tetrahedra are to be moved so that corresponding points coincide. Dashed curves
indicate fixed length bars between pairs of these points. These define three fur-
ther rigid bodies c4, c5, c6 (cf. Figure 2). (right) shows a possible assembly of the
tetrahedra for a specific initialization and choice of fixed lengths within the rigid
bodies.
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Intuitively, for any collection of rigid bodies that interact via a graph of pair-
wise incidences, a tree of these pairs can be resolved, one pair at a time, by
attaching to and representing one rigid body in the other’s coordinates using
rational parameterizations. The resolution of such a pairwise incidence tree
yields a partial ordering of elimination steps and generates a parametrized
system of remaining constraints expressed in terms of the remaining degrees
of freedom. The remaining degrees of freedom are the parameters of the ra-
tional parameterizations used to resolve the tree. The resulting parametrized
system stands a much better chance of being solved by algebraic-numeric
solvers. Note that the resulting parametrized system depends on the tree, its
traversal and the (incidence tree) parameterizations employed.

Contribution and Organization. The key contributions of this paper are

• The introduction of the concept of incidence tree parameterizations for re-
solving collections of rigid bodies.

• Conditions that define a standard collection of rigid bodies so that the opti-
mal incidence tree parameterization optimizes algebraic complexity over all
known parameterizations; and an effective strategy for standardizing collec-
tions.

• Three detailed illustrations.

Section 2 motivates the paper by example: it reviews the unoptimized ap-
proach to solving a well-constrained system of pairwise incidences among a
collection S of rigid bodies; the reduction in complexity by applying well-
chosen (pair-wise incidence) parameterizations; and finally, the further dra-
matic reduction by considering the complete collection of (maximal) rigid
bodies and properly choosing and partially ordering its pairwise incidences.
This example motivates an optimization problem over a natural class of ra-
tionally parametrized polynomial systems, each of which represents the same
well-constrained system S. This class of incidence tree parametrizations is
formally defined in Section 4.

While Section 2 shows that incidence tree parameterizations can be highly ef-
fective, Section 3 makes the important point that incidence tree parametriza-
tions can be inefficient if we do not first standardize the collection. Conversely,
once the collection is standard, the optimal incidence tree parameterization
offers lower algebraic complexity than any other known parameterization.
Characterizing standard collections of rigid bodies and establishing their im-
portance is a key contribution of the paper and yields an effective strategy
for dealing with non-standard collections: to alternate the standardization of
the collection with the optimization of Section 4.1, in recursive stages. Fortu-
nately, as pointed out in Section 4.5, such recursive standardization is part of
the decomposition phase of efficient decomposition-recombination algorithms
(DR-planners) for general geometric constraint systems [15,18]. In typical ap-
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plications (CAD and molecular modeling) where collections of rigid body in-
cidences occur, DR-planners are commonly used so that collections can be
assumed to be standard.

In Section 4, Definition 4, we define a pairwise overlap graph to represent
standard collections of rigid bodies. We use it to easily compute the algebraic
complexity (number of variables and degree) of the collection’s incidence tree
parametrizations. Minimizing the algebraic complexity over this class of inci-
dence trees for standard collections of rigid bodies is then a purely combina-
torial problem, a tractable, special case of the set cover problem. The special
case can be solved with a straightforward algorithm (Section 4.1). We quan-
tify the improvement in algebraic complexity due to minimization over the
unoptimized system (Section 4.2); and the effect on the overall computational
complexity of resolving the collection of rigid bodies (Section 4.3).

We apply the developed theory to three natural examples of standard collec-
tions of rigid bodies (Section 5). The examples
(a) illustrate the improvement in algebraic complexity of the optimized inci-
dence tree parametrized system (the examples could not be solved by current
algebraic-numeric without optimization); and
(b) suggests (Section 6) that this parametrization (i) illuminates the solution
space structure for incident standard collections of rigid bodies; (ii) could be
used for optimizing the algebraic complexity of more general algebraic sys-
tems.

2 Parameterizing and Resolving Collections of Rigid Bodies

In this section, we illustrate by example some parameterizations of pair-
wise incidences that considerably reduce the complexity of resolving a well-
constrained collection of incident rigid bodies into a single rigid body (Section
2.2). And we illustrate the additional reduction of complexity resulting from
optimizing the partial order of elimination and parametrization (Section 2.3).

To motivate the framework, and show the impact of parameterization and then
optimization we first describe an unoptimized, unparameterized formulation
(Section 2.1) and explain the incidence elimination.

Example 1 (Problem tetra) Figure 1 (left) shows a collection c := {ci} of
(rigid) tetrahedra c1, c2, c3 and (rigid) bars c4, c5, c6, constrained by a system I
of incidences, corresponding to shared points (see (1) below). The actual posi-
tions pi,j and distance values di within the rigid bodies are not relevant for the
discussion in this section. They are simply constants in the polynomial equa-
tions (that allow for a solution). The collection is generically well-constrained
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in 3D. Section 5 will present specific choices and numerical solutions.

Obtaining a realization or resolution of c means fixing a home coordinate
system h, say that of c1, and repositioning c2,. . . , c6 in the coordinate system
of h in such a way that the incidences are satisfied. We denote by

pi,j ∈ R3 the position of the jth point in the ith rigid body, ci.

The challenge can be reduced, for example, to positioning the 2 remaining
tetrahedra, while satisfying the incidences, and treating the fixed-length bars
as distance constraints. I.e., for each of the 2 remaining tetrahedra we want
to find a translation Ti ∈ R3 and the parameters of a matrix Mi ∈ R3×3,
representing the composition of three rotations, so that for each given point j
in tetrahedron ci coinciding with point j′ in tetrahedron ci′

Mi pi,j + Ti = Mi′ pi′,j′ + Ti′ (1)

and distance constraints enforced by the rigid bars c4, c5, c6 hold for 3 other
pairs

‖Mk pk,ℓ + Tk − Mk′ pk′,ℓ′ + Tk′‖ = dk,ℓ,k′,ℓ′. (2)

2.1 The Unoptimized Polynomial System of Problem tetra

An unoptimized polynomial system of Problem tetra can then be obtained
in the following three steps.

1 Observe that all points are covered by c := {c1, c2, c3}.
2 Pick the home coordinate system h := c1.
3 Resolve c2 and c3 in the coordinates of h by solving the 3 × 3 incidence

equations (note that c1 need not be transformed)

p1,β = M2p2,α + T2,

M2p2,β + T2 = M3p3,α + T3, (3)

M3p3,β + T3 = p1,α

and three scalar distance equations

‖p1,γ − (M2p2,δ + T2)‖2 = d2
1,

‖M2p2,γ + T2 − (M3p3,δ + T3)‖2 = d2
2,

‖M3p3,γ + T3 − p1,δ‖2 = d2
3,

where again the pi,j’s and the distances di are given by the fixed lengths
within the rigid tetrahedra and the bars. The triple product of rotation

5



matrices and the translation vector we seek to determine are respectively

Mi :=
[

si2si3 si2ci3 −ci2
si1ci2si3−ci1ci3 ci1si3+si1ci2ci3 si1si2
si1ci3+ci1ci2si3 −si1si3+ci1ci2ci3 ci1si2

]

, Tc2 := [
pi

qi

ri

].

Here si,j, ci,j, j = 1, 2, 3 represent the sines and cosines of the rotation angles
and are therefore related by the three scalar equations

s
2
i,j + c

2
i,j = 1.

Altogether, we need to solve a system of n = 18 polynomial equations in the
n variables

sij , cij, pj , qj, rj, for 1 ≤ i ≤ 3, 2 ≤ j ≤ 3.

in order to resolve c. The maximum degree is d = 6 since the incidence equa-
tions are of degree 3, the distance equations of degree 6 and the trig-relations
are of degree 2 in the variables.

2.2 Efficient Pairwise Parametrizations

The first and the third vector equations in (3) can be easily solved for T2

and T3 if we pick p2,α to be the origin in the local coordinates of c2 and p3,α

to be the local origin of c3. This leaves a reduced system of 12 equations
and unknowns. To further reduce the algebraic complexity, we parametrize
the transformations that attach each rigid body to one that has already been
assembled in the home coordinate system. Thereby, we eliminate constraint
equations and the remaining system in terms of the parameters will be smaller.
We use the following notations for points a, b and c (with coordinates pi,α etc.
in the local coordinate system of a rigid body ci) and abbreviate ‘degrees of
freedom’ as dofs.

Ta translation that maps a to the origin. (T−1
a maps the origin to a.)

Rab rotation that maps b − a to the x-axis.

Mbc the matrix [b, c, b × c] ∈ R3×3 whose columns span R3.

T undetermined translation (3 dofs).

R undetermined rotation about the x-axis (1 dof).

Q undetermined unit quaternion (3 dofs).

In the previous section, we used a parameterization in terms of c, s such that
s
2 + c

2 = 1. And we could have used qi so that
∑3

i=0 q2
i = 1 so that rotations
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Table 1: Parameterizations with parameters tj and their complexity

k incidences parameterization in tj w(k) degree

3 (a, b, c) → (a′, b′, c′) T−1
a′ Mb′−a′,c′−a′M−1

b−a,c−aTa 0 0

2 (a, b) → (a′, b′) T−1
a′ R−1

b′−a′RRb−aTa 1 2

1 (a) → (a′) T−1
a′ QTa 3 4

0 none QT 6 4 (1 for T )

Table 1
In the first column, k indicates the number of points shared by two rigid bodies ci

and c′i. In the second column, any entry q of (. . . , q, . . .) → (. . . , q′, . . .) indicates
that Mipi,q + Ti = Mi′pi′,q′ + Ti′ needs to be enforced. The third column displays a
parameterization in terms of parameters tj of the transformations T , R and Q. The
scalar w(k) in the fourth column counts the number of free parameters (dofs) in the
parameterization. The last column lists the maximal degree in the parameters tj of
the rational parametrization.

R and Q are of the form

R :=
[ 1 0 0

0 c −s

0 s c

]

, Q :=

[

1−2q2
2−2q2

3 2(q1q2+q0q3) 2(q1q3−q0q2)

2(q1q2−q0q3) 1−2q2
1−2q2

3 2(q2q3+q0q1)

2(q1q3+q0q2) 2(q2q3−q0q1) 1−2q2
1−2q2

2

]

.

This, however, yields extra equations s
2 + c

2 = 1 and
∑3

i=0 q2
i = 1 and hence

more than the minimal number of variables. A simple, effective remedy is to
parametrize the variables c, s, qj by stereographic projection:

c :=
1 − t20
1 + t20

, s :=
2t0

1 + t20
, q0 :=

1 − ∑3
i=1 t2i

1 +
∑3

i=1 t2i
, qj :=

2tj
1 +

∑3
i=1 t2i

, j = 1, 2, 3.

For Problem tetra, if in step 3 we apply the quaternion transformations to c2

and c3, we still retain 3× 3 incidence equations and three distance equations,
as expected reducing the complexity to n = 12 polynomial equations in the n
variables

tij, pj , qj, rj, for 1 ≤ i ≤ 3, 2 ≤ j ≤ 3.

Off hand, the maximum degree is d = 8 since the incidence equations are of
rational degree 2 over 4 and the distance equations double this count as we
clear the denominator to obtain polynomial equations.

2.3 Optimized Choice and Partial Ordering of Pairwise Incidences

Remarkably, the number of unresolved constraints and the degree of the equa-
tions encoding Problem tetra can be further reduced by (a) looking at the

7



complete collection of maximal rigid bodies implied by the constraints in Prob-
lem tetra and the all the lengths or distances that are fixed by the rigid bodies,
as in Figure 2 (the standard collection of rigid bodies defined in Section 3),
and (b) a smart choice and partial ordering of the elimination steps resulting
in the parameterized system (the incidence tree parametrization defined in
Section 4). For this, we observe that the incidence constraints pi,β = pi+1,α

for i = 1, 2, 3 and the lengths that are fixed by the tetrahedra together also
define a rigid body, namely a triangle. We call this triangle c4 and add it to

c1

c2c3

c4

c5

c6

c7 p1,α p1,β

p1,γp1,δ

p4,α p4,β

p4,γ

p5,α

p5,βp5,γ

Fig. 2. Problem tetra. The new, complete collection of proper-maximal rigid bodies
ci, i = 1, . . . , 7 whose incidences are evident from the central grey graph, such as
p5,α = p1,γ and p5,γ = p1,β.

the collection of rigid bodies to be considered (see Figure 2).

1 Choose c := {c1, c2, c3, c4} as the covering set of rigid bodies that covers all
points. Note that c is not a minimal covering set; i.e., as we know {c1, c2, c3}
already covers all points and the unoptimized system given earlier was based
on this smaller covering set.

2 Pick the home coordinate system h := c4.
3 Since c4 and each of ci, i = 1, 2, 3 share the two points, pi,j , j ∈ {α, β},

position and orientation of ci are now fixed except for rotation about the
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axis through the two points. These rotations can be explicitly parameterized
so that the incidence equations are resolved and only the three distance
equations remain. The complexity of the parametrized system is therefore
n = 3 polynomial equations in the variables ti for 1 ≤ i ≤ 3. The maximum
degree is d = 4 after clearing the denominator and reduces to 2 due to the
identical choice of c1, c2 and c3.

A concrete parametrized system for a specific choice of constraints is shown
in Section 5.1, (4).

2.4 Interpretation

The reduction in algebraic complexity from the original to the optimized solu-
tion is significant. None of the algebraic and numerical solvers we applied, was
able to solve the original problem of size 18 × 18 or the parameterized prob-
lem of size 12 × 12. By contrast, all solutions of the optimized system were
obtained in a few seconds using Matlab and Maple. The key question this
paper now answers is how to arrive systematically at the choice and partial
ordering of elimination that yields an optimal parametrized system, in terms
of algebraic complexity (number of equations and variables).

In the example, we combinatorially optimize over a natural class of rational
parametrized systems that each represent the same well-constrained collec-
tion S of incident rigid bodies. In Section 4, we formally such incidence tree
parametrizations of S. The class uses one of two specific expressions in Table 1
to resolve each pairwise incidence; and each parametrized system in the class
corresponds to a subset of rigid bodies that cover all the relevant points that
occur in the incidences.

The above example and the example in Figure 3 show that in order for the
optimization over the class to be efficient, we have to be careful what col-
lections we resolve. We therefore pose (and answer) the question: How well
does the system of minimal algebraic complexity from the class of incidence
tree parametrizations of a collection S compare with parametrizations of S
that are not in this class? This question motivates the formalization – in the
next section – of a natural class of standard collections of rigid bodies S for
which the optimal incidence tree parametrization offers better efficiency and
algebraic complexity than any other known method of algebraically solving
S. More precisely, we motivate the necessity of each specific property that we
use to define a standard collections of rigid bodies by demonstrating that for
collections S that do not satisfy that property, there are non-incidence tree
parameterizations that have arbitrarily better efficiency and algebraic com-
plexity than the optimal incidence tree parametrization. Fortunately, (a) in
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most applications naturally occurring collections are standard and (b) good
algorithms exist to recursively standardize non-standard collections. There-
fore there are efficient ways of solving any collection by recursively employing
incidence tree parametrizations (Section 4.5).

c22

c21

c1

c3

c4

γ

γ

δ

δ

Fig. 3. Problem tetra represented in terms of five rigid bodies c1, c3, c4, c21, and c22.
These rigid bodies do not form a standard collection of rigid bodies. The intuitive
solutions (e.g. attach c1 and c3 to c4, use a quaternion constraint to join c21 to
c4 and attach c22 to c21) yield a parametrized system of size 6 by 6. The optimal
solution (consider c5 and c6 as in Figure 2, then attach c1 and c3 to c4 and c5 to c1,
c6 to c3) yields a parametrized system of size 4 by 4. This is worse than the 3 by 3
system obtained by first resolving c21 and c22 into c2 with the help of the distance
constraint implied by c4.

3 Standard collections of rigid bodies and the Overlap Graph

To start, we formalize the incidence of rigid bodies.

Definition 1 (Collection of rigid bodies, Covering set) Let c := {c1, . . . , cn}
be a set of rigid bodies and X a set of shared (coordinate free) points in R3

that imply incidences, i.e. points that occur in two or more of the rigid bodies.
The pair (X, c) is a valid collection of rigid bodies (short: collection), if for
i 6= j, ci contains at least one point in X not in cj, and ci ( X. We call c′ ⊂ c
a covering set of X if every point in X lies in at least one rigid body in c′.

Essentially, we identify each rigid body ci with a distinct rigid, proper subset
of X. We may assume that
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• all distances between any pair of points in a rigid body are fixed and
• the bodies are constrained with respect to each other only by incidence

constraints.

The following properties hold for typical collections and are automatic when
the collections arise from a good decomposition-recombination process, see
Section 4.5. The first, minimality of the collection, states that a subset of
two or more of the rigid bodies in the collection do not together form rigid
body, unless their union includes all the points in X. This turns out to be
equivalent to the requirement that no rigid body in the collection can be
extended without including all points in X. We then call the rigid bodies in
the collection proper-maximal. Example 4 in Section 4 shows that inclusion
of rigid bodies that are not proper-maximal yields suboptimal incidence trees
and hence suboptimal parametrized systems.

Definition 2 (Proper-maximal) A rigid body ci is proper-maximal in X
if there is no subset u of X with ci ( u ( X that represents a rigid body. That
is, no such u is rigidified by the incidences within u and the fixed distances
within the bodies outside u.

Example 2 (Proper-maximality) The subcollection c1, c2, c3, c5, c6, c7 (leav-
ing out c4) in Figure 2 consists of six proper-maximal rigid bodies even though
the subcollection is rigid. The rigidity seems to contradict proper-maximality
of the six rigid bodies. However, the subcollection includes all points in X,
hence does not violate the proper-maximality of any of its constituent six rigid
bodies.

Completeness is a second natural property (again guaranteed, for example,
by a good decomposition-recombination plan). Completeness requires that all
proper-maximal rigid sets of points in X are listed in the standard collection
of rigid bodies. For example, completeness ensures that rigid body c4 appears
in the standard collection of rigid bodies of Problem tetra in Section 2.3, so
it can be chosen as the home rigid body in the optimal elimination. With the
above definitions, we are ready to define a standard collections of rigid bodies
as a complete collection of proper-maximal rigid sets.

Definition 3 (Standard collection of rigid bodies) The collection (X, c)
is a standard collection of rigid bodies if the following hold.

(i) No pair ci 6= cj intersects in more than two points.
(ii) (c is complete in X) All proper-maximal rigid bodies are in c.
(iii) All ci are proper-maximal.

Example 3 (Standard collection) The collection in Figure 2 is standard
because each rigid body, c1, . . . , c7, is proper-maximal and every proper-maximal
rigid body is in the collection.
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Condition (i) reflects the fact that two rigid bodies overlapping on 3 points
generically form a rigid body in three dimensions. Proper-maximality (iii)
excludes any pair of rigid bodies overlapping on 3 points, unless they form a
covering pair and their union includes all points in X. We may exclude that
remaining case of triple incidence since such a covering pair of rigid bodies can
be instantaneously resolved without solving any system. Condition (i) restricts
the number of rigid bodies in c be O(|X|3) rather than an exponential in |X|.

The key structure to efficiently resolve standard collections of rigid bodies is
the overlap graph (see for example Figure 6, left).

Definition 4 (overlap graph) An overlap graph G(X, c) of a standard col-
lection of rigid bodies (X, c) is a weighted undirected graph whose vertices are
the rigid bodies cj in c and whose edges represent incidences between pairs
of rigid bodies. If an edge between a pair (ci, cj) represents k incidences, the
weight w(k) assigned to the edge is the number of remaining dofs of cj af-
ter fixing ci’s position and orientation and resolving the k incidences between
them.

Since we need one parameter to describe the position and orientation of a rigid
body with respect to another if the two share 2 points, three if they share one
point and six if they share no point, the edge weight matches exactly w(k)
according to Table 1:

w(0) = 6, w(1) = 3, w(2) = 1.

We note that an overlap graph is not a full incidence (hyper)graph since
overlap is based on only pairwise incidences. Information such as the same
point in X being shared by 3 or more rigid bodies in c is not needed.

4 The class of incidence tree parametrizations for standard collec-
tions of rigid bodies

Let us consider all possible covering sets defined by Definition 3 (ii). Each cov-
ering set S(c) of a collection (X, c) induces a subgraph of the overlap graph
G(X, c). This subgraph contains information about all incidences in the col-
lection c (Figure 4) missing only the information about those constraints,
listed as E(c\S(c)), that are additionally required to rigidify the rigid bodies
in c \ S(c). Since (X, c) is generically well-constrained, this is necessary and
sufficient to rigidify the overall collection.

Let E(S(c)) be the incidence constraints of the covering set S(c). An incidence
tree in S(c) is a spanning tree T := T (S(c)) of the subgraph (of the overlap
graph) induced by S(c). It represents a set E(T ) of constraints that includes:
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spanning tree

covering set

collection

T S(c) c

Fig. 4. The goal is to minimize the algebraic complexity of the parametrized system
E(c\T ) in terms of the parameters {tj} of Table 1.

(i) a subset of the incidence constraints in E(S(c)) and (ii) the constraints that
rigidify the bodies in S(c). We will eliminate the constraints in E(T ) using
the parameterizations of Table 1 for w(k) ∈ {1, 3}. The remaining constraints
in E(S(c)) that have not been eliminated, E(S(c)\T ), together with further
distance constraints that are needed to rigidify the bodies that are not in the
covering set, E(c\S(c)), form a parametrized system, denoted E(c\T ), of some
m independent constraints (see Section 4.5 and Figure 4). Since c is assumed to
be well-constrained, m equals n, the number of unknowns of the parametrized
system. For collections (X, c) in three dimensions, n is at most 3|X| − 6.

The choice of distances to be put into E(c\S(c)) is not unique. For example,
for each of the rigid bodies in c\S(c), the complete graph of pairwise distances
is available since each body is rigid. From these, a minimal set is chosen so
that E(c\S(c)) ∪ E(T ) rigidifies each of the bodies in c \ S(c). Since (X, c)
is generically well-constrained, this is necessary and sufficient to rigidify the
overall collection. The choice of S(c) and T (S(c)) thus gives a partial order of
elimination steps and defines a parametrized system of remaining constraints.

Definition 5 (Parameterizations to be optimized) The set of all possi-
ble choices S(c) and T (S(c)) is the class of incidence tree parametrizations
for standard collections of rigid bodies.

Optimizing over this class is equivalent to selecting an appropriate covering set
and a spanning tree for the covering set that result in a parametrized system
that minimizes algebraic complexity. To select the function to optimize, we
observe that all commonly used polynomial system solvers suited to sparse
geometric constraint systems take time exponential in the number of variables
n (see e.g. [2,20,1,19]) and typically n dominates the algebraic complexity
compared to the degree of the equations. By our choice of parameterizations
of Table 1, n =

∑

e∈T we(k) is the total edge weight of the tree T . An optimal
incidence tree is therefore a tree of minimum total weight over all covering
sets.

We can now illustrate the importance of the requirement (iii) of Definition 3.

Example 4 (Non-maximality) Figure 5 shows two rigid bodies, c21 and
c22, that are not proper-maximal. The resulting overlap graph has a minimal
incidence tree yielding 4 equations in 4 variables (as may be checked by ap-
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1
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c4
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c6
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1
1

1

1
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c3

c4

c5
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Fig. 5. Problem tetra. (left) The proper-maximal rigid body c2 is split into two
rigid bodies c21 and c22. The resulting 8 rigid bodies no longer represent a stan-
dard collection of rigid bodies. (middle) The overlap graph of the non-maximal
hence non-standard collection of rigid bodies. (right) The best incidence tree for
this collection has weight 4 rather than the minimal weight 3 for the corresponding
standard collection of rigid bodies, as derived in Section 2.3, 3.

plying the Optimized Incidence Tree Parametrization Algorithm in the next
Section 4.1). If the collection is first standardized, (as it would in a canonical
decomposition-recombination process, Section 4.5), the optimal incidence tree
parametrization can be applied to the standard collection of rigid bodies at each
level.

At the first level, the standard collection of rigid bodies consists of three rigid
bodies: c21, c22 and the distance constraint between them that is implied by c4.
The optimal incidence tree is based on a covering set of c21 and c22 and has
weight w = 1. That is, the incidence between c21 and c22 is resolved using
exactly one variable, for the rotation of c22 about the line (connecting the 2
points) shared by c21 and c22 and the parametrized system consists of one
distance constraint between these two bodies.

At the second level, the standard collection of rigid bodies then has the 7 rigid
bodies exactly as shown in Figure 2. As Section 2.3 showed, this level can be
resolved by solving 3 equations in 3 variables. Indeed, the optimal incidence
tree for this standard collection of rigid bodies has weight 3.

4.1 Optimized Incidence Tree Parametrization Algorithm

The algorithm consists of two parts.

Part 1: Find the optimal incidence tree
Input: A standard collection of rigid bodies (X, c).
Output: An optimal incidence tree T (X, c).

(1) Over all covering sets S(c), determine the set {Tℓ} of spanning trees (of
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the subgraphs of the overlap graph G(X, c) induced by S(c)) of minimum
weight: these are candidates for the optimal incidence tree.

(2) Over all choices of trees in {Tℓ} and roots determine a rooted tree that
minimizes the sum of the depths of all nodes.

Examples of standard collections of rigid bodies and their incidence trees are
shown in Figures 6, 11 and 15.

Given
— the optimal incidence tree T := T (X, c) and its constraints E(T ) and
— the list E(c\T ) := E(c\S(c)) ∪ E(S(c)\T ) of incidences and
implied distances that are within the rigid bodies of the original system, but
not in the tree T ,
the parametrized system is now generated as follows.

Part 2: Elimination and the parametrized system
Input: Constraints E(T ) and E(c\T ) and a tree T with weights w(k).
Output: The parametrized system Et equivalent to E(c\T ), but in terms of
the parameters tj of Table 1.

(1) Traverse T in reverse breadth-first order.
(2) At each node, express all child nodes (and all their children which are already

expressed in the child’s coordinate system) in the node’s coordinate system
using the parameterizations of Table 1 corresponding to the weight w(k) of
the edge between the node and its child.

(3) At the root, after visiting all nodes, replace the coordinates pi,j in E(c\T )
by the parameterized coordinates to obtain Et.

In the final step, the parametrized system is solved by a general algebraic-
numeric solver such as [3,6,12].

A subtle point remains discussion. Note that E(T ) and E(S(c) \ T ) are essen-
tially fixed by Part 1 (the choice of S(c) and T ) of the Optimized Incidence
Tree Parametrization Algorithm. However, as input to Part 2 of the algorithm,
as pointed out earlier, there are several possible choices of implied distance
constraints in E(c \ S(c)). It is immediate that this choice cannot affect the
number of variables and equations, nor the degree of each variable in the
parametrized system. Also the total degree of the system is unaffected by
the choice since this choice has to minimally rigidify each of the bodies in
E(c \ S(c)).
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4.2 Algebraic Complexity and Computational Complexity

The decrease in the number of variables and equations obtained through the
optimization is easy to quantify.

Variables and Equations. Without optimization, a well-constrained set c
of k rigid bodies forming a covering set results in a system with ñ = 6(k −
1) variables, independent of the number of nonempty overlaps between rigid
bodies in the covering set. Using optimization on the other hand, we obtain

n =
3

∑

j=0

w(j)kj = 3k1 + k2 + 6(k − 1 − k1 − k2) = ñ − 3k1 − 5k2

where kj is the number of pairs of rigid bodies with exactly j incidences in
the selected minimum weight spanning tree. Since the tree edges all represent
nonempty overlaps of at least one point, optimization at least halves the num-
ber of variables and equations (if k1 = k − 1) and, at best, reduces it by a
factor of six (if k2 = k − 1).

Degree. The parametrized system can consist of point-matching constraints
and distance constraints. In the unoptimized system, the total degree of all
distance equations is d = 6. In the optimized system, the total degree increases
with the depth of the spanning tree. However, the coordinate degree of the
numerator and of the denominator of the constraint systems is at most 4
throughout the elimination since we introduce new variables with each step
of the partial elimination. (The coordinate degree is an n-tuple listing the
degrees for each variable, e.g. (2,2) for x2y2.)

4.3 Overall complexity of resolving the collection

We recall that the overall process of resolving the input collection of rigid bod-
ies consists of two phases. This paper gives a purely combinatorial algorithm
for the first phase, i.e., optimizing the algebraic complexity of the system that
is input to the second phase, the algebraic-numeric solver. The overall com-
plexity of resolving the collection of rigid bodies is overwhelmingly dominated
by the second, algebraic phase that is at least exponential in the size of the
parametrized system fed to it. In practice, even systems of size 10 by 10 are
very difficult to solve when all solutions are required, as in our problem. We
saw above that even in the worst case, our combinatorial optimization halves
the size of the parametrized system input to the second phase (in the best
case it improves by a factor of 6) while in the unoptimized case, the size of the
system is proportional to the size of the input collection of rigid bodies. Hence
the first step improves the complexity of the overall process by a factor that is
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exponential in the size of the input collection. So even for small collections of
size 10-30, the first phase yields a huge gain in overall complexity. Asymptotic
complexity analysis of the first phase, i.e., obtaining the optimal incidence
tree parametrization, is relatively meaningless, for such small collections since
even a brute force method is fast and effective. For completeness, we now give
the asymptotic complexity of the first phase.

4.4 Complexity of Optimized Incidence Tree Parametrization Algorithm

Recall that obtaining the optimal incidence tree requires finding spanning trees
of minimum total weight among all subgraphs induced by covering sets S of
the overlap graph G(X, c). This is a set cover problem, with modified objec-
tive function, for the special case where the sets are forced to have bounded
intersection (of size 1 or 2). The set cover problem (where the size of the
cover has to be minimized) is NP-complete even when the sets are forced
to have bounded intersection. Fortunately, the set cover problem has a good
polynomial time approximation algorithm based on the primal-dual method
in linear programming. Furthermore, our overlap graphs are special since they
correspond to standard collections of rigid bodies. Due to maximality and
completeness of standard collections of rigid bodies, many types of subgraphs
and minors are forbidden in the overlap graph of standard collections of rigid
bodies. As a result, the set of candidate incidence trees can be pruned and
optimal incidence trees can be found in time polynomial in |c| using the data
structures of [5] that efficiently represent and maintain the entire set of span-
ning forests. (As pointed out earlier, |c| ≤ O(|X|3) for standard collections of
rigid bodies, (X, c)). The details of this data structure and analysis are outside
the scope and emphasis of this paper.

4.5 Decomposition-Recombination, Hierarchies of standard collections of rigid
bodies and Stability

In full generality, our optimization problem is best approached by a recur-
sive or hierarchical decomposition of the original generically rigid system of
incidences so that the subsystems correspond to rigid subcollections that can
themselves be recursively decomposed. In reverse, rigid subsystems can be
recombined into a parent rigid body by solving a recombination system. Se-
lecting one instance of each resolved child at a time, we can recombine ever
larger parent rigid bodies until the global system is solved. Since the cost of
solving any of these recombination systems is dominated by its number of
variables n, it is best to recursively decompose in such a manner that the al-
gebraic complexity of the recombination at any given stage is minimized. This

17



is called the optimal decomposition - recombination (DR) planning problem
[8,9], and is, in general, NP-hard [11]. However, for generically rigid systems,
a canonical graph-theoretical decomposition with many nice properties has
been developed [15,18], so that, in this paper, we could focus on the solution
process at a single recombination level. Crucially, since each level is part of a
larger, canonical DR process, we need not consider all possible collections of
rigid bodies, but only DR collections as in [15,11,18], and these are standard
collections of rigid bodies (Section 3, Definition 3).

Two very special scenarios merit discussion. (1) Implied rigid bodies. In any
level of a typical DR process, the standard collection of rigid bodies could
contain ci whose rigidity is implied by other rigid bodies in the collection
( in addition to the inherently rigid bodies that are rigidified by internal
constraints). If such an implied ci is in the optimal incidence tree then the
rigid bodies that imply the rigidity of ci also have to be resolved even if
they are not in the optimal incidence tree. (2) Stability of optimal incidence
tree parameterizations. Consider the leftmost incidence tree of Figure 11. The
set c is well-constrained. There are two non-tree (dashed) edges representing
incidences. Choosing the incidence between c2 and c3 yields a solvable system.
However, choosing the incidence between c1 and c4 results in three dependent
constraints. This stability or independence problem for incidences is addressed
and solved in [16] so that we may assume that any choice of the appropriate
number of constraints yields a valid choice.

5 Computed Examples

We now solve several geometric instances of Problem tetra (Figures 1, 2, 6),
our running example; of Problem pent (Figure 10) used to illustrate stability
issues discussed at the end of Section 4.5; and of Problem quad (Figure 14)
which serves to illustrate a complete one-parameter family of solutions. We
solve the instances using a pipeline of routines. The first part of the com-
binatorial optimization phase, i.e., the optimal incidence tree algorithm, was
implemented as a C++ program. The second part, i.e., the elimination and
parameterization, was implemented as a Maple program. The algebraic phase,
the solution of the parametrized system, was implemented in Matlab and uses
a subdivision-based numerical solver [6]. None of Problem tetra, Problem
pent and Problem quad could be solved in their unoptimized form. All three
problems are solved in their optimized form with none of the routines in the
pipeline taking more than a few seconds.
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Fig. 6. Problem tetra of Figures 1 and 2. (left) The overlap graph. (middle) The
subgraph of the weighted overlap graph induced by one covering set S(c) (the points
of c5 are covered by c2, c4 and c6; the edges of weight 6 representing empty over-
laps are omitted). (right) The optimal incidence tree T returned by the Optimized
Incidence Tree Parametrization Algorithm has weight 3. There are no non-tree in-
cidences in E(S(c) \ T ). The dotted lines are the 3 implied distance constraints
that form the parametrized system. They constitute E(c \ S(c)), and together with
the implied distance constraints in E(T ), they rigidify the remaining rigid bodies
c5, c6, c7 in c \ S(c).

5.1 Problem tetra

Using the Optimized Incidence Tree Parametrization Algorithm, Problem tetra

reduces to n = 3 equations (see (4) below and Section 2.3). To simplify the
visualization of the output, we consider symmetric data. The three rigid bod-
ies c1, c2 and c3 are initialized with identical local coordinates of a regular
tetrahedron

pi,α := [
−1
−1
−1

], pi,β := [
−1
1
1

], pi,γ := [
1
−1
1

], pi,δ := [
1
1
−1

], i = 1, 2, 3.

The incidence and distance constraints that force the tetrahedra into a specific
spatial arrangement are

pi,β = pj,α, and ‖pi,γ − pj,δ‖2 = d2
i ,

where j = 1 if i = 3 and j = i + 1 otherwise. The underlying geometry is
visualized in Figure 7 for one, extreme choice of the distances di. We consider
three instances.

Problem tetra i. The maximal value for d1 = d2 = d3 that still allows for a
real solution is d̄2 := 22+4

√
2
√

3. Then there is exactly one solution as shown
in Figure 7. We juxtapose the spatial view with a more abstract diagram
displaying the home rigid body and the parametrized distance constraints since
rigid bodies typically obscure one another. After scaling by (1−ti)

2t2i (1−tj)
2t2j ,
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Fig. 7. Problem tetra i has a unique solution when the distances (represented
by dashed line segments) are chosen equal and maximal. (left) Geometry of the
tetrahedra configuration. The home rigid body c4 (emphasized triangle in the center)
consists of the three line-segments about which the tetrahedral rigid bodies c1, c2, c3

can rotate if no other constraints are present than their 3 pairwise incidences. (right)
Visualization emphasizing the central triangle and displaying the geometric position
of the dashed edges representing the 3 parametrized distance constraints. The end
points of the dashed lines meet only in the displayed projection, not in R3.

Fig. 8. Problem tetra ii. Diagram of the four solutions.

we obtain the following parametrized system for (i, j) ∈ {(1, 2), (2, 3), (3, 1)}

(

(16
√

3 + 8 − 16
√

6)t2i + (8
√

6 − 8 − 16
√

3 + 8
√

2)ti

+ 4
√

3 − 4
√

6 − 16 − 4
√

2
)

t2j

+
(

(−8
√

2 − 8 + 24
√

6 − 16
√

3)t2i + (−24 + 16
√

3 − 16
√

6)ti

+ 4
√

2 + 8
√

6 − 4
√

3 + 32
)

tj (4)

+(4
√

3 − 16 − 12
√

6 + 4
√

2)t2i + (−4
√

3 + 32 − 4
√

2 + 8
√

6)ti

= 4
√

6 + 16.

Problem tetra ii. For d2
1 = d2

2 = d2
3 = d̄ (no square), we obtain four solutions

with evident symmetries (Figure 8).

Problem tetra iii. By altering the distances within one rigid body, we obtain
ten solutions shown in Figure 9. There are three spatially non-isomorphic
configurations.
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Fig. 9. Problem tetra iii. Diagram of the ten solutions.

5.2 Problem pent

Figure 11 shows covering sets and trees for Problem pent in Figure 10 with
standard collection of rigid bodies c := {c1, . . . , c6}. Although the rightmost
covering set is smallest, its minimum incidence tree weight of 9 makes it sub-
optimal. Any of the middle three covering sets yields trees of weight 5 and
the leftmost has the optimal weight 4. Different home (root) rigid bodies, say
c4 versus c5 for the left-most tree, yield different maximum degrees for the
parametrized system.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

c1c1

c2

c2

c3c3

c4

c4

c5
c5

c6c6

1

1

11

1

1

3

3

Fig. 10. Problem pent. (left) Standard collections of rigid bodies and implied in-
ternal distances. (right) Corresponding weighted overlap graph (edges of weight 6
representing empty overlaps are omitted).
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Fig. 11. Problem pent. Five spanning trees of covering sets S(c). Implied non-tree
distance constraints in E(c \S(c)) are dotted - they rigidify the remaining bodies in
c \ S(c). The non-tree incidences in E(S(c) \ T ) (first, fourth tree) are dashed. The
label i in a circle stands for ci.
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To obtain a concrete instance of Problem pent, we define ten (corner) points
in the rigid bodies whose x, y coordinates are equally distributed on the unit
circle as shown in Figure 10, left,

qi := [
cos(θi)
sin(θi)

ei

], where θ := 2π/10 and ei :=







1 if i is odd ,

0 if i is even .
i = 0, 1, . . . , 9.

We initialize the rigid bodies as

c1 : {q0,q1,q2,q3}, c2 : {q2,q3,q4,q5}, c3 : {q5,q6,q7,q8},
c4 : {q7,q8,q9,q0}, c5 : {q9,q0,q1}.

Optimized Incidence Tree Parametrization Algorithm selects the leftmost min-
imum spanning tree of Figure 11, with c5 as the home rigid body. The minimum
spanning tree c5{c1, c2}{c4, c3} has two levels: c2 is a child of c1 and c1 is a child
of c5, and c3 is a child of c4 and c4 is a child of c5. The non-tree edges between
c2 and c3 represent a stable set [16] of parametrized incidence constraints of
degree 2 (the shared point q5); in addition, the parametrized system includes
the distance constraint of degree 4(between q4 and q6) as shown in Figure
11, left, and Figure 12, left. The corresponding four equations between the
rigid bodies c2 and c3 (three for the shared point q5 and one distance between
q4 and q6) force the remaining tetrahedral child rigid bodies c1, c2, c3, c4 into
specific spatial arrangements.
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Fig. 12. Problem pent iv, two of the eight solutions. For each tetrahedral rigid
body, c1, c2, c3, c4, only two triangle facets are shown. The home rigid body c5 is
a triangle. The dashed line represents the parametrized distance constraint. The
parametrized incidence constraint is marked as a black sphere. It forms a triangle
with the distance constraint, i.e., together, they constitute the triangle rigid body
c6 of Figure 10 that is not part of the current covering set (see Figure 11, left).
(left) The left configuration can be recognized as representing two pentagons in the
z=0 and z=1 plane respectively and rotated by 2π/10 with respect to one another.
(right) The right realization is self-penetrating.
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Problem pent iv. Let d = 1.381966011..., be the square of the length of the
edge of a regular unit pentagon. Then there are eight realizations (see Figures
12 and 13). The parametrized system of Problem pent does not recommend
itself for typesetting.

Fig. 13. Diagramatic view (projection) of the eight solutions to the Problem pent

(iv). The dashed line represents the parametrized distance constraint. The root rigid
body c5 - a triangle - is displayed, along with four lines connecting the first and last
points of each tetrahedral rigid body c1, c2, c3, c4. The top left diagram corresponds
to the left image in Figure 12.
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Fig. 14. Problem quad. (left) Standard collection of 8 rigid bodies (indicated as
•) and 18 implied distance constraints within them. The structure is that of a
square-base pyramid (see also Figure 16, inset) with the apex split into four (cor-
ner) points and the triangular faces folded down. The points are not labeled since
they have different labels (and different local coordinates) in different rigid bodies
ci. (right) The corresponding weighted overlap graph (all remaining edges of the
complete overlap graph are of weight 6 and are omitted).
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Fig. 15. Problem quad. Five spanning trees (solid edges) of covering sets (same
layout as in Figure 14 right; the label i stands for ci). The sum of weights are from
left to right 4,8,9,6 and 4. These numbers match the number of dashed distance
constraints (= 1 constraint) between rigid bodies and dotted incidences that are not
tree edges (sharing of nodes = 3 constraints). When optimally rooted (with root c5),
the depth sum of the leftmost tree is 1+1+1+1=4. The depth sum of the rightmost
is 2+1+2+1=6. Therefore the leftmost is the optimal incidence tree used for the
elimination.

5.3 Problem quad

The combinatorial structure of Problem quad is given in Figure 15. Choosing
the minimal covering set (with four rigid bodies, Figure 15, middle) does
not yield the optimal incidence since the total weight is 9. The minimum
weight is 4, and the leftmost tree, with root c5 and depth 1, is preferred to the
rightmost tree with root c5, sum 4 and depth 2. The Optimized Incidence Tree
Parametrization Algorithm automatically generates the parametrized system
that fixes the quadrilateral c5 as home and parametrizes the four points not
attached to c5, each by one parameter. There are four incidence constraints,
between c5 and cj , j = 1, 2, 3, 4, that imply and hence allow to automatically
discard, the overlaps between ci and cj, j := i mod 4 + 1.

Problem quad v. The coordinates of the root rigid body c5 are

p5,α := [
1
1
0
], p5,β := [

−1
1
0

], p5,γ := [
−1
−1
0

], p5,δ := [
1
−1
0

],

a 2-unit square. The local coordinates of ci, i = 1, 2, 3, 4 are

pi,α := [
−1
1
0

], pi,β := [
1
1
0
], pi,γ := [

0
4
0
].

The four distance constraints are

‖pi,γ − pj,γ‖ = r. j := i mod 4 + 1.

For r = 0, the four equations of the parametrized system have the particularly
compact form

0 = −16tit
2
j + 16t2jt

2
i + 14t2j − 16tjt

2
i + 4tj − 20titj + 4ti + 1 + 14t2i . (5)

Figure 16 displays all possible configurations for different choices of r (with
r = 0 being the minimum and r := 2

√
10 the maximal distance possible for

real solutions).
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p5,αp5,β

p5,γ p5,δ

r
r r

r

r2 = 0 1 2 4 8 16 32 40

Fig. 16. Problem quad v. Possible configurations parametrized by r, the distance
of the four distance constraints displayed as thick, red, dashed lines. The gallery
contains both macro information (number of non-isomorphic solutions) and micro
information (geometry of the realization). For example, cf. upper left inset, r = 0
corresponds to a square-based pyramid (with the solid (purple) rectangle represent-
ing rigid body c5; for each of c1, c2, c3 and c4 only one edge is displayed.) r2 = 40
corresponds to a saddle with two opposing triangle faces flipped up and two flipped
down. Find the planar configuration!

6 Discussion

Visualization and Navigation of the Solution Space. The minimum spanning
tree T and the choice of home expose the structure and symmetries of the so-
lution space. Each step on the tree from the leaves to the root corresponds to
translating the child’s to its parent coordinates and parameterizing the child
rigid body by unevaluated rotations. Solving the remaining parametrized sys-
tem then fixes the rotations in order to enforce the remaining constraints.
Thus, the optimized parametrization yields a sequence of key points on a so-
lution path in the combined configuration space of the child rigid bodies. This
path has a physical interpretation as a sequence of translations and rotations:
Starting from an arbitrary initial position and orientation of the child rigid
bodies and ending with their solved position and orientation, i.e., a point in
the configuration space of the standard collection of rigid bodies. This path
provides an intuitive classification of the exponentially many possible real-
izations of the collection. By contrast, the large system corresponding to the
unoptimized formulation offers few pointers to structure of solution space and
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is therefore less useful, for example, for solution-space navigation and visual
walk-through [17].

Beyond pairwise elimination and incidence trees The focus of this paper is
on a relatively small class of incidence tree parametrizations within well-
constrained standard collections of rigid bodies. If we expand the class to
explicit rational parametrizations that can resolve more general undercon-
strained subsystems, it may be possible to further reduce the size of the
parametrized system. However, optimizing over a significantly larger class
is computationally difficult and the expanded class must also be limited in
scope since the general problem of finding rational parameterizations of rea-
sonable size leads to the classic hard question of algebraic geometry, whether
an ideal/variety has an efficient rational parameterization.

The formalization of standard collections of rigid bodies and optimal incidence
tree parametrization hints at parametrizing and reducing the algebraic com-
plexity of more general systems where rigid body incidences are analogous to
variables shared by already resolved subsystems in an appropriate decompo-
sition. A natural question is then which algebraic systems can be decomposed
into subsystems that resemble standard collections of rigid bodies?
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