Goals and Outline

- (1) SLEFEs: Enclosing Functions (and SLEVEs for curves and surfaces)
- (2) Mid-structures: Quantitatively Coupling Curved and pw Linear Geometry
- (3) Constrained Design: One-sided fitting

Midstructures

$$\underline{\overline{x}}(t) := (\overline{x}(t) + \underline{x}(t))/2 = \frac{1}{2} \left(\sum_{\mu=0}^{m} \tilde{x}_{\mu} \mathbf{h}_{\mu}^{m}(t) + \sum_{\mu=0}^{m} \tilde{x}_{\mu} \mathbf{h}_{\mu}^{m}(t) \right)$$

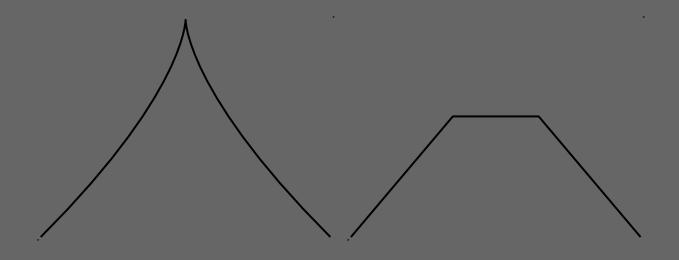
$$= x_{0}(1-t) + x_{d}t + \sum_{\mu=1}^{m} \sum_{\nu=1}^{d-1} \mathcal{F}_{\nu} x \frac{\mathbf{a}[d, m, +, \nu, \mu] + \mathbf{a}[d, m, -, \nu, \mu]}{2} \mathbf{h}_{\mu}^{m}(t)$$

$$= Lx(t) + \mathcal{F}x \cdot \underline{\overline{\mathbf{a}}} \cdot \mathbf{h}(t), \qquad \underline{\overline{\mathbf{a}}} \in \mathbb{R}^{d+1 \times m+1}.$$

- Modification for Bézier: endpoints are x_0 and x_d .
- Similar to center curve for interval splines.
- Well-defined for vector-valued curve or surface.

Application: Evaluation

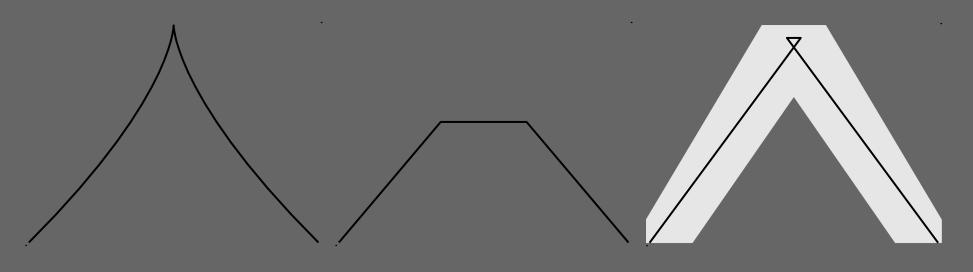
compare to sampling:



Exact curve,

sampled curve (4 points)

Application: Mid-Path



Exact curve,

- •
- .

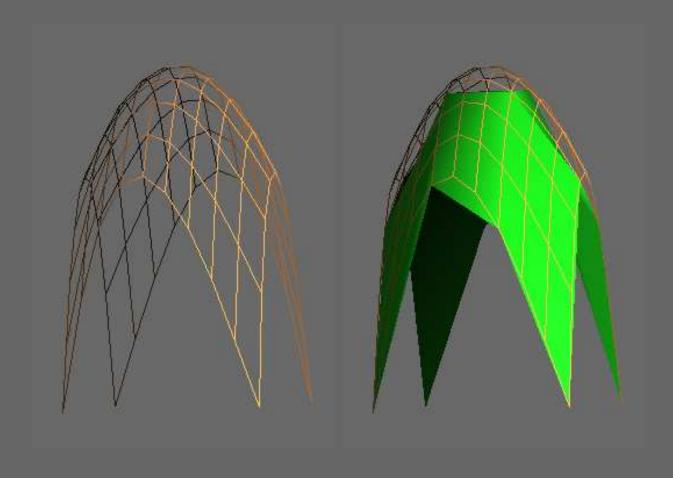
sampled curve,

mid-path

max-norm approximation, lower cost* than evaluation, error bounds available.

$$Mid$$
-path = $(\underline{x} + \overline{x})/2$.

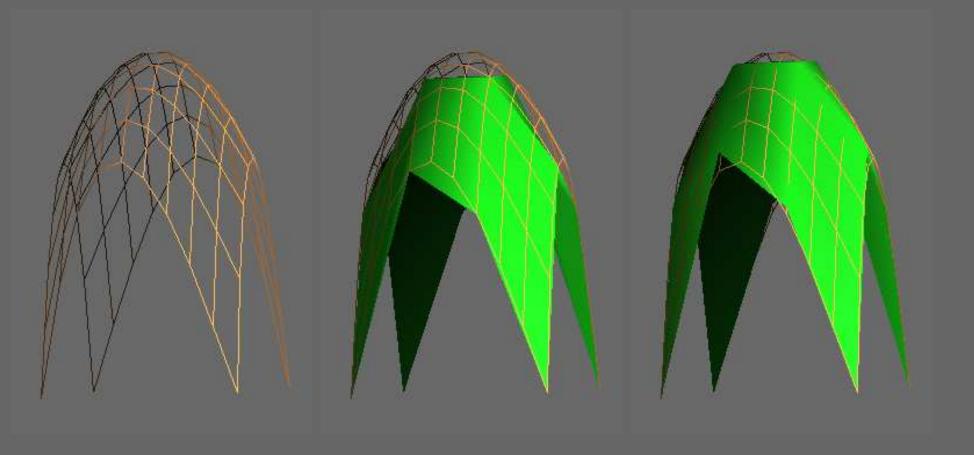
Mid-Patch: Approximate Rendering



finely sampled,

coarsely sampled (green): budget=16 points

Mid-Patch: Approximate Rendering



max-norm approximation, lower cost than evaluation, free error bounds.

(Bézier: boundary is defined by control points of the boundary only.)

Max-norm approximation

Mid-structures equi-oscillate.

Why not Chebyshev economization?

Why not Remez algorithm?

One-sided approximation!

Midpath Control Structures (Inversion)

If number of segments = number of control points, e.g. m=d then $\overline{\underline{\mathbf{a}}}$ is invertible*!

Reverse the midpath *coefficient* computation:

$$\underline{\overline{x}} - Lx = \mathcal{F}x \quad \underline{\overline{\mathbf{a}}}.$$

solve for $\mathcal{F}x$ and reconstruct the function

$$x(t) = Lx(t) + \mathbf{a}(t) \cdot \mathcal{F}x$$

mid-struct and control-polytope = spline coefficients in different bases!

Midpath Control Structures (Inversion)

Any broken line \overline{x} (plus boundary conditions Lx) has an associated x (Thm:) that lies in the same flat*.

Examples

spline curve

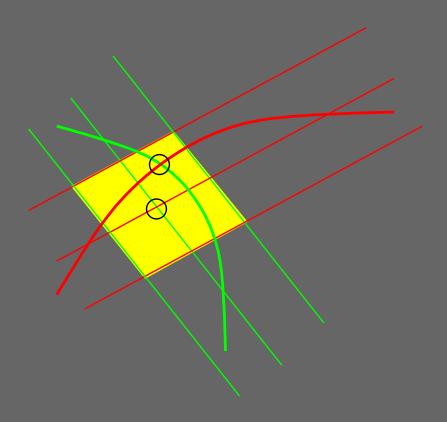
box-spline

Application: Intersection

Robustness: pw-linear

Consistency: *intersect mid-structures*

2D: error at most $2\min\{\epsilon, \tilde{\epsilon}\}$ (false positive, false negative)



(P & Wu 2003): SLEFE construction to match a given ϵ .

Application Intersection

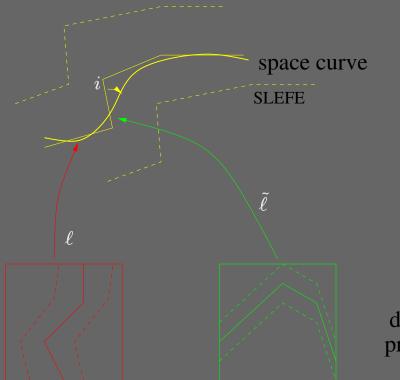
Robustness

Consistency

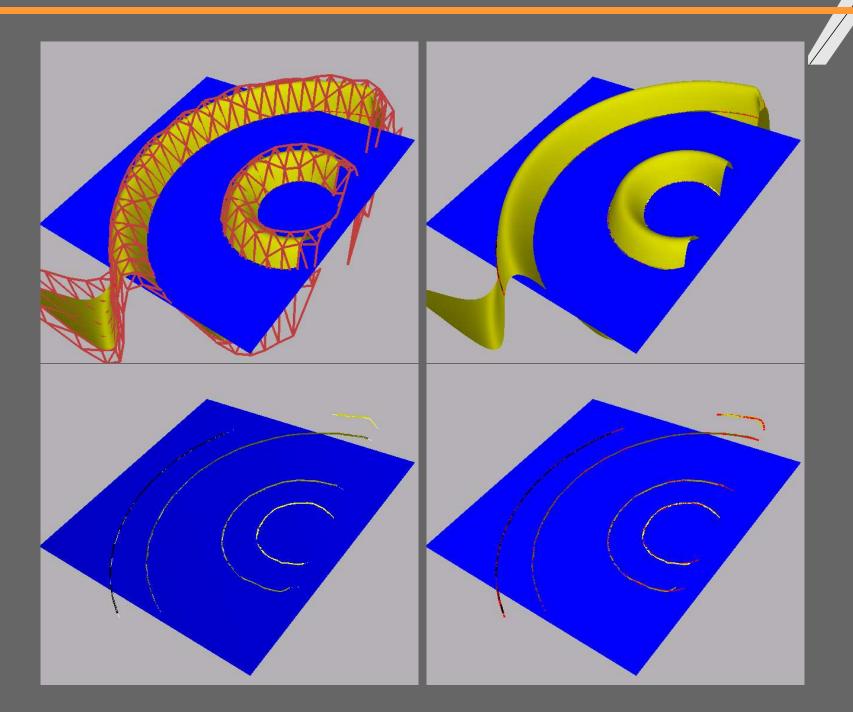
intersect pw-linear mid-structures 3D, 2 variables:

interpret intersection of $\overline{\underline{x}}$ and $\overline{\underline{\tilde{x}}}$ as mid of a space curve.

Unique representer: $i(\ell(u)) = i(\overline{m}) = i(\tilde{\ell}(\tilde{u}))$



domain pre-mid



Χ

Goals and Outline

- (1) SLEFEs: Enclosing Functions
- (2) Mid-structures: Quantitatively Coupling Curved and pw Linear Geometry
- (3) Constrained Design: One-sided fitting

Inverse problems: Channel

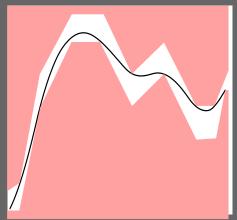
Given two locally non—intersecting input polygons, construct a spline that stays between and consists of a small number of pieces.



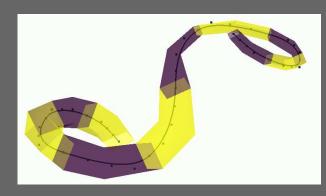
Continuous optimization problem!

Inverse problems: Channel

Given two locally non—intersecting input polygons, construct a spline that stays between and consists of a small number of pieces.



Channel



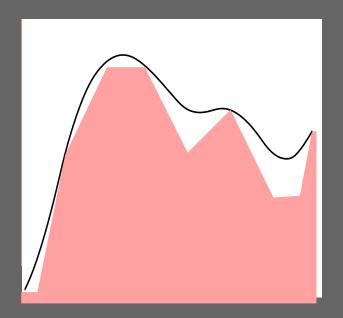
Channel 3D

Solve for spline coefficients such that SLEFE does not intersect.

Idea: fit a SLEFE into the channel = *linearize and discretize* – a linear program!

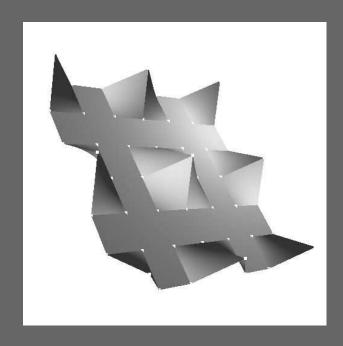
Inverse problems: Cover

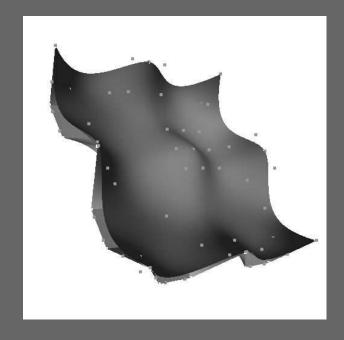
Given a barrier, construct x of a given degree and smoothness to stay close to and entirely above.



Motivation: bridge to computational geometry algorithms; determinate assembly, simplification for intersection testing.

Bilinear cover



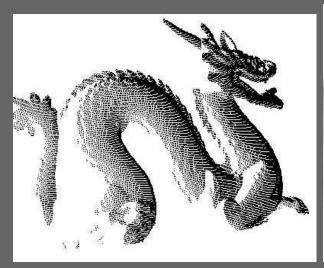


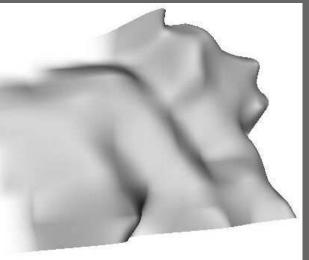
Range data fitting

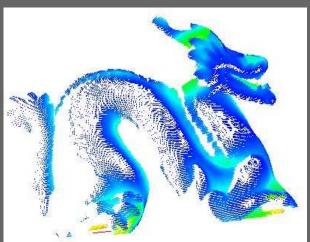
Left: Input range data (Dragon front view, 39526 points)

Middle: 10×10 bicubic spline

Right: offset distance from the range data.



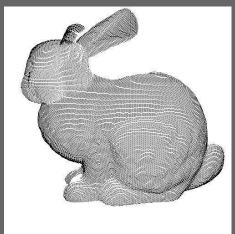


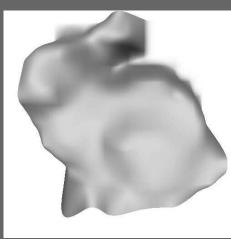


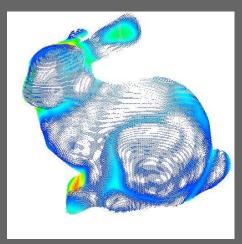
(orig) 4 min, (midpath fit + offset) 45 sec

TO S

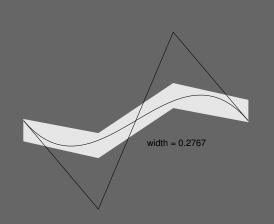
Range data fitting

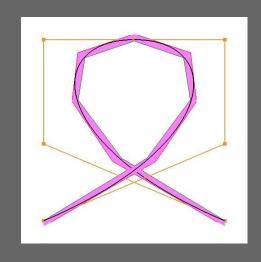






Questions?





(Nairn, P, Lutterkort 1998; Reif) Sharp, quantitative bounds on the distance ... (Lutterkort & P 2000): Optimized Refinable Enclosures of Multivariate Polynomial Pieces

(Myles & P 2003): Threading splines through 3D channels

(P & Wu 2003): SLEVEs for planar spline curves

