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Abstract. Bézier or b-spline control meshes are quintessential CAGD tools
because they link piecewise linear and curved geometry by providing a lin-
ear, refinable approximation that exaggerates features and is, up to reparametriza-
tion, in 1-1 correspondence with the curved geometry. However, for a given
budget of line segments, Bézier and b-spline control meshes are usually far
from the ’nearest’ piecewise linear approximant to the curved geometry.

Subdividable Linear Efficient Function Enclosures, short slefes (pronounced
like sleeves), aim at sandwiching the curved geometry as tightly as possi-
ble. This paper illustrates how to derive slefes, lists the literature on slefes,
discusses slefes for rational functions and tensor-products and analyzes the
improvement of slefes under refinement. The average of the upper and
lower slefe bounds is called mid-structure. Mid-structures come close to
being the ’nearest’ piecewise linear approximant while retaining the 1-1
correspondence and the computational efficiency of control meshes.

§1. Introduction

What do interference testing of subdivision limit surfaces (Figure 1, (left) )
and the bend-minimizing routing of spline curves between obstacles (Figure 1,
(right) ) have in common? Both tasks can be performed by enclosing the curved
geometry by piecewise linear geometry. This, in turn, can be computed effi-
ciently by computing a piecewise linear pair, f, f , of upper and lower bounds
that tightly sandwich a given function f on a domain U : f ≥ f ≥ f. We call
such a pair a subdividable linear efficient function enclosure of f , short slefe
(pronounced like shirt sleeve) of f . That is, to compute a tight bound, we take
advantage of the known parametrization of the object.

Slefe constructions for specific representations, splines in one and more
variables, in B ézier and B-spline form and even for interpolatory subdivision

XXX 1

xxx and xxx (eds.), pp. 1–4.

Copyright c© 200x by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-x-x

All rights of reproduction in any form reserved.
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Fig. 1. Two applications of slefes. (left) Efficient and accurate intersection
detection of subdivision limit surfaces [15]. (right) A robot navigates free space
following an approximately curvature-minimizing spline path [8].

schemes have been reported in [6, 7, 10]. However, as pointed out in the sur-
vey [10], the underlying principle is the same. Each construction only dif-
fers by the choice of functionals and pre-computed best approximations that
depend on those functionals. The quality of slefes is judged by their width
w(f, U) := f − f , with the arguments restricted to U . In simple cases, slefes
have been compared to the best possible, i.e. narrowest, enclosure by a pair of
piecewise linear bounds lines with the same break-abscissae [11]. The survey
[10] juxtaposes slefes with eight other bounding constructs. The comparison is
particularly in favor of slefes if the curve or surface is not close to linear, as in
Figure 2. To form a consistent inner and outer hull of an object, slefes can be
pieced together. This is explained, for different scenarios, in [12] and [15]. Fit-
ting slefes between prescribed upper and a lower bounds, as in Figure 1 (right)
, addresses a problem similar to near-interpolation [2].

The present paper sheds light on two additional aspects of slefes: refinement
and mid-structures. Section 2 derives a particular slefe and then generalizes it to
motivate the constructions and analysis of the following sections. Section 3 dis-
cusses how subdivision improves slefes and the width of the slefe changes under
subdivision of f . Section 4 shows that slefes are easily extended to rational rep-

Fig. 2. (left) Separated slefes certify non-intersection. In contrast, the convex
hulls of the curves overlap even after one subdivision (right) .



Slefes and their Mid-Structures 3

resentations even though rational representations lack a finite basis. Section 5
discusses the mid, f := (f + f)/2, of a slefe, which serves as a good pointwise
L∞ approximant and plays an important role in efficient intersection testing.

§2. Example of a slefe

This section introduces slefes by means of a simple example. Consider the
polynomial p of degree 3,

p(t) := −b1(t) + b2(t), bj :=

(
3

j

)

(1 − t)3−j tj ,

in B ézier form
∑3

j=0
cjbj , with coefficient sequence (cj)j=0,..,3 = (0,−1, 1, 0).

In terms of its linear interpolant at t = 0 and t = 1, `(t) := p(0)(1− t) + p(1)t,
and the new basis

a1(t) := −
2

3
b1(t) −

1

3
b2(t), a2(t) := −

1

3
b1(t) −

2

3
b2(t),

we can rewrite the polynomial as

p = ` + 3a1 − 3a2.

The function a1 is strictly convex (see Figure 3 (right) ) and is therefore easy to
bound by a sequence of m connected line segments from above and from below.
For example, for m = 3, the four breakpoints of the

piecewise linear upper bound function a1
m(t), t ∈ U := [0..1],

are a1(j/3), j = 0, 1, 2, 3. (If the number of line segments is evident or not
important, we shorten the expression to a1.) The four breakpoints of the piece-
wise linear lower bound function a13

are obtained by parallel offsetting from the
upper values until the segment touches the curve tangentially. Then we adjust,
from the largest offset downwards, to hug the curve tightly. The result is stored
in the following table (cf. Figure 3 (right) ):

t = 0 1/3 2/3 1
a1

3 0 -.3703703704 -.2962962963 0
a13

-.0695214343 -.4398918047 -.3153515940 -.0087327217

Since a2(1 − t) = a1(t), the table for a2 is mirror-symmetric. The point of
this exercise is that, for t ∈ U = [0..1],

p(t) ≤ p(t) := `(t) − 3a13
(t) + 3a2

3(t)

as illustrated in Figure 3 (left) . With the same tables, we have

p(t) ≥ p(t) := `(t) − 3a1
3(t) + 3a2

3(t).
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The lower and the upper bound a13
and a1

3 sandwiching the function a1 with
three segments.

Generalizations of the example.
The weights, −3 = ((−1) − 2(1) + 0), 3 = (0 − 2(−1) + 1) are the result of
evaluating second differences of the control points. That is, they are the result of
applying two particular functionals Fν to p, namely F1p := c0 − 2c1 + c2 and
F2p := c1 − 2c2 + c3. It is then easy to check that the functions aη are dual to
the Fν in the following sense.

Lemma 1. For ν ∈ {1, . . . , d − 1}, define the functional
Fν(

∑d

k=0
ckbk) := ck−1 − 2ck + ck+1, and the scalar-valued functions

a
d
ν :=

1
ν−1

ν
+ d−ν−1

d−ν
− 2

(
ν∑

k=0

k

ν
b

d
k +

d∑

k=ν+1

d − k

d − ν
b

d
k

)
.

Then Fνa
d
η =

{

1 if ν = η

0 else.

Generally, for a polynomial p of degree d, (we drop the superscript d indicat-
ing the degree if the degree is evident or not important in the context)

p ≤ p p := ` +

d−1∑

ν=1

max{0, Fνp} ad
ν +

d−1∑

ν=1

min{0, Fνp} a
d
ν .

A lower bound p is obtained by exchanging the min with the max operators.
The setup can be further generalized until it can be summarized in two short and
abstract lemmas, Lemma 1 and 2 of [10].

The key challenge lies in generating once and for all, for each new repre-
sentation, the tables a[. . .] that record the break points of the upper and lower
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bounds minimizing

w(aν , U) := aν − aν .

Here, we record the breakpoint values of aν − aν in a vector and minimize with
respect to the L∞ norm (the largest entry) as follows. For piecewise linear enclo-
sures, the width is to be as small as possible where it is maximal. Having fixed
the values at the pair of breakpoints where the width is maximal (zeroth and
first breakpoint in Figure 3 (right) ), the width at the remaining breakpoints is
recursively minimized subject to matching the already fixed break point values.

By generating tight slefes for the aν , we expect to stay close to optimal when
we compute a linear combination of the tight bounds and measure w(f, U) :=
f − f . (To exactly minimize the width would imply that we solved a nonlinear
problem by a single linear approximation, and should therefore not be expected.)

The upshot of all this is: if someone provides the tables a[. . .] of the break-
point values of aν and aν then an enclosure can be computed cheaply by the
following algorithm.

An algorithm for computing the slefe of a polynomial in B ézier form

Let f :=
∑d

k=0
bkfk be a linear combination of B ézier basis functions

bk with coefficients fk. For (small) integers d, m, 1 ≤ ν ≤ d, 1 ≤ µ ≤ m
and sgn ∈ {−1, +1}, let

Fνf := fν−1 − 2fν + fν+1

qµ := (1 −
µ

m
)f0 + fd(

µ

m
) +

d−1∑

ν=1

Fνf a[d, m, sign(Fνf) × sgn, ν, µ]

and a[d, m, sgn, ν, µ] a table of breakpoint values (available,
say via [14]). Then

slefe([f0, . . . , fd], m, sgn) := [q0, . . . , qm].

Let h
m
µ be the piecewise linear hat function with break points at j

m
, j =

0, . . . , m that is 1 at µ
m

and 0 at all other break points. Then the m-
piecewise linear upper and lower component of the slefe are for t ∈ [0..1],

f(t) :=
m∑

µ=0

f̃µh
m
µ (t), where [f̃0, . . . , f̃m] := slefe([f0, f1, . . . , fd], m, +1)

f(t) :=

m∑

µ=0˜
fµh

m
µ (t), where [

˜
f0, . . . ,

˜
fm] := slefe([f0, f1, . . . , fd], m,−1).
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Slefes of polynomials in tensor-product form

f(s, t) :=

d1∑

i=0

d2∑

j=0

fijb
d2

j (t)bd1

i (s). b
d
k(u) :=

d!

(d − k)!k!
(1 − u)d−kuk,

are easily generated on [0..1]2 from the univariate slefe on [0..1] as follows.

for i = 0, . . . , d1, [f̃i0, f̃i1, . . . , f̃im2
] := slefe([fi0, fi1, . . . , fid2

], m2, +1)

for j = 0, . . . , m2, [
≈

f0j ,
≈

f1j , . . . ,
≈

fm1j ] := slefe([f̃0j , f̃1j , . . . , f̃d2,j ], m1, +1).

f(s, t) :=

m1∑

j=0

m2∑

i=0

≈

fijh
m2

i (s)hm1

j (t).

An alternative slefe construction
Note that we could have chosen not only different functionals but also a differ-
ent approximant ` that is anihilated by the functional. For example, since the
functional is a second difference, we can choose the linear function `12 that in-
terpolates c1 and c2, write p = `12 + (c2 − 2c1 + c0)b0 + (c3 − 2c2 + c1)b3.
If we then bound the basis functions b0 and b3, which happen to be convex
for degree 3 and hence also easy to bound, be arrive at an alternative slefe
construction for polynomial pieces of degree 3. The approach can be boot-
strapped by subtracting from the input polynomial p :=

∑d
j=0 cjbj the poly-

nomial pd−2 :=
∑d−1

j=1
cjbj + c̃0b0 + c̃dbd with c̃0 and c̃d chosen so that pd−2

is of degree d− 2. Then p− p2 = (c0 − c̃0)b0 + (cd − c̃d)bd can be bounded by
bounding two convex functions and we can iterate by bounding pd−2 in degree-
reduced form. This results in an expansion of p in terms of convex polynomial
pieces on the interval U = [0..1].

So why would we not just bound the original basis functions b
d
k to start with?

The answer (for the particular functionals Fν , namely second differences) is that
adding any constant or linear function h would modify the width of the slefe and
make it arbitrarily large! Specifically,

d∑

j=0

(cj + h)(bj − bj) =

d∑

j=0

cj(bj − bj) + h

d∑

j=0

(bj − bj)

︸ ︷︷ ︸

const

.

By contrast, if Fν is a second difference, Fν(h) = 0 so that the slefe construction
and width are unaffected by translation of the function.

Figure 4 points to more general applicability of the approach. It shows the
slefe of a ‘3-sided patch’, a patch in total degree bivariate B ézier form with U
the unit triangle. Here

bk, k := (k0, k1, k2) ∈ N
3 and k0 + k1 + k2 = 4
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Fig. 4. (left) B ézier piece of total degree 4 with control structure. (right) The
piece enclosed by its slefe.

are the basis functions of bivariate polynomials total degree 4 in B ézier form, hµ
the bivariate hat functions corresponding to a regular partition of the unit triangle
and

Fνf := fν0−2,ν1+1,ν2+1 − fν0−1,ν1,ν2+1 − fν0−1,ν1+1,ν2
+ fν0,ν1,ν2

is a second difference and therefore anihilates linear components.

§3. Refinement and slefes

There are two alternative ways to refine the piecewise linear upper and lower
bounds of a slefe. The first is to increase m, the number of segments when
bounding aν above and below. This only mildly increases the runtime cost, but
requires larger pretabulations. The second is to apply, at runtime, De Casteljau’s
algorithm to p(t) :=

∑d

k=0
ckbk(t), say at the midpoint t = 1/2 of the unit

interval. This yields a left piece p1 (and, similarly, a right piece p2) when t ∈
[0..1]. The left piece represents p on [0.. 1

2
] with coefficients Sdc where c is the

vector of coefficients of p and Sd is a matrix of size d + 1 × d + 1,

Sd :=
(
(

r

q

)

/2r
)

r,q∈{0,...,d}
=












1 0 0 0 . . . 0
1

2

1

2
0 0 . . . 0

1

4

2

4

1

4
0 . . . 0

1

8

3

8

3

8

1

8
. . . 0

...
...

...
...

. . . 0
1

2d . . . . . . . . . . . . 1

2d












.

Figure 5 illustrates why good slefes should not be nested under refinement, i.e.

the optimal slefe after refinement should not generally fit
inside the optimal slefe before refinement.

By definition, the intersection of the slefes at different levels of refinement
is again a piecewise linear enclosure.
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Often, we want to guarantee a maximal width everywhere. It is difficult
to estimate the number of subdivisions necessary, unless we have some fixed
constant less than 1 of decay of the pointwise widths. So, an important question
is, whether the width at an existing breakpoint can increase, or a new break point
has a width that exceeds that of its neighboring old breakpoints.

To answer this question, we recall that the width at breakpoint µ
m

is

w(p,
µ

m
) := p(

µ

m
) − p(

µ

m
) =

d−1∑

ν=1

(aν − aν)(
µ

m
)|Fνp| =: W (µ, :)F(p).

Here, W (µ, :) is row µ of the matrix of widths of the functions aν at µ
m

,

W :=
(

wν(
µ

m
)
)

µ=0..m,ν=1..d−1
, wν := aν − aν ,

and F(p) :=
(

|Fν(p)|
)

ν=1..d−1
is the vector of absolute second differences of

p.

Lemma 2. If w(f ; σ) := WF(f) is the vector of widths after σ subdivision
steps then

w(f ; σ + 1) ≤ WSd−2

1

4
F(f).

Proof: Let ∆ be the d× d+1 matrix that maps the vector of coefficients to their
first differences. Due to the halving of the abscissae distances, Sd−1∆ = 2∆Sd

for the subdivision matrix of the differences as elaborated by

. . . 024 . . .
Sd→ . . . 01234 . . .

∆
→ . . . 111 . . .

. . . 024 . . .
∆
→ . . . 222 . . .

Sd−1

→ . . . 222 . . .

Therefore, if F is the matrix whose νth row represents the νth second difference
then FSd = ∆∆Sd = Sd−2F/4 and (note the absolute values, applied in last
when forming |F (Sd(c))| with c the coefficients of f ):

FSd = abs∆∆Sd = absSd−2

1

4
∆∆ ≤

1

4
Sd−2abs∆∆ =

1

4
Sd−2F.

Fig. 5. Good enclosures are not nested. Refinement from 1 to 2 segments. The
optimal slefe on the right does not fit inside the optimal slefe on the left.
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width = 0.2767 width = 0.0579 

Fig. 6. (left) A cubic B ézier segment with coefficients 0,−1, 1, 0. The control
polygon exaggerates the curve far more than the grey 3-piece slefe. (right) After
one subdivision at the midpoint, the width of the slefe (grey) is roughly 1/4th of
the width of the unsubdivided slefe (dashed).

The claim follows from w(f ; σ + 1) = WFSd(f)

Observation 3.1: If all Fν are equal then SF = F and all widths decrease by
1

4
. This happens in the limit, when the second differences converge.

Observation 3.2: To show that widths can, in principle, increase locally under
subdivision, let v be a row of W . If the W is not further specified, we could have
v(1) = 0, v(j) = 1 for j 6= 1 and Fj = 0 for j 6= 1, F1 = 1. Then w(f, σ) = 0
but w(f, σ + 1) = 1/2+ 1/4+ . . . + 1/2d 6= 0. That is, the ratio of widths after
and before the subdivision step could be infinite at a specific breakpoints rather
than the hoped-for 1/4.

Observation 3.3: For the algorithm stated in Section 2, the entries of a have
their largest entry along the diagonal and the widths are all guaranteed decrease
by at least 3/8 for d = 2, 3, 4, 5.

We now show that, if the second differences are replaced by the sum of νth
differences then every v(i) shrinks by at least 1/2 at every subdivision step re-
gardless of the tightness of the estimates in tables a[. . .]. To prove the result, we
first estimate the column sums of Sd.

Lemma 3. Each row of Sd sums to 1. The sum of all elements in each column q
each column suq, s(d, q) :=

∑d
r=0

(
r
q

)
/2r, is strictly bounded above by 2.



10 J. Peters

Proof:

s(d, q) =
1

2
s(d − 1, q − 1) +

1

2
s(d − 1, q)

=
1

2
s(d − 1, q − 1) +

1

2
[
1

2
s(d − 2, q − 1) +

1

2
s(d − 2, q)]

=

d−q
∑

j=1

s(d − j, q − 1)/2j since s(d − k, q) = 0 for d − k < q.

We observe s(d, 0) < 2 for all d and use this as induction start from which
s(d, q) < 2 follows as claimed.

Lemma 4. For ν = 2, . . . , d define

Fν(f) :=

d+1−ν∑

j=0

∆ν
j (f), ∆ν

j is νth difference applied to fj , . . . , fν+j+1.

Let f(t) :=
∑

k fkbk(t) =
∑d−1

ν=1
Fν(f)aν(t), where each aν is a polynomial of

degree d defined by aν(0) = aν(1) = 0, Fη(aν) = 0 if ν 6= η and Fν(aν) = 1.
For the interval U = [0..1], let aν ≤ aν ≤ aν , ν = 1..d − 1 be any choice of
lower and upper bounds. Then subdivision at t = 1

2
reduces the width of the

enclosure of p to less than 1/2 the previous width.

Proof: Let 1 := [1, . . . , 1] and ∆ν the column vector of νth differences with jth
entry ∆ν

j so that Fν = 1∆ν . Then, as in the proof of Lemma 2,

absFνSd = abs1Sd−ν

1

2ν
∆ν <

2

2ν
absFν ,

where the inequality follows for the qth column of Sd−ν from 1Sd−ν(:, q) =
s(d − ν, q) < 2 according to Lemma 3 since ν ≥ 2.

The lemma gives a worst case estimate over all possible bounds W : regard-
less of how poorly or, and this is more important, how tightly we choose the
enclosures, the width is guaranteed to halve everywhere.

§4. Slefes of Rational Functions

Rational functions are an example where we can not build a slefe directly as
a linear combination of two-sided bounds on a finite family of functions since we
do not have the finite basis. However, we can bound numerator and denominator
of

r :=
p

q
=:

∑
pkbk

∑
qkbk

.
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Fig. 7. (left) Enclosure of rational linear segment r+
µ . (right) Quarter circle

enclosed by its slefe.

separately and use elementary interval arithmetic. We must assume that q 6= 0
on U , i.e. without loss of generality q > 0. Then we compute r as follows. (The
calculation of the lower enclosure is analogous). Let pµ be the µth breakpoint
value, µ = 1, . . . , m, of p. On the interval [ µ

m
..µ+1

m
], r is bounded above by the

rational linear function

r+
µ :=

pµ(1 − α) + pµ+1α

q
µ
(1 − α) + q

µ+1
α

α ∈ [0..1].

We determine the linear interpolant l0µ to r+
µ at the breakpoints, and its parallel

offset l1µ that just touches r+
µ tangentially Figure 7 (left) . Depending on the

convexity or concavity of r+
µ , either the endpoints of l0µ or of l1µ provide a linear

upper bound on r on the interval. By taking the maximum of the endpoints of
abutting segments, adjacent slefe segments join continuously. A result is shown
in Figure 7 (right) .

§5. Mid-Structures

B ézier or b-spline control meshes provide a linear, refinable approximation that
exaggerates features and is, up to reparametrization, in 1-1 correspondence with
the curved geometry. However, for a given budget of line segments, B ézier and
b-spline control meshes are usually very loose piecewise linear approximations
to the curved geometry. This section derives and analyzes a mid-structure (mid-
path, mid-patch, etc.) that comes close to being the ’nearest’ piecewise (bi-
)linear approximant while retaining the 1-1 correspondence and the computa-
tional efficiency of control meshes.

Definition 1. The mid of f is defined as f := (f + f)/2.

With Lf mapping to the piecewise linear functions, e.g. the ` in Section 2 or,
alternatively, the control polygon of f , a the d + 1 × m + 1 matrix of mids of
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Fig. 8. A degree 3 curve (left) finely evaluated, (middle) approximated by sam-
pling at four points, (right) approximated by a 3-segment mid-path.

the basis functions aν , and h the vector of hat functions h
m
µ , we can rewrite

f(t) := (f(t) + f(t))/2 =
1

2

(
m∑

µ=0

f̃µh
m
µ (t) +

m∑

µ=0˜
fµh

m
µ (t)

)

= f0(1 − t) + fdt +
m∑

µ=1

d−1∑

ν=1

Fν(f)
a[d, m, +, ν, µ] + a[d, m,−, ν, µ]

2
h

m
µ (t)

= Lf(t) + F (f) · a · h(t).

Observation 5.1: The mid x := (x+x)/2 is well-defined for a vector-valued
curve or surface x := (x, y, z).

Observation 5.2: The boundary of a spline in piecewise B ézier form is, for
example, the endpoint of a curve segment or the space curve corresponding to an
edge for a patch in R

3. Along such an edge, the mid-structure is computed from
that boundary only. Therefore, mid-structures join continuously if their patches
abut continuously. For example, we define the mid-path f of f as the m-piece
linear function with values

f(
µ

m
) :=

{
1

2
(f

m
+ f

m
)( µ

m
) if 0 < µ < m,

fµ if µ = 0 or µ = m.

The choice for µ = 0 and µ = m guarantees that mid-paths of continuously
joined B ézier pieces match up at their endpoints.

Observation 5.3: The distance between the polynomial f and the broken line
f on the interval [ µ

m
..µ+1

m
] is bounded by the linear average of the distances at

the endpoints; and these distances are evidently bounded by

|f − f |(
µ

m
) ≤

εµ

2
(f

m
− f

m
)(

µ

m
)

where εµ = 2 for µ = 0 or µ = m and εµ = 1 otherwise. This makes f
an excellent max-norm approximation to the spline with a known maximal ap-
proximation distance. By contrast, naive linearization without further analysis,
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say triangulation by sampling, reapproximates without known error and typically
with larger error between samples as illustrated in Figures 8 and 9.

Observation 5.4: (Midpath Control Structures) If the number of breakpoints
equals the number of control points, for example if m = d for a polynomial piece
in B ézier form, or m = 1 for each polynomial piece of a spline, then the matrix
a is invertible for all (functionals and) tables encountered so far. Therefore, we
can obtain f from f by reversing the midpath coefficient computation,

f − Lf = F(f) · a.

where Lf represents, for example for the linear interpolant ` in Section 2 and a is
the vector of polynomials aν . Solving for F(f), we can reconstruct the function

f = Lf + a · F(f) = Lf + a · (a)−1(f − Lf)

from the known quantities Lf , f , a and a. That is, the mid-struct and control-
polytope equivalently represent the (spline) function in different bases. This links
piecewise linear with nonlinear spline geometry similar to control polygons, but
with a closer spatial relationship. In particular, we can take the point of view that

any broken line can be interpreted as the f of a spline f
of prescribed degree

with each control points associated with one break point. We check that Lf = f
is consistent.

The midpath for rational function can be inverted if we make additional as-
sumptions on the convexity of the curve.

When deriving f from a broken line that lies in a plane, say the approximate
level curve of an implicit function, it is good to know that f will stay in the same
plane. More generally, the simple linear relation between f and f implies the
following.

Lemma 5. f and f lie in the same least dimensional hyperplane if Lf does.

During the talk, an interactive example was shown where the interval in-
tersection of the slefe, rather than of the exact function, was computed on the
fly, and the piecewise linear central curve was interpreted and inverted as mid-
structure. Also interactive manipulation of a cubic spline curve by its mid was
shown. One potential drawback of using the mid-structure for design is that f
equi-oscillates about the mid-structure if the slefe is efficient, because then, f is
a (near-)optimal approximant in the recursive max-norm. More can be found in
the master’s thesis [3].

Why would we not just compute a best L∞ approximant by Chebyshev econ-
omization? Chebyshev economization only generates optimal approximation
from to polynomials of degree d from polynomials of degree d − 1. Moreover,
just like the standard Remez algorithm ([1] Section 6.1), it does not generate con-
tinuous piecewise approximations. Finally, neither approach yields the desirable
one-sided approximation.
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Fig. 9. A bi-quadratic B ézier patch (left) finely evaluated, (middle) approximated
by sampling, (right) approximated by a mid-patch.

§6. Open Problems

Although there is by now a lot of empirical evidence that slefes a close to opti-
mal in their width, it would be nice to exactly quantify how much we loose by
switching from a hard nonlinear max-norm approximation problem to using the
simple slefe construction. The difficulty lies in deriving the best approximation
(if this were simple, we would indeed not need slefes) and determining the worst
case.

While [15] indicates that slefes do a good job when used inside a collision
detection hierarchy, the jury is still out as to whether it will be better than other
methods at robustly finding all roots within some box U , say of a multivariate
polynomial. Experiments with univariate polynomials, using a framework gener-
ously provided by Casciola and Fabbri of the University of Bologna, Italy, show
that slefe-based root finding is on par with the best, B ézier clipping [13]. The
hope is that the tighter bounds will pay of in the first steps of multivariate root
finding.

The invertibility of the mid-structure opens up the possibility of parametriz-
ing level sets approximately with a known error. Here one computes the interval
intersection of the slefe, rather than the exact function, and uses the middle curve
or surface of the interval intersection as mid-structure.
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