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Abstract

Given a planar spline curve and local tolerances, a matched pair of polygons is computed
that encloses the curve and whose width (distance between corresponding break points) is
below the tolerances. This is the simplest instance of a subdividable linear efficient variety
enclosure, short sleve.

We develop general criteria, that certify correctness of a global, polygonal enclosure built
from a sequence of individual bounding boxes by extending and intersecting their edges.
These criteria prove correctness of the sleve construction.

Key words. spline curve, one-sided bounds, approximate implicitization, sleve,
boundedness certificate.

1 Motivation

Nonlinear splines are essential for function and design, but they can present chal-
lenges for accurate and robust analysis and use. Since piecewise linear geometry
is simpler to work with, an obvious approach is to approximate splines piecewise
linearly. Although typically used in rendering, approximation by connecting point
samples does not guarantee a bound on the approximation error and it is not a safe
approximation for purposes like intersection testing since it does not conservatively
bound the spline from one side. The control polygon does better in that the local
convex hull provides a safe enclosure; but the width of the enclosure is typically far
from minimal. Suboptimal width of the enclosure increases the cost of interrogation
in applications such as interference testing or ray casting.

For a large class of refinable functions, in one or several variables, in particular
for splines, Lutterkort and Peters (2001a,b) developed subdividable linear efficient
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spline Kobbelt et al. (1998) sleve(1) sleve(2)

Fig. 1. Enclosing uniform cubic splines. from left to right B-spline control polygon and
curve; envelope constructed according to Kobbelt et al. (1998); sleve with the same number
of segments, sleve with twice the number of segments.

function enclosures, short slefes (pronounced like shirt sleeves), that provide two-
sided bounds. Their width is typically much less than that of convex hulls or bound-
ing boxes while using roughly the same number of operations. We say ‘typically’
since the constructions agree for a horizontal line segment and are asymptotically
equivalent with an O(h?) convergence. The combination of accuracy and low cost
is possible, because Lutterkort et al. precompute offline and tabulate a costly op-
timization specific to the class of splines. The runtime cost is therefore dominated
by summing a few second differences of the control points.

There are two challenges when leveraging slefes: first, to bound each segment by
selecting the correct combination of upper and lower bounds of the = and the y
component (it is not true that the combination of the upper bound on z and the up-
per bound on y always bound the curve from one side — the corresponding broken
line may well intersect the curve!); and second, to combine the resulting segment
bounding boxes to form a matched pair of polygons that contiguously bound the
spline curve. The second challenge is not specific to slefes and so we develop it
for bounding boxes in general, classifying the failure modes and formulating cer-
tificates that verify correctness. The resulting framework helps repair the envelopes
proposed in (Kobbelt, 1998; Kobbelt et al., 1998; Shen and Patrikalakis, 1998)
shown in Figures 3, 4, 5.

The structure of the paper is as follows.

Section 3 shows how to efficiently and tightly bound a single polynomial segment
that might be a piece of the z-component of the curve.

Section 4 explains why these bounds can not directly be leveraged to yield an en-
closure of the curve.

Section 5 gives an efficient way of computing a piece of the enclosure. This con-
struction is specific to sleves.

Section 6 gives the criterion for correctly joining two adjacent bounding boxes by



extending and intersecting their edges.

Section 7 gives the criterion for correctly completing a sequence of bounding boxes
pairs. Both multi-box criteria are generic and apply to other constructions besides
sleves.

Section 9 states the algorithm formally and in detail and Section 10 concludes with
applications.

2 Related bounding constructs

The theory of slefes has its roots in bounds on the distance of piecewise polynomi-
als to their Bézier or B-spline control net (Nairn, Peters, and Lutterkort, 1999; Reif,
2000). Compared to these constructions, slefes yield dramatically tighter bounds
for the underlying functions since they need not enclose the control polygon. Lut-
terkort and Peters (2001a,b) develop slefes for splines, in particular for splines in
Bézier form. In a nutshell, the slefe of a function x is an explicit two-sided approx-
imation 7, z so that x < = < 7 over the domain of interest. Key to the approach
are the a priori knowledge of the finite spline basis and the fact that (after a care-
ful change of basis), we can precompute optimal bounds on basis functions and
tabulate them once and for all. Thus the work is factored into a best max-norm
approximation, done off-line — and the computation of second differences for a
specific instance of a spline. Bounds based on slefes are observed to be very tight.
Indeed, while the simple linear slefe construction cannot be expected to solve the
hard non-linear problem of best two-sided max-norm approximation, the detailed
analysis in (Peters and Wu, 2003) confirms near-optimality for cubics that have
no inflection in the interval of interest: the slefe differs by less than 7% from the
optimal.

Approximation theory has long recognized the problems of one-sided approxima-
tion and two-sided approximation (Buck, 1965). Algorithmically, though, accord-
ing to the seminal monograph (Pinkus, 1989), page 181, the convergence of the
proposed Remez-type algorithms is already in one variable “generally very slow’.
The only termination guarantee is that a subsequence must exist that converges. By
contrast, the slefes provide a solution with an explicit error very fast and with a
guarantee of error reduction under refinement.

If we distinguish between elementary bounding constructs and (hierarchical) struc-
tures that employ these elementary bounding constructs as their oracles, sleves
are a structure and its elementary pieces are hexagons H,, defined in Section 4.
A gallery of elementary bounding constructs is shown in Figure 2 including axis-
aligned bounding boxes (AABB), oriented bounding boxes (OBB), quantized bound-
ing boxes also called ‘k-dops’ or discrete orientation polytopes (convex polytopes
whose facets are determined by half spaces whose outward normals come from
a small fixed set of & orientations) (Crosnier and Rossignac, 1999; Kay and Ka-
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Fig. 2. Enclosures based on control points: less grey is better! (from left to right:) cubic
curve with control polygon, axis-aligned box, bounding circle, Filip et al. bound (scaled by
1/2), bounding ellipse convex hull, oriented bounding box, ‘fat arc’, 3-segment sleve.

jiya, 1986; Klosowski et al., 1998), fat arcs (Sederberg et al., 1989), the bound
of Filip et al. (1986) which is based on Taylor expansion, convex hulls, bounding
spheres and minimal enclosing ellipsoids (Welzl, 1991). Gottschalk et al. (1996)
and Klosowski (1998) give a good overview of how elementary bounding con-
structs are used in the context of hierarchical interference detection (for space
partitioning methods see e.g. (Basch, 1999)): simpler constructs like AABBs and
spheres provide fast rejection tests in sparse arrangements, while more expensive
k-dops and OBBs perform better on complex objects in close proximity. With adap-
tive resolution, sleves are best suited for curved, non-polyhedral objects in close
proximity (cf. Figure 20).

Cohen et al. (1996) and Sander et al. (2000) modify surface simplification for trian-
gulated surfaces to generate (locally) inner and outer hulls. This requires solving a
sequence of linear programs at runtime and applies to already triangulated surfaces.

Kobbelt (1998); Kobbelt et al. (1998), assemble oriented bounding boxes into a
structure called ‘envelope’. The goal is to hierarchically support accurate ray-tracing
of complex curved objects represented as subdivision curves or surfaces. While the
focus is on surfaces, Kobbelt (1998) and Kobbelt et al. (1998) use cubic curves as
the motivating case study. Envelope boxes and slefe boxes differ in that an enve-
lope depends, via evaluation and normals, non-linearly on the coefficients of the

(a) (b (d

Fig. 3. Unsafe construction proposed in (Kobbelt, 1998; Kobbelt et al., 1998) applied to a
uniform cubic curve. (a,b) For each polynomial curve segment with endpoints p; and p; 1
and defined by coefficients ¢;, j =i —1,...,7+2, a(grey) box is constructed with corners
pi+atd;, pi—a~d;, pir1+atd;, pir1—a~d;, were d; is the direction perpendicular to the
chord p;, p;+1 and ™ is a bound on the distance of the curve from the line through p; and
pi+1 inthe direction d;, o~ isabound in the —d; direction. (c) The grey boxes are extended,
clipped against the line in the curve’s normal direction at p; and the extreme intersections
are selected. This yields the dashed boundaries of the envelope defined in (Kobbelt, 1998;
Kobbelt et al., 1998) (d) The enlarged detail shows that the bounding boxes and hence the
envelope do not fully enclose the curve.
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Fig. 4. Unsafe construction of outer boundaries (solid line segments) for a two-piece linear
interval spline according to (Shen and Patrikalakis, 1998, page 51). (left two) the outer
bounds (solid line segments) are selected for each piece according to the sign combination
of the partial derivatives of the central curve (dashed) of the spline; (right) At the turning
point, an edge is added and outer bounds are intersected and trimmed.
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Fig. 5. Modifying the example of Figure 4. From (left) to (middle), the envelope edges of
Pj5 switch from right and lower to left and lower adding one more edge. From (middie) to
(right), as P, and Ps exchange their y positions, the boundaries not longer enclose the first
linear interval. In particular, a dark (red) wedge is not covered.

spline. By contrast, the slefes are pseudo-linear, i.e. linear except for a min-max
selection. This allows solving inverse problems such as fitting spline curves into
prescribed channels (Lutterkort and Peters, 1999). The envelope construction steps
and their failure to enclose a planar cubic curve are illustrated in Figure 3. We can
repair the failure of the local bounding box by extending the grey box of the ith
curve segment to enclose all four corresponding control points c;; or by somehow
chopping the curve into pieces so small that its orthogonal projection onto the chord
is 1-1. But that does not solve the second, more complex problem that breaks the
construction discussed next, namely connecting the boxes by extending and inter-
secting their edges to form a globally valid enclosure.

Hu et al. (1996a,b,c); Tuohy et al. (1997) promote the use of interval spline rep-
resentation (Sederberg and Farouki, 1992) for tolerancing, error maintenance and
data fitting. The key ingredient of this use of interval arithmetic are AABBs based
on the positivity and partition of unity property of the B-splines. Among many
other contributions, Shen and Patrikalakis (1998) propose to bound any interval
spline of uniform width (for each component, the difference between upper bound
and lower bound is constant for all parameters) by the construction sketched in
Figure 4, whose result is also called ‘envelope’. The failure of the approach for a 2-
piece interval spline curve of degree 1 is illustrated in Figure 5. The initial bounding
boxes, here intervals, are correct, but the algorithm by which their union is formed
is flawed since it violates certificate (2) derived in Section 6.



3 Subdividable Linear Efficient Function Enclosures

The subdividable linear efficient function enclosure, or slefe of a possibly multi-
variate function = with respect to a domain U is a piecewise linear pair, T, z, of
upper and lower bounds that sandwich the function on U: T > = > z. Definition
9.1 states a specific algorithm to computez and x and Section 3.1 below explains
the derivation. The goal is to minimize the width,

w(z,U) =T — z,

in the recursively applied L* norm: the width is as small as possible where it is
maximal — and, having fixed the breakpoint values where the maximal width is
taken on (zeroth and first breakpoint in Fig. 6), the width at the remaining break-
points is recursively minimized subject to matching the already fixed break point
values.

3.1 The general slefe construction

The slefe construction is based on the two general lemmas from (Lutterkort and
Peters, 2001a; Lutterkort, 2000) and the once-and-for-all tabulation af.., ..] of best
recursive L> enclosures of a small set of functions, a,, v = 1,.. ., s. These tables
are available via (Wu and Peters, 2004). Understanding the section is helpful but
not necessary for understanding the remainder of this paper.

The change-of-basis lemma below is valid for a large class of functions and approx-
imating spaces, and it is best proven in the general setting since specialization only
adds notation. For our purposes, it suffices to think of B as the space of B-splines
or Bézier polynomials of a certain degree, H the hat functions that generate the
control polygon (or just the linear functions, in the case of Bézier polynomials), L
the mapping to the control polygon (or just to the chord connecting the end points,
in the case of Bézier polynomials), A the second differences of the control points,
s the degree minus one and the s functions a,, collected into a vector a. A concrete
example, is given right after the lemma.

Lemma 3.1 (change of basis) Given two finite-dimensional vector spaces of func-
tionS, B 75 H, s := dimB — dlm(B N H), (bk)k:I,...,dimB a basis of B, a,,
v =1,...,sfunctions in B, and linear maps

L:B— H, A:B— TR,

such that (i) (Aja,),; is the identity in R*** and (ii) ker A = ker(E — L) (where
E'is the embedding identity) then forany z :=b -x € B,

(b—Lb)-x=(a— La)- (Ax).
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Fig. 6. The function z := a3 = —(2b3+b3)/3 with (left) its control polygon, its linear
interpolant Lz and (right) its slefe (z, 7).

Proof By (i) A(/ — aA)z = 0 and hence, by (ii), (E — L)(I — aA)z =
The bounds, Lemma 3.2, follow by interval arithmetic.

Lemma 3.2 (bounds) With the definitions of Lemma 3.1, if a, — La, < a, —
La, < a, — La, on every point of U then

z:= Lz + Za,, La, max{0, Az(v)} + Za,, La, min{0, Az(v)},

T = Lx—l—Za,, La, max{0, Az(v }—i—Za,, La, min{0, Az(v)}.

sandwich z on U: r<z<7T

Given z € B the slefe is constructed in five steps. The first four of these can be
precomputed based on B. Only the fifth step is specific to x.

(1) Choose U, the domain of interest, and the space H of enclosing functions.

(2) Choose a difference operator A : B — R*, withker A = BN H.

(3) Compute a : R® +— B so that Aa is the identity on R® and each a; matches
the same dim(B N H) additional independent constraints.

(4) Computea, — La, anda, — La, € H.

(5) Compute Az and assemble z and = according to Lemma 3.2.

To make the framework concrete, we specialize it to one variable. Let

e B be the space of univariate polynomials of degree d, in Bézier form

r(u) = X%, x:bl(u), bi(u) := W(l — )ik,

In Figure 6, d = 3.
e H the space of piecewise linear functions h, with break points at p/m, u €
{0,...,m}. We write
" eH
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Fig. 7. (left) A cubic B ezier segment with coefficients 0, —1,1,0. The control polygon
exaggerates the curve far more than the grey 3-piece slefe. (right) After one subdivision at
themidpoint, the width of the slefe (grey) is roughly 1/4th of the width of the unsubdivided
slefe (dashed).

to indicate that there are m linear segments joined to form the upper bound. In
Figure 6, we use m = 3, but we could choose m = 10 or m = 1 just as well.
e Az the s =d— 1= 2second differences of the Bézier coefficients
aei=[25] = (200
(Note that A denotes a second difference while the subscript in A, picks out the
2nd entry in the vector Az of second differences.)
o Lz(u) := zo(1l — u) + z4u, (by contrast, for B-splines, L maps to the control

polygon),
e U=10.1].

This yields

at:= —(2b% +bd)/d, al:=—(b?+2bd)/d,
and since, for the special choice of L, we have a¢ — La? = a¢, the equation of
Lemma 3.1 reads

r— Lz = a%Az + alAyz.

By the symmetry a3(1—t) = a3(¢). To apply Lemma 3.2, it is sufficient to precom-
pute the optimal enclosures for a2. Due to the convexity of a2 (see Fig. 6), the piece-
wise linear interpolant at 1/m is an upper bound and the table a[d, m, sgn, v, ]
storing the m + 1 breakpoint values of a3, is for m = 3

a[3,3,4+1,1,..] = [0, —10/27, —8/27, 0.
For example, the value of a? at 1/3 is —10/27. The optimal lower bound is com-
puted by recursive minimization, according to Lemma 5 of (Peters and Wu, 2003).

This procedure yields the m + 1 break point values

a[3,3,-1,1,..] = [-.0695, —.4399, —.3154, —.0087).

Since A is a second difference,



e the width

wslefe(x; U) = I?J Z —ay — La,,m) |AU.T|

is invariant under addition of constant and linear terms to x and
e one (DeCasteljau) subdivision step (see (Prautzsch et al., 2002; Farin, 1997,
e.g.)) at the midpoint, ¢ = 1/2, cuts the width to roughly a quarter (see Fig-

ure 7), because the width (a, — La,” —a, — La, ) ofthe a, stays fixed but the
maximal A,z shrinks to 1/4 its size.

4 Constructing planar sleves

The slefes of the x and the y component of a planar curve each have an upper and a
lower bound. These combine to four potential bounds for the 1™ segment [¢,,..t,11],
t, = £ of the spline = (t), y(t):

o= - [F] e ffn]s o= a-n ]+ ]
== ] e [5n)] o= a-n [ ][]

Figures 8 and 9 illustrate the resulting collection of possibly intersecting line seg-
ments. Evidently, this collection does not enclose the curve due to the gaps. How-
ever, thanks to linearity, each piece H,, of the enclosure is a convex combination of
consecutive point enclosures O, and O, ; where (Figure 9, right)

0O, is the quadrilateral with the vertices [;gzg] , [%gz;] , [Z&‘jg] , [ig/‘:g] .

Each point enclosure O, is an axis-parallel rectangle or box and the curve is en-
closed by the linear interval splines of the point enclosures. Precisely, with

=019 [23] a9 3]
+(1-a)s [ tug] af [y(t ] a, B €[0..1],
—+

-

Fig. 8. The extreme, outermost slefe components of the curve x are emphasized as fat
line segments. Note the gap and the intersection between consecutive extreme segments.
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Fig. 9. (left)The curve segment stays inside H,, the convex combination of two neigh-
boring point enclosures. (right) Two extreme line segments, e:;,e;, are picked among
the four lines ==, 47—, ¢ F, ¢~ connecting corresponding corners of the two point en-
closures. The hexagon H, is generated by two extreme segments and edges of O, and
Oyt

a bilinear average of the corners of the point enclosure, we define (a multiple cover
of) H, as

H, (o, ,t) :== (1 — t)vu(e, B) + tvusi (e, B). &

Such interval enclosures can be used, say for intersection testing. However, just
like other local enclosures, they have two shortcomings for effective use: multiplic-
ity and gaps. Multiplicity refers to the fact that we need to test against all possible
bounding segments. For example, to check interference between two interval en-
closures, we need to check the four potential boundary curves of one against those
of the other and even this is not enough due to gaps. Gaps refers to the fact that
adjacent bounding segments do not necessarily meet up or they intersect early. We
would like to prescribe the number of segments per polynomial piece at the outset.
However, filling the gaps either requires more pieces by including edges of the point
enclosures, or trimming to an intersection. (There could be up to three additional
segments for one breakpoint.) Fortunately, if we are careful, the obvious strategy
of extending or clipping ‘extreme’ segments can be guaranteed to work efficiently
and stably.

5 Multiplicity: computing local bounding hexagons

This section explains a highly efficient way of computing H], via a decision table.
We focus on two adjacent point enclosures 0,, and 0,1 as shown in Figure 9. We
want to identify a pair of extreme line segments

oo} S L0007

that, together with four edges of the two point enclosures, bound a hexagon that
in turn covers H,,. (For some configurations, the hexagon will only have 4 or 5
extreme points.)

10



Definition 5.1 Let £ € {£7, £+ £+ 07}, ie. £(t) := (1 — t)v,y + tv,, where
v, Is @ corner of O, and v, the same corner in O, ;. The normal of the ¢ is
defined as n(¢) := [_(””1_”"0)”] and

(Vu1—vp0)a
dyu(v) = () - (vu0 — v) = n(f) - (vun —v).

Then ¢ is extreme for the interval [¢,,..t,11] ifand d,(v) is of one signforall v € H,,.

Here and in the following, we interpret sign(0) to match both + and — so that we
can write: for all v € O,,, sign(v, — v) = (—, —), even though choosing v := v,
yields v,0 — v = (0, 0).

Now consider £~—. Since it is based on the lower slefe boundaries of = and v,
sign(vy —v) = (—, —) forall v € O,,. If the normal of /=~ also has signs (—, —)
then d,,(v) > 0. This motivates the following lemma:

Lemmab5.1 Alinesegment £ € {¢~—,¢F— £+* £~} is extreme if and only if the
signs of the x and y components of its normal both agree or both disagree with the
superscripts of £.

Proof Suppose the signs agree. For v € O,, we get d,(v) = n(£) - (vyo —v) > 0
since the vector (v, — v) has the same signs as the superscript of £. Forv € 0,11,
d,(v) =n(l) - (v, — v) > 0since (v, — v) has the same signs as the superscript
of £. For any v € H,, we have v = (1 — t)vy + tvy, where vy € O, v1 € 0,44
and t € [0..1]; and therefore d,,(v) = (1 —t)d,(vo) +td,(v1) > 0. If both signs are
opposite, the arguments applies with > 0 replaced by < 0.

Conversely, if one component of n has the same sign as (v,o — v) and the other
has the opposite sign, then choosing v on an edge of 0, with v, as corner will set
one component of the vector (v, — v) to zero. We zero out the component that had
the same sign to show that d,(v) < 0 can happen and we zero out the component
with the opposite sign to show that also d,(v) > 0 for some v € H,,, i.e. £ is not
extreme. l||

We superscript the extreme line segments as efjgn(du). Algorithmically, e, and e,
can be detected by computing the signs of the differences of the component slefes:

o = sign[y(ty) = y(tur1), Ttu) = Y(tur1), 2(tusr) — 2(tn), T(turr) — T(t4)]
and applying the decision table

11
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Fig. 10. Eight point enclosure confi gurations. Configurations 4a and 4b trigger subdivi-
sion.
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That i, to determine e," we proceed as follows. If y(¢,)—y(t,1) < 0and z(t,.1)—
z(t,) < 0, and hence oy = —1 = o, then £~ is an extreme segment and is named
e To determine e;;, we negating the signs in the vector . Thus, if both the sign of
the z and of the y component of n(¢) are the opposite of the superscripts of ¢ then
{—e .

"

Only cases (4a) and (4b) of Figure 10 provide no assignment or two competing
assignments. Often, we can eliminate this case by replacing O, and O, by the
smallest enclosing box if that allows a construction within the tolerance.

Lemmabs.2 If

Table T determines unique segment e, and e, or (1)
two choices lie on the same line (and either may be picked)

then e and e, and four edges taken from 0O, and O, ; form a polygon that covers
H,,, or the smallest enclosing box are enclosed.

Proof By definition, the segments ¢ and e, corresponding to [¢,..t,.] do not
cross. There are 2* possible values for o. The configurations characterized by eight
of these are depicted in Figure 10 and the other eight are obtained by exchanging the
subscripts x4 and i + 1. Only configurations 4a and 4b do not yield unique extreme
lines. l||
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Here and later, we argue that subdivision at the midpoint eventually removes the
offending cases, which correspond to sharp turns or self intersection.

To simplify the argument, we rule out curves with cusps and corners for now but
will include them in the final argument.

Lemma 5.3 If the curve is regularly parametrized, subdivision at the midpoint in
the limit (i) orders any triple O,_,, 0, and O, with respect to the tangent direc-
tion and (ii) separates any pair 0, and O, ;.

Proof Since the parametrization is not singular, there is a finite proportionality
between the length of the parameter interval and the arclength. Since the width
of each component slefe is proportional to the second differences of the control
points and the second differences decrease like O(h?) when the parameter interval
is shortened to A, the maximal width of O, shrinks faster than the parameter inter-
val; therefore the point enclosures shrink more rapidly than the curve length. Since
the parametrization is not singular, in a small neighborhood of ¢, the curve is a
function over the tangent line at ¢, and therefore orders the triple. l|

For example, if the tangent line is the z-axis then, in the limit, the minimum x
component of O0,,; will be larger than the maximum z component of O ,.

While separation of O, and O, rules out cases 4a and 4b, a weaker condi-
tion suffices since only complete interpenetration of the point enclosures has to
be prevented. In particular, (ii) holds already when the curve pieces are regularly
parametrized, allowing for corners at joints between the polynomial pieces. So, if
we can assure that we eventually subdivide at all parameters that correspond to a
singularity, (ii) also holds for curves with isolated singularities. A piece of zero ex-
tent presents no problem since the point enclosures have zero width. Note that two
adjacent curves may need to be subdivided if we are at an end point, i.e. if u = 0
or u=m;.

6 Gaps and Intersections: the correct pairwise joining of bounding regions

If we would simply take the union of the bounding regions constructed in the pre-
vious section, we would have a correct enclosure of the curve. However, as pointed
out earlier, that union is considerably more complex than two line segments per
curve segment and it is not cheap to compute compared to extending and intersect-
ing the edges of the regions. This section gives a criterion for correctly joining two
adjacent bounding regions by extending and intersecting their edges. It applies, in
particular, to bounding regions generated as the convex hull of two boxes, not nec-
essarily axis-aligned. Oriented bounding boxes fall into this framework as degen-
erate hexagons, where the box is reduced to a line segment. In particular, schemes

13
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Fig. 11. (left) Two adjacent extreme segments are intersected to get a vertex p;j on the
sleve. The sleve polygons are shown as bold lines. (right) Certifi cate (2) fails for this
configuration of point enclosures and, as indicated by the dark (red) triangle, the sequence
of extreme segments no longer encloses the slefe hexagon H,_1.

Error

Fig. 12. A concrete example of a curve (with d = 6 and m = 3) for which certifi cate (2)
fails. The polygons with breakpoints pj[, p, donot enclose the curve.

like (Kobbelt, 1998; Kobbelt et al., 1998; Shen and Patrikalakis, 1998) are covered.

In general, gaps and intersection appear between the individual bounding boxes
(see Figure 11, left). For sleves this occurs when different corners of the point
enclosure are chosen by two adjacent segments. (This, in turn, corresponds to dif-
fering superscripts p, 7 of £#" for the extreme segments . and p + 1.)

Denote the intersections of e}, with e/, respectively of e,_; with e, as

P,]L = 32—1@:—1,1) = e:(t,—;o) and p, = e;—1(t;—1,1) =€, (t;,o)-

If the lines coincide, we choose the midpoint of the edge of O,,. If they are parallel
but not coincident, we return infinity so that the subsequent tolerance test triggers
refinement (see Section 9). To see that such parallel lines are possible, although not
likely, see Figure 15, left.

It is now tempting to connect the resulting sequence of vertices (pj), respectively
(p,,) to form the boundaries of the sleve. However Figure 11, right, proves that
this does not yield an enclosure of all hexagons H, and the curve would not be
safely enclosed. The problem is that the segment p, p,,.; does not correspond to a
proper segment of the line through e, since the parameter of intersection is decreas-
ing rather than increasing. To rule out geometrically and combinatorially complex
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cases, we require that
try>the. and ., >t (2)

Note that it is not correct to demand that the parameters lie in [0, 1]: this will not
hold, even after repeated subdivision, for extension points such as p; in Figure 11
left. Since the segments are now well-defined, the quadrilateral

Qu  Wwith verticesp,,, prp,, 1, Py
is well-defined and bounded by €, g1, €, and g, where

qu = (1 —s)p) +sp,, s €[0.1].
We can conclude the following.

Lemma 6.1 If (2) holds then each Hi, is covered by a central quadrilateral @), plus
two, possibly empty, remainder pieces.

7 Completion of a sequence of bounding box pairs

Figure 13 (b) and (c) show that certificate (2), which certifies pairwise correct
bounds, is not sufficient to validate the enclosure. While the specific example could
be flagged and tested, proving in the general case that H,,\Q,, is covered is difficult.
The main reason is that it can involve an arbitrary number of segments. Figure 13

shows two more examples where the immediately adjacent ), does not cover

the remainder of H,,.

The challenge is then to formulate a certificate that is simple to check and is not too
restrictive. To this end, we denote

the relative interior of O, by O,

e.g. the interior of the line segment if x = T or y = 7. The sufficient certificate (3)
_|_

2 e’
M error
TS
s &0

(a) (b (c)

(=]
—

q1

Fig. 13. (a) Generic case satisfying certifi cate (3): ¢,—1 and g, do not intersect O,
but g, does. (b) Sequence of e* that keep the O, to their right. (Note the ordering!) The
resulting sequence of intersected boundaries with increasing parameters is rendered thicker.
It satisfies certificate (2) but not certificate (3)! (c) The upper and symmetric lower sequence
incorrectly fails to enclose the red parts of O.
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q3

(a (b) (c)

Fig. 14. (a) g2 and g3 intersect O so that @, and @, fail to bound O,,. (b) g» does not
intersect Os. (c) Certificate (3) is satisfied, but not certificate (2).

_|_
e
i
O e;:l Q;
4 o
e p=1 !
\U\)@

]
&= O, 0O

€u—1 9u

Fig. 15. (left) e:j_l and e:g are parallel. (right) The displayed configuration of e:[_l and e;f
is incompatible with their definition: due to a reversal of orientation, O, is ‘to the left’ of
e but ‘to the right’ of ¢,/

is

gy intersects 0, but ¢, and g, do not intersect O . (3)
It implies that ), and @, alone cover O,,.
Lemma 7.1 If (1), (2) and (3) hold then OO, is enclosed by @, 1 and Q.

Proof By assumption (3), ¢, partitions O, into two non-empty parts. By (1), and
(2), the quadrilaterals @), are well-defined. By (3), the three other edges of (), do
not intersect O7,. Therefore @, encloses one part of O,,. By the same logic, @,
also encloses one part of O,,. If both parts were the same then ej_l and e/} lie on the
same side of g, but, since the direction is reversed, either d,(e;’) < 0 (see Figure
15, middle) or e intersects O,,. Both outcomes contradict the definition of €. ||

Figure 13, bottom, shows examples where g, does not intersect 0, and therefore
dy(e}) > 0 but O, is not covered.

Figure 13, top,right, shows that (2) does not imply (3). Conversely, Figure 15,
right), shows an unsafe case where (2) is violated but (3) holds.

When one of the constraints fails we can either combine the offending point enclo-
sures, if we are below the tolerance, or subdivide the curve, i.e. rerepresent it with
a finer control structure and sleve over both half-domains.
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Lemma 7.2 If the curve is regularly parametrized, subdivision at the midpoint en-
forces Constraints (2) and (3) in the limit.

Proof Without loss of generality the tangent line is the z-axis. Then, by Lemma
5.3, any triple 0,,_,, O, and O,,,, is ordered implying that p/\ and p,, are confined
between the vertical lines through the minimum z of O, and the maximum z of O,,.
Therefore the parameter of intersection is increasing and (2) holds; also, g, must
intersect O,,. Since the triple O,_, O, and O,,; converges towards a straight line
segment, g,, can not intersect O, ; in the limit. il

clipping lin +
N,

+\ ‘4'

+ 1 p]7V m
e Ca . ’
N,m— Nyml-* ~

E]N,m—l eN,mfl

Fig. 16. (Ieft) The two point enclosures need to be combined where two curve piecesjoin.
Otherwise the connecting edge may incorrectly intersect as shown. (right) If a curve has
no adjacent curve at its end, the line connecting 07271,1 and v, , ; is parallel translated
until O, is enclosed. The line is called clipping line.

7.1 Endpoints of enclosures

When connecting a series of Bézier curves, linking pf,,. to p7,; , can leave a part
of O, ,,,, uncovered as illustrated in Figure 16, left. We therefore enclose O, ,,,, and
O;+1,0 In @ minimal common axis-aligned point enclosure.

If On,m, is the last point enclosure and has no neighbor then we select a line
through a corner of Oy ,,, as a clipping line as shown in Figure 16, right. The
clipping line is parallel to the line connecting v;” and v; and maximizes the distance
to vg . The segment of the clipping line between the intersections p,. and p; with
the extreme line segments is the clipping edge. The clipping edge closes the sleve,
so that Q n s, COVers Oy .

8 The sleve of a piecewise Bézier spline

Definition 8.1 Let x be a planar spline with pieces x;(t) := >, Liﬁ’;] by(t) for
i1 =1..N.Ifforall : = 1..N and p = 0..m;, the constraints (1), (2) and (3) hold,
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then the intersection points p;':“ and p, , are well-defined.
The sequence

+ o+ + + - - - o+
p0,0a p0,17 .. pi,p,a sty pN,mNﬂ pN,mNa pN,mN—lﬁ tt p0,0a p0,0
forms the sleve of x with x* the polyline pgy,...,px,,, and x~ the polyline
pa,o,...,p;,,mN.

Lemma 8.1 The sleve of a curve encloses the curve.

Proof By Lemma 6.1, each @, is well-defined. Since ¢),_1, @, and @, abut,
Lemma 7.1 implies that all H,, are covered by the union of all @ ,,. Il

8.1 Tolerance test, subdivision or segmentation increase

Due to the extension to avoid gaps, the width of the sleve,
max{|lpi, = pil2}

is hard to predict, initially. To give full control over tightness of the sleve, we
check whether ||p;", — p; ,|l2 < tol;, where tol; is the prescribed maximal width
of the polynomial piece. If not, we trigger subdivision to meet the tolerance. Alter-
natively, somewhat analogous to the technique of ‘degree raising’, we can increase
of number of segments, m;.

The amount of work then depends on the number of subdivisions necessary to
achieve the tolerances. Since the tables a]..,..] are fixed (Wu and Peters, 2004),
the number of subdivisions depend on the second differences. Each of the second
differences reduces to 1/4 after subdivisionat ¢ = 1/2.

8.2 Parametrization and coordinate system

Like many other spline computations, sleves depend on the spline’s parametriza-
tion rather than its intrinsic geometry. This can reduce the efficiency (without af-
fecting the correctness) if the parametrization is more complex than the geometry.
For example the optimal linear enclosure for x(t) = y(t) = ¢ with Bézier coeffi-
cients [3], [3], [$], [1] on U = [0..1] is the line segment itself but the width of the
sleve computed from the parametrization is nonzero.
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8.3 Coordinate system

Certificates (2) and (3) did not depend on axis-align boxes J,. It then makes sense
to consider whether it is computationally efficient to choose the local coordinate
system to minimize the sleve width. This was suggested in (Karavelas et al., 2002).
In the example, z(¢) = y(t) = 3, rotation of the x-axis to the interpolatory chord
generates sleves with minimal width. However, when we conducted a statistical
test with random orientations and modifications of a degree 4 curve, we did not
observe a general reduction in width when the local coordinate system was rotated.
Given the extra cost of such a rotation and increased complexity in forming sleves
from rotated boxes, we decided not to make the rotation part of the basic algorithm.

9 The complete algorithm for planar curve sleves

To summarize the construction, we first characterize slefes from a computational
point of view.

Definition 9.1 (univariate slefe) Let x := Y b,z be a linear combination of
basis functions by and coefficients x;. For (small) integers d,m, 1 < § < d,
1 <p<mandsgn e {-1,+1}, let

ald, m, sgn, 6, p]
be a table of real numbers derived according to Section 3. Then
slefe([xo, ..., z4],m, sgn) := [qo, - -.,¢m] Where
1 [ d—1
qu = zo(1 — E) + fl?d(a) + > Asz ald, m, sign(Asz) X sgn, 6, il
6=1

Asx = x5 1 — 225 + Toy1.

Let h7' be the piecewise linear hat function with break points at % j=0,...,m
that is 1 at £ and 0 at all other break points. Then the m-piecewise linear upper
and lower component of the slefe are

T(t) := ) #,h)(t), where [Zo,...,Tn] = slefe([zo,z1,...,z4,m,+1)
u=0

z(t) ==Y z,h)'(t), where [zo,...,2n]: = slefe([zo,z1,...,24],m,—1).
pn=0

We now summarize the construction.
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LT n,

Fig. 17. Steps of the sleve construction, with one input curve piece and d = 3, m = 4.

In

Input:
A spline curve x represented as a linked list of its polynomial curve pieces

xi(t) == > [k | bi(t), i = 1.N.

in order. Each piece is defined by

e its d; + 1 Bézier coefficients,

e the number m; of linear segments per curve piece, and

e the maximal width tolerance, tol,.

(Of course, d;, m; and tol; may be the same for all pieces).

Output: A sleve (x*,x) defined by breakpoints gfm and p; ,, for7 = 1..N and
p = 1..m; such that max ||p;", — p; ,[l2 < tol,.

Initialize e and e to the start clipping edge and ¢ = ¢, < —o0.
(1) (create conponent encl osures)
For each Bézier curve piece x;, for each component x € {z, y} use the tables
ald;, mi, .., .., ..] (e.g. from (Wu and Peters, 2004)) to compute

(X0, - - -, Xma )| < Slefe([xos - - - 5 Xa;], My +1),
[Xo; - - - Xm:) < slefe([xo, - - - » Xa;], mi, —=1).

If ¢ > 0, replace O;_; ,,,, , and O, by their smallest enclosing axis-aligned
box.
(2) For each Beézier curve piece x;, for each segment 1 = 0..m; — 1,
i (select extrene |ine segnents)
Selecte;f and e, using Table 7',
Test Certificate (1):
If (4a) or (4b) replace O, and O, by their smallest enclosing box.
ii (intersect two extrene |ine segnents)

Intersect ef and e, to get e
p;:=el(t7) =ef(t}) and . S .
intersect e, and e, to get € S
Ti=e (ty)=¢e,(t,).
pu e(.)(.].) e,u(u) to t?’
Test Certificate (2):
If ((¢F < tF)or (t7 <t;)), Refine. \\ reverse edge
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Fig. 18. Teapot spout and sleve. left to right: The surface, a cut through inner sleve and
surface, transparent rendering of inner and out sleve and surface.

If (I|p; — py[l2 > tol,), Refine. \\ width too large
Test Certificate (3):

If g, does intersect O0;,, Refine.

If g, does not intersect O, Refine.

If g, does intersect 007, _,, Refine.

ii Update tf < t1, 1, «t,, ef «ei, e, <e,, ¢ < qu

Set e,j, e, to the end clipping edge and do step (2ii).

Refine stands for:
replace x by the two curves obtained by subdividing x at ¢ = 1/2, and
continue at (1) for each piece.

The tolerance requirement catches the case in 2.ii where lines are parallel but not
equal and resolves cases 4a and 4b of table T.

10 Extensions and Applications

By knot insertion, the construction of NURBS sleves from sleves of splines in
Bézier representation is immediate. For splines with a uniform knot sequence, how-
ever, it is worth using the slefes in (Lutterkort and Peters, 2001b). The midpath
[;ggiﬁg] /2 provides a good linearization of the curve (z(t),y(¢)) but does not
require without the construction of a sleve. To help in intersection testing, sleves
can be applied to the normal of a curve.

Conceptually, surface sleves can be bootstrapped from curve sleves as illustrated
in Figure 18. A new aspect is the determination of the vertices of the bounding
triangulations which can no longer be computed simply by intersecting two lines.
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- 00808

Inner Sleve After 1 Subdivision After 2 Subdivisions

300

Outer Sleve After 1 Subdivision After 2 Subdivisions

domain

Trimming Curves

Fig. 19. (left) two trimming curves; (upper row) the area between the inner sleves; (lower
row) the area between the outer sleves.

10.1 Application: Polygonalization of curve trimmed domain

Planar spline curves are frequently used in CAGD as trimming curves, in the pa-
rameter domain (see Figure 19 left). To render trimmed surfaces, the curved do-
main needs to be linearized. Linearizing by sampling can result both in missing
and in extraneous surface pieces. Choosing the area between the two outer sleves
(Figure 19, lower row) creates a polygonal region guaranteed to cover the entire
domain. Using the inner sleves guarantees that no extraneous piece is rendered.
Subdivision or increasing the number m of segments improves the approximation
to any prescribed tolerance.

10.2 Application: separation test

For curved objects in close proximity, Figure 20, left, middle, illustrates the ef-
fectiveness of sleves. Here a convex-hull test fails to detect separation even after
subdividing the pieces. However, narrowness of the bounding construct is just one
of several criteria for usefulness in intersection testing: simpler constructs like axis-
aligned bounding boxes and spheres provide faster rejection tests in sparse settings.

Fig. 20. Separation test between two nested curve segments of degree d = 4. (left) Two
sleves with m = 4 (light grey and dark grey) immediately prove separation. ( right) The
convex hulls of the two curve segments intersect even after one subdivision.
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We are currently testing whether tightness pays off in higher dimensions as the cost
of refinement increases and precision pays.

11  Summary

Even for planar curves, the construction of a correct, tight piecewise linear en-
closure is nontrivial. The sleve construction described in this paper comes with a
proof and is relatively simple to implement. It provides bounds on the width and
two mechanisms for adaptively reducing the width of the enclosure.
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