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Abstract
We show how a future graphics processor unit (GPU), enhanced with random read and write to video memory,
can represent, refine and adjust complex meshes arising in modeling, simulation and animation. To leverage
SIMD parallelism, a general model based on the mesh atlas is developed and a particular implementation without
adjacency pointers is proposed in which primal, binary refinement of, possibly mixed, quadrilateral and triangular
meshes of arbitrary topological genus, as well as their traversal is supported by user-transparent programmable
graphics hardware. Adjustment, such as subdivision smoothing rules, is realized as user-programmable mesh
shader routines. Attributes are generic and can be defined in the graphics application by binding them to one of
several general addressing mechanisms.

1. Introduction

The algorithmic refinement and local adjustment of polyhe-
dral meshes is a core operation of graphics modeling and of
simulation for animation. Prime examples are the ‘skinning’
of animation characters using generalized subdivision sur-
faces, such as Catmull-Clark 6 and Loop subdivision 15 (see
Figure 2), feature enhancement using displacement mapping
(Figure 22), or computing functions on meshes (like the
‘game of life’ in Figure 23). The purpose of the structures
proposed in this paper is to improve efficiency, flexibility
and display quality resulting from these mesh operations by
moving work to the GPU level.
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Figure 1: Basic mesh mutation steps.

A polyhedral mesh is a special graph. Its nodes carry at-
tribute information such as position, normal, texture coordi-
nates and its edges represent neighbor connectivity. Meshes
can be visualized by displaying node positions as points
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Figure 2: from left to right: Input mesh, faceted refined input
mesh and smooth rendering of a subdivision surface.

and filling shortest edge loops with (bi)linear facets (Figure
2). Mesh mutation combines mesh refinement (insertion of
nodes) and mesh attribute adjustment, for example modifi-
cation of node position (Figure 1).

mesh mesh mutation op

connectivity refinement
attributes adjustment

Mesh mutation is not user-interactive, as opposed to mesh
manipulation in content-creation or Computer Aided De-
sign packages. Transforming user intent into a high-quality
graphical representation can therefore be viewed as a 3-step
process: user-interaction, mesh mutation and mesh render-
ing. These mesh operations can be performed on the CPU or
on the GPU. At present, operations and layers are associated
as follows:
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mesh op layer (to date)

user-interaction CPU
mesh mutation CPU
mesh rendering GPU

The main reason for this distribution of work, despite the
availability of vertex shaders and ample video memory in
the latest hardware generation, is the need to access a mesh
with irregular connectivity. Current hardware does not sup-
port such access. This is unfortunate since, real time mu-
tation on graphics hardware is easily within reach: refining
and adjusting a 1000-node input mesh with four attributes
per node four times costs ca. 5 million ALU instructions; in
the near future, SIMD hardware will be able to serve several
thousand times that many vector operations per second.

One approach to redistributing work is to simplify the
mesh and the mesh operations. For example, Gu et al.10 and
Losasso et al.16 approximate the attributes and connectivity
of the mesh and re-represent it as a rectangular array. This
regularizes access and facilitates application of image pro-
cessing techniques. Bolz et al. 5 propose to precompute (po-
sition) attributes of a number of important meshes for a fixed
refinement level and load the result into video memory. This
has the advantage that nodes need not visit neighbors to com-
pute these attributes. However, simplifying the mesh repre-
sentation and mesh operations comes at a cost. Complex ad-
justments, such as Pixar’s crease rules7 cannot all be pre-
tabulated; geometry dependence at each level of refinement
(in variational subdivision) cannot be pre-tabulated; there is
a cost associated with storing and accessing large tables; ap-
proximation of surfaces as functions over a single domain (of
a different topological genus) leads to distortions and shape
artifacts.

A different approach for exploiting SIMD parallelism with-
out sacrificing general meshes and mesh operations becomes
practical as GPUs expose read and write access to random
locations in video memory. The contribution of this paper
is a framework for mutation and rendering of complex, ir-
regular meshes that can be implemented as a (mesh proces-
sor, mesh shader) pair on such graphics hardware. The mesh
shader implements the adjustment stage of mesh mutation
and has localized access to neighbor nodes in the mesh. We
call this framework ‘Mesh in Programmable Graphics Hard-
ware’, short MiPGH. MiPGH moves mesh mutation into the
GPU layer:

mesh op layer (future)

user-interaction CPU
mesh mutation GPU
mesh rendering GPU

The main advantages of redistributing the work to the GPU
layer are

• decreasing the system bus traffic;
• increasing the speed through SIMD architecture.

Figure 3: (left two) Four-split corresponds to binary refine-
ment along boundaries. (right two) Ternary refinement is not
supported by the MiPGH implementation in Section 3.1.

Figure 4: (left) A complex operation can be broken into a
sequence of simpler operations (here averaging). (right) Two
ways to split an n-gon into quads or triangles.

A side-effect is the user-transparent implementation of com-
plex but basic graph access and refinement structures. This
is not only convenient but raises the level of abstraction and
allows the application program to concentrate on the crucial
geometric adjustment operations.

Refinement and node visit in MiPGH are user-transparent,
and adjustment is user-programmable in the shader program.
The attributes themselves are generic, i.e. can be defined in
the CPU level graphics program by binding them to one of
several general addressing mechanisms (see Section 4).

MiPGH op level

attribute definition user program
refinement & visit mesh processor

adjustment mesh shader

For example, the details of the splitting of every quadri-
lateral mesh facet into four quads (Figure 3, left) are user-
transparent, while the specification of the subdivision stencil
for Catmull-Clark (see Section 2.1) is part of a short, user-
programmable shader routine. The user’s graphics program
might define the attribute ‘CCnormal’, bind it to the address-
ing mechanism ‘node-morphic’ and the rendering type ‘nor-
mal’ interpreted by the mesh processor.

MiPGH is conceived to work for a general mesh model.
To leverage the SIMD architecture to the full extend and
cover the mesh mutations of practical interest without ad-
jacency pointer support, the structures proposed in Section
3.1 restrict mesh refinement and node visit to

R1 input meshes consisting of only quadrilaterals (quads)
and triangles;
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R2 primal refinement that splits every facet into four (Figure
3);

R3 mesh shaders that access only the direct neighborhood
of the node (Figure 6).

The last restriction, R3, is less severe than it appears at first
sight: many complex adjustments, subdivision operations in
particular, factor into a sequence of simpler operations (Fig-
ure 4, left ); and multipass adjustment without refinement is
covered by the MiPGH framework. Also, the first restriction,
R1, is a common in mesh design: a single refinement step
can break n-gons into triangles or quads (Figure 4, right ).
Under these conditions, MiPGH has the following proper-
ties.

• Multi-parallel computation: by minimizing dependencies,
parallelism for node operations is fully exploited.

• Generic attribute definition allows for user-programmable
attributes.

• User-programmable adjustment rules.
• User-transparent node visit: the mesh processor visits all

nodes of the mesh.
• Light-weight attribute indexing: the mesh shader has a

simplified view of the local submesh (Figure 24) sup-
ported by simple attribute addressing in the mesh proces-
sor.

• Support for Level-of-detail.
• Unique attribute storage: attribute addressing via indices

(plus a base) avoids inconsistent floating point represen-
tations that could cause cracks in the tessellation.

Figures 2, 22 and 23 are the result of a software simulation
of the anticipated architecture. Section 5 gives examples of
the mesh shaders used.

2. Background and Scope

An important application of mesh mutation to date is the
generation of smooth surfaces by generalized subdivision.
Below, we review only those aspects of this rich subject21

(and of 3D adjacency data structures and current pro-
grammable graphics hardware) that are relevant for under-
standing the use and scope of MiPGH.

2.1. Subdivision Surfaces

Subdivision algorithms can be formulated as a series of mesh
mutation steps with each step consisting of refinement fol-
lowed by mesh smoothing. If refinement splits each facet
into four (see R2 and Figure 3, left ), we call the refinement
binary as opposed to, say, ternary (Figure 3, right ). If the
refinement associates a new node with every old node (and
inserts nodes along edges and in the facets), the scheme is
called primal. If every new node is defined as a weighted
combination of old nodes that lie on (old) facets with a com-
mon (old) node, the scheme acts on a 1-disk (R3). The com-
bination of old nodes is often succinctly and graphically ex-
pressed as a stencil that displays a portion of the old graph
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Figure 6: The subdivision stencils of the generic 1-disk, bi-
nary, primal subdivision scheme.

with the weights (that must sum up to 1) in place of the
nodes; the resulting new node is indicated either as a circle,
if it corresponds to an old node, or as a •, if it lies on an edge
or in a facet (Figure 6). If the stencil does not change with the
refinement level, the scheme is stationary. Anisotropic rules
adjust the stencil according to tags placed by the user (e.g.
Pixar’s crease rules 7) or by evaluating the attributes of the
mesh neighborhood.

By providing a framework for all primary, binary, non-
stationary (and therefore also for stationary), anisotropic
(and therefore also isotropic) tagged, 1-disk subdivision
schemes on quad and triangle meshes (Figure 6), MiPGH
covers only a subset of all theoretically possible refinement
and smoothing strategies; but, arguably, it covers all subdi-
vision schemes one encounters in current modeling practice:
Catmull-Clark 6 and Loop 15 subdivision, (bi)linear subdivi-
sion, 4-8 subdivision 20, ‘butterfly’ interpolatory subdivision
8 and even subdivision schemes that mix quads and triangles
19. Variants of the above, i.e. alternative stencils are easily
realized as user-programmable mesh shader code.

Hardware specific implementations and rendering of sub-
division schemes can be found in 2, 3, 17.

2.2. Adjacency Data Structures

In software, we can choose between several different data
structures to support mesh mutation on (orientable) polyhe-
dral meshes. Edge based data structures 22 are commonly
used and allow for maximal flexibility. Given our primary
interest in structured, namely primal, binary, four-split mesh
refinement, they are unnecessarily complex. A representa-
tion as a forest of quad-trees (with one tree per mesh facet)
23 is useful for structured, adaptive refinement but the neigh-
bor access patterns appear to be too complex for efficient
SIMD realization. All of the above structures require ex-
tensive manipulation of the adjacency pointers throughout
the refinement increasing the complexity of the hardware
design. MiPGH treats the units of structured refinement as
patches and provides only limited but sufficient static adja-
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Figure 5: Current: Mesh mutation and the graphics pipeline.

cency traversal of the mesh based on an index-based model
(Figure 9).

2.3. Programmable Graphics Hardware

Shaders are a way of exposing the SIMD processing capabil-
ities of GPUs to an application program14. Shaders are pro-
grammable stages in the state machine and are concurrently
executed either on the vertex processor or the fragment pro-
cessor. As Figure 5 makes clear, mesh mutation by the CPU
results in large data streams (each refinement quadruples the
data) to be sent to the GPU via the system bus. While the
primary motivation for creating the shader concept was to
improve rendering quality, shaders have recently been pro-
posed to serve as parallel processes for numerical compu-
tation 4, 13. Therefore, exposing a mesh shader capability,
would benefit rendering, numerical computation and mesh
processing.

3. Mesh Mutation Framework

In this section, we place mesh mutation in the graphics
pipeline and develop a model of mesh mutation on primal,
binary-refined quad-triangle meshes. This model is made
concrete by structures and visitation patterns that fit the
SIMD paradigm of GPUs. Attribute lists and access are dis-
cussed in detail in Section 4.

3.1. Mesh Mutation in the Graphics Pipeline

Figures 7 and 8 summarize the proposed architecture. The
mesh processor initializes the connectivity (see Initialization
below) and the attributes from the geometry and topology
stream. A single step of mesh mutation includes three stages:
refinement, node visit and adjustment. The refinement can
be bypassed; in that case, the mesh processor only allocates
attribute memory and swaps the attribute handle(s) after tar-
get adjustment. The mesh processor visits each node of the
mesh and collects the corresponding 1-disk submesh data.
We say visit rather than traversal since this operation may be
executed in parallel. Nodes are visited in the order: D-facets,
D-edges, D-vertices. This ensures locality of the attribute
access. Adjustment is a user-programmable unit. The user
program has access to exactly a 1-disk (Figure 24) through

(Mutation/render states)

(Topology)
(Geometry)

Texture Memory

Attribute Memory

(Geometry)

(Render states)
...

(Geometry)

App. Memory

User

Interaction Processor

Processor
Vertex

Assembly

Primitive

Mesh

...

Figure 7: Proposed: Mesh mutation and the graphics
pipeline with a mesh processor (see Figure 8). Note that
the notion of processor is conceptual, indicating a user-
transparent unit. It can be realized in microcode rather than
dedicated hardware.

the local indices which enumerate the submesh. The 1-disk
view hides the complexity of the traversal and access of the
global mesh. After several iterations of the mesh mutation,
the mesh processor compiles connectivity and attributes of
the mesh to form primitives for the lower pipeline. We use
‘compile’ rather than ‘assemble’, since the mesh processor
has to interpret the attribute type and the rendering type.
We now develop on the model underlying the data access
in MiPGH.

3.2. Connectivity and the Domain Atlas

The polyhedral input mesh is a discrete analogue of an ori-
ented 2-manifold, possibly with global boundary. In this
analogy, the charts that define the manifold consist of one (or
more, see Initialization below) quad or triangle. Only edges
of adjacent charts overlap, i.e. the integer indices pointing to
their attributes are replicated in both charts that share the
edge. Corner indices are replicated in n charts (Figure 9,
left). All charts together form the domain atlas, short D-atlas.

At each level of refinement, the chart is made concrete as
a D-facet. A D-facet is an array of integer indices that al-
low lookup of the attributes associated with the node (Figure
10). At refinement level σ (σ = 0 for a single facet of the
input mesh), a D-facet consists of 2σ×2σ micro-facets, i.e.
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Figure 9: (Left) The D-atlas represents the connectivity of
the input mesh. Arrows indicate access directions. For ex-
ample, a D-vertex can access the corners of the surrounding
charts. After initialization, the D-atlas of MiPGH does not
change. (Right) The nodes of a D-LoD after two refinement
steps. Replicated boundary nodes point to the same attribute
container for unique storage of attributes (including posi-
tion).

small quad or triangle facets. Each D-facet shares its bound-
ary indices with an adjacent D-facet. The D-facet has no
connectivity information to access other D-facets, D-edges
or D-vertices(see Figure 16). The collection of D-facets of
a given chart for all refinement levels, form the D-LoD of
the chart. The D-LoD supports level-of-detail (at a cost of
just 4/3 times the storage of the largest D-facet.) Chart edges
are represented in the D-atlas as D-edges. A D-edge consists
of two halfedges. Each halfedge can access the adjacent D-
facet or is null at a global boundary (Figure 11). Nodes along
a D-edge are visited via the D-facet index plus the corner in-
dex and then stepping to the next node by equal increment.
A (boundary or shared) chart corner is represented as a D-
vertex. A D-vertex of valence n can access the corners of the
n abutting D-facets (Figure 12). The D-atlas remains fixed
during mesh mutation. Only the D-LoD grows with each re-
finement and the attribute lists grow correspondingly.

Initialization, localized update and adaptive refinement.

The D-atlas is initialized by the geometry and connectiv-
ity information of a vertex array describing the polyhedron.
Analogous to an evaluator, the mesh is mutated according
to a user-defined sequence of adjustments and refinements.
Parts or all of intermediate meshes can be returned to the
CPU level with a system call. Such a refined mesh and re-
fined mesh pieces in general can be (re)initialized by packing
2σ × 2σ facets into a single D-facet at subdivision level σ.
This initialization is correctly treated as part of the adaptive
refinement implementation described below and can support
numerous applications, like cut-and- paste 9, 1.

One strategy for generating adaptive meshes is to sub-
sample a uniformly refined mesh. However, in large mod-
els unnecessary refinement causes substantial computation
and storage overhead. In MiPGH, D-LoDs are labeled with
the number of refinements (Figure13), either explicitly at the
outset by an application program or algorithm evaluated in-
side the user-programmable mesh shader. The mesh proces-
sor will not visit the nodes or allocate memory for the at-
tributes of a D-facet whose D-LoD-label is less than the cur-
rent refinement counter. Edges separating D-LoDs that have
different labels are correctly updated by maintaining a single
auxiliary layer of nodes beyond the boundary (Figure 14).
Interactive deformation or animation of mesh D-vertices is
supported by resetting the tags of the affected D-LoDs. Cor-
rect rendering without cracks of the adaptively refined D-
LoDs is guaranteed by a primitive compilation (Figure 8)
that has full knowledge of the relative refinement and the
rendering state.

4. Generic Attributes and Access

MiPGH (see Figure 15) consists of three connectivity lists,
the D-LoD list, the D-edge list and the D-vertex list and sev-
eral attribute lists. Since we assume read and write capabil-
ity to random memory locations, the attributes need not be
fixed a priori but can be generic. That is, the graphics pro-
gram can define any attribute that uses one of the addressing
modes described below, by binding it to an attribute type and
an addressing mode. The addressing mode determines the
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stored as the integer n followed by n index pairs each rep-
resenting, in CW order, the index and the corner index of
D-facets. (Right) A D-vertex in the interior, on the global
boundary and at a global corner of the input mesh.

memory allocation for the attribute list. We distinguish two
attribute addressing modes: indexed and hashed. Indexed
means that the attribute addresses are computed from a base
address plus an offset index listed in the D-facet. Hashed
means, it is computed based on the regular correspondence
of the attributes to those indices. Hashed addressing comes
in many flavors.

For example, all attributes associated one-to-one with
nodes (node-morphic) are indexed (Figure 17). Along D-
facet edges, the unique index guarantees unique storage of
attributes. Since node-morphic data is stored in the order:
corners, edges, interior nodes, we can compute the parent

Figure 13: Adaptive mesh as selection of D-facets at differ-
ent D-LoD-levels.

Figure 14: Adaptive refinement uses a single auxiliary layer
along boundaries.
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Figure 15: MiPGH has three connectivity lists (D-facet, D-
edge and D-vertex) and several attribute lists. Here three
possible (rendering) attributes are shown – more or fewer
can be defined in the graphics routine and bound to the
shader. The input mesh has nv vertices, ne edges and nf
facets.

D-facet, D-edge and D-vertex from any point index of the
refined mesh.

By contrast, there may be two different texture coordi-
nates associated with a single node on an D-edge, one for
each D-facet. Since a D-facet has as many nodes as texture
coordinates and they are arranged in the same order (Figure
18), the hashing function for such chart-morphic data is sim-
ply the texture coordinate base plus the node offset within
the D-facet.

Some mesh algorithms need to tag the n edges emanating
from a node. Rather than storing such data with the node, and
provision for an arbitrary number n of neighbors, we asso-
ciate the attributes with the micro-facet, since a micro-facet
always has either 3 or 4 corners (Figure 19). By associating
each micro-facet corner with two values, one for the arriv-
ing halfedge and one for the departing halfedge (in CCW
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order), each micro-facet has either eight or six values asso-
ciated and each edge has four associated values. Implement-
ing Pixar’s ‘semismooth crease’ rules 7 then corresponds to
the special case where two pairs of the four edge values are
equal. Figure 16 summarizes the attributes addressing and
the adjacency access patterns.

Memory Access. Each type of attribute data is allocated se-
quentially in a contiguous array by giving the base address
and the size. Threading eliminates the latency caused by the
indirect (base+offset) memory access. Also, the attributes of
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Figure 20: Unnormalized Catmull-Clark subdivision sten-
cils; n is the valence.
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Figure 21: The CC derivative stencils.

each D-facet are clustered as illustrated in Figures 17, 18 and
19. From the users point of view, the attributes are accessed
randomly via a local index into the 1-disk. This transparency
can be achieved since, in a mesh shader, the base address is
available as an attribute handle and the offset is an index
maintained by the mesh processor.

Attributes compilation and rendering. Attributes are ei-
ther algorithmic or bound to a rendering type such as posi-
tion, normal or node color. Algorithmic attributes support
computations in the mesh shader or can be channeled to
the vertex shader for computations. For rendering attributes,
based on the type, the attribute parser and primitive com-
piler (Figure 8) encodes the rendering state for the stream
of the primitives, for example the color of each facet. Ver-
tex shaders or pixel shaders can also serve as rendering
types. Partial meshes can thereby be associated with differ-
ent shaders, say to apply a different shader to the eye region
in Figure 2 than to the mouth.

5. Examples of Mesh Mutation

This section presents two examples of user-programmable
mesh shaders using MiPGH. The pseudocode bases on the
mechanism of the OpenGL shader language 12 and the exten-
sions of the Appendix. Due to space constraints, we do not
show code for creating the program object or shader linking.
The first example illustrates Catmull-Clark subdivision with
MiPGH. Figure 20 shows the subdivision stencil.

Catmull-Clark (CC) Subdivision

void main(void) {
// Position is the pre-defined variable of the position
// of the central point in the 1-disk.
if (MeshType != MT_EOV) {

const float fvmask[4] =
{1/4.0, 1/4.0, 1/4.0, 1/4.0};

const float evmask[6] =
{6/16.0, 6/16.0, 1/16.0, 1/16.0, 1/16.0, 1/16.0};

const float vvmask[9] =
{36/64.0,
6/64.0, 6/64.0, 6/64.0, 6/64.0,
1/64.0, 1/64.0, 1/64.0, 1/64.0 };
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vec4 mesh[9];
if (MeshType == MT_FV) {// Facet-vertex
readAttribute4(IPositionHandle,

IVertexIndices,
mesh, 4);

Position = inner_product(mesh, fvmask, 4);
} else if (MeshType == MT_EV) {// Edge-vertex
readAttribute4(IPositionHandle,

IVertexIndices,
mesh, 6);

Position = inner_product(mesh, evmask, 6);
} else if (MeshType == MT_VV) {// Vertex-vertex
readAttribute4(IPositionHandle,

IVertexIndices,
mesh, 9);

Position = inner_product(mesh, mask, 9);
}

} else {// extraordinary vertex-vertex
const int mash_size = 1+2*MaxValence;
vec4 mesh[mesh_size];
readAttribute4(IPositionHandle,

IVertexIndices,
mesh, mesh_size);

float cw = 4*Valence*Valence - 7*Valence;
float w = cw + 6*Valence + Valence;;
float mask[mesh_size];
mask[0] = cw/w;
for (int i = 1; i <= max_valence ; ++i) {
mask[i] = 6/w;
mask[i+max_valence] = 1/w;

}
Position = inner_product(mesh, mask, mesh_size);

}
}

Our second example computes the normal of Catmull-
Clark limit surface, for regular nodes, as the cross product
of the tangents generated by applying the stencils of Figure
21 (see 11 for the general case). Then the shader displaces the
mesh node in the normal direction by an amount specified by
a texture. The refinement step is bypassed in this example.
The result is shown in Figure 22.

Normal Displacement

void main(void) {
// Normal is the pre-defined variable of the normal
// of the central point in the 1-disk.

vec4 mesh[9];
readAttribute4(IPositionHandle,

IVertexIndices,
mesh, 9);

const float t1_mask[9] = { 0, 0, -4, 0, 4,
-1, -1, 1, 1};

const float t2_mask[9] = { 0, -4, 0, 4, 0,
-1, 1, 1, -1};

vec3 t1 = inner_product(mesh, t1_mask, 9);
vec3 t2 = inner_product(mesh, t2_mask, 9);
Normal = normalize(cross(t1, t2));

vec2 coord = readAttribute2(ITexCoordHandle,
IVertexIndicex[0],
IFacetIndicators[0],
ILevel,
AT_CHART_MORPHIC);

vec4 color = texture2D(tex_sampler, coord);
Position = mesh[0] + color.r * Normal;

}

6. Conclusion

The mesh processor framework proposed in this paper
strikes a balance between the SIMD characteristics of the
GPU and fully general mesh access and refinement. Al-

though our prime example is subdivision, the mesh proces-
sor is more general than just an implementation of subdivi-
sion surfaces (see Figures 22 and 23). The framework is an-
chored in the well-understood and accepted theory of man-
ifolds and the concepts of atlas and chart. In particular, the
notion of edge and facet complement the primary graphics
programming concept of vertex. Ultimately, we envision that
these notions will be mapped onto abstract, but SIMD-aware
interface definitions accepted by the community so that re-
finement and node visit, too, become user-programmable.
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Appendix A: Mesh Shader Variables and Functions based
on the OpenGL Shading Language

While a vertex shader 12, 18 operates on an isolated vertex,
a mesh shader operates a 1-disk submesh via built-in vari-
ables (in a pre-defined arrangement) and built-in functions.
The mesh shader receives two groups of attribute handles
and mesh variables from the mesh processor: a 1-disk source
submesh and a 1-disk target submesh. The submesh nodes
are explicitly indexed as shown in Figure 24. The submesh
of a node with n neighbors has the same index pattern, list-
ing, in CCW order, first the direct neighbors and then the
diagonal neighbors. The rendering attributes are bound to
rendering states during initialization of the shader object.

Variable Comment

Attributes Handles (user-defined)

uniform attr1D [I/O]RTypeHandle [I/O]: source or target mesh
RType can be Position, Normal ..etc

uniform attr1D [I/O]AttributeHandle[0/1/2/..] algorithmic attributes [0/1/2/..]

Mesh Variables (built-in)

uniform int [I/O]VertexIndices[]
uniform ivec4 [I/O]FacetIndicators[] [idx,corner idx,4/3,D-facet idx]
uniform int [I/O]Level refinement level
uniform int MeshType of the source mesh
uniform int Valence of the target mesh

Output Vertex (built-in)

varying vec4 Position of the target center vertex
varying vec4 Normal of the target center vertex

The mesh shader addresses the generic attributes with a
set of built-in functions. These functions are classified by
their addressing mode, indexed or hashed as explained in
Section 4. of this paper. For indexed attributes, the prototype
addressing functions are

vec readAttribute(attr1D attr handle, int idx)
vec writeAttribute(attr1D attr handle, int idx, vec attr)

The full function names are to indicate the output size. For
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Figure 24: A mesh shader’s view of the enumeration of (reg-
ular) 1-disks: [ ]s indicate the the nodes and<>s the facets.
Black indicates the input 1-disk and red the output. If the re-
finement step is bypassed, only the vertex-vertex 1-disk is
passed to the shader.

etc.

Position
Normal

IVertexIndices, IFacetIndicators, ILevel,

AttributeHandle(s),

OVertexIndices, OFacetIndicators, OLevel,
MeshType, Valence

gl_Color

gl_FrontColor

gl_BackColor

etc.

gl_ModelViewMatrix, gl_FrontMaterial,
gl_LightSource[0..n], etc.

Special uniforms

User−defined uniforms

Built−in uniforms

User−defined

varying
OpenGL
Standard

Standard
OpenGL
attributes

Special
varying

attributes

Variables

Attribute Memory

Texture Memory

User−defined Provided directly by application

Provided indirectly by application

Produced by the mesh processor

Mesh Processor

Figure 25: The mesh shader as an extension of the vertex
shader in the OpenGL shader specification.

example, the function for reading position=(x,y,z,w) is
vec4 readAttribute4(). For hashed attributes, the hashing para-
menters and the hash mode, for example chart-morphic, is
passed to the mesh processor. The prototype hash functions
are as follows.

vec readAttribute(attr1D attr handle, int idx, ivec4 indicator, int mode)
vec writeAttribute(attr1D attr handle, int idx, ivec4 indicator, int mode, vec attr)

To speed up access, array access functions are also provided.
For example, the following functions apply to indexed at-
tributes.

void readAttribute(attr1D attr handle, int[] indices, vec[] attrs, int size)
void writeAttribute(attr1D attr handle, int[] indices, vec[] attrs, int size)
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