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Abstract. Subdividable linear efficient function enclosures (Slefes)
provide, at low cost, a piecewise linear pair of upper and lower bounds

fT, f~, that sandwich a function f on a given interval: ff>f>f.
In practice, these bounds are observed to be very tight. This paper
addresses the question just how close to optimal, in the max-norm,
the slefe construction actually is. Specifically, we compare the width

fT—f of the slefe to the narrowest possible piecewise linear enclosure
of f when f is a univariate cubic polynomial.

§1. Introduction

Due to curved geometry, objects in b-spline, Bézier or generalized subdi-
vision representation pose numerical and implementation challenges when
measuring distance between objects, re-approximating for format conver-
sion, meshing with tolerance, or detecting the silhouette. Naive lineariza-
tion, say triangulation by sampling, reapproximates without known error
and not safely from one side. Subdividable linear efficient function enclosures
(slefes) [7,8,9], by contrast, are a low-cost technique yielding two one-sided,
piecewise linear bounds that sandwich nonlinear functions. The width of
a slefe, i.e., the distance between upper and lower approximation, is easily
measured, because it is taken on at a breakpoint, and refinement yields
predictably tighter enclosures.

Slefe-based bounds are observed to be very tight. Yet, being linear,
the slefe construction cannot be expected to provide the best two-sided
max-norm approximation. Therefore, it is of interest to see how close to
optimal the slefe construction actually is by deriving and comparing it
with the narrowest possible enclosure. Since slefes generate the minimal
width enclosures for quadratics, we focus on univariate cubic polynomial
pieces.
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Fig. 1. A cubic Bézier segment inside its grey-shaded slefe.

1.1. Prior Work

The theory of slefes has its roots in bounds on the distance of piecewise
polynomials to their Bézier or b-spline control net [10,12]. Compared
to these constructions, enclosures yield dramatically tighter bounds for
the underlying functions since they do not enclose the control polygon.
Approximation theory has long recognized the problems of one-sided ap-
proximation and two-sided approximation [1]. Algorithmically, though,
according to the seminal monograph [11] p. 181, the convergence of the
proposed Remez-type algorithms is already in one variable ‘generally very
slow’. The only termination guarantee is that a subsequence must exist
that converges. By contrast, the slefes provide a solution with an explicit
error very fast and with a guarantee of error reduction under refinement.

The object oriented bounding boxes for subdivision curves or surfaces
in [6] are based on a min—max criterion and require the evaluation of
several points and normals on the curve or surface. Thus, the dependence
on the coefficients is not linear. Linearity of the slefe construction is highly
desirable since it allows us to solve hard inverse problems, such as fitting
spline curves into prescribed channels. Farin [2] shows that for rational
Bézier—curves, the convex hull property can be tightened to the convex hull
of the first and the last control point and so-called weight points. Hu et al.
[3,4,5,14] promote the use of interval spline representation (see Farouki and
Sederberg [13]) for tolerancing, error maintenance and data fitting. The
key ingredient of this use of interval arithmetic are axis-aligned bounding
boxes based on the positivity and partition of unity property of the b-
splines. Enclosures complement this work by offering tighter two-sided
bounds.

§2. Subdividable Linear Efficient Function Enclosures

The slefe of a function f with respect to a domain U is a piecewise linear
pair, fT, f~, of upper and lower bounds that sandwich the function on U:
fT > f > f. Here, we focus on piecewise linear fT and f~ and measure
the width, f* — f~, in the recursively applied L>= norm: the width is as
small as possible where it is maximal — and, having fixed the breakpoint
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Fig. 2. (left) A cubic Bézier segment with coefficients 0, —1,1,0. The control
polygon exaggerates the curve far more than the grey 3-piece slefe.
(right) After one subdivision at the midpoint, the width of the slefe
(grey) is roughly 1/4th of the width of the unsubdivided slefe (dashed) .

values where the maximal width is taken on (zeroth and first breakpoint in
Fig. 1), the width at the remaining breakpoints is recursively minimized
subject to matching the already fixed break point values.

Slefes are based on the two general lemmas [7,9] and the once-and-for-
all tabulation of best recursive L enclosures for a small set of functions,
a:= (a;)i=1,.,s below.

Lemma 1. Given two finite-dimensional vector spaces of functions, B #
7‘[, s = dimB — dlm(B N 7‘[), (bi)i:17...7dim8 a basis of B, (ai)i:L___,s
functions in B, the embedding identity E : B — B + H, and linear maps

L:B—->H, A:B-—TRR?

such that (i) (Aja;); ; is the identity in R**® and (ii) ker A = ker(E — L),
then for any f =b-f:=5 b;f; € B,

(b—Lb) £ = (a— La) - (Af).

Remarks: For practical computation, (a — La) - (Af) has to have only
finitely many terms, e.g. s < oo. Items (i) and (ii) make E — aA a
projector into a space invariant under L. In (ii), ker A C ker(E — L) is
needed since for any f € ker A \ ker(E — L), (a — La) - (Af) is zero, but
not (b — Lb) - f. Since the width of the enclosure changes under addition
of any element in ker(E — L) \ ker A, we also want ker(E — L) C ker A.

Lemma 2. If, with the definitions of Lemma 1, additionally the maps
[-],[].B° — H° satisfy |a — La| < a—La < [a — La] pointwise and com-
ponentwise, and (Af)+ (i) := max{0,Af(i)}, (Af)_(9) := min{0, Af(i)}
then
fm=Lf+la—Lal - (Af)y + [a— Lal - (Af)_,
fr=Lf+la—Lal - (Af)_ +[a—La] - (Af);
sandwich f,ie., f~ < f < f+t.
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Example. Let B be the space of univariate polynomials of degree d, say
in Bézier form, Af the d — 1 second differences of its Bézier coefficients,
U =[0..1] and H the space of piecewise linear functions with break points
at i/m, i € {0,...,m}. To obtain slefes, we determine and tabulate the
breakpoint values of |a; — La;|,,, € H and [a; — La;],;, € H that minimize
the width
d—1
Welefe (f;U) := m{;}xfﬁL—f* = max ;(fai — La;|m—|a; — La;|m) |A: f].

The width is invariant under addition of constant and linear terms to f
and one (DeCasteljau) subdivision step at the midpoint, ¢ = 1/2 cuts the
width to roughly a quarter (see Figure 2).

The general slefe construction is as follows. (Note that (0),(1),(2),(3) are

precomputed, off-line and (4) is cheap, making the computation of slefes

efficient.)

(0) Choose U, the domain of interest, and the space H of enclosure func-
tions.

(1) Choose a difference operator A : B — R, with ker A = BNH.

(2) Compute a : R* — B so that Aa is the identity on IR* and each a;
matches the same dim(B N H) additional independent constraints.

(3) Compute |a — La| and [a— La] € H.
(4) Compute (Af)y and (Af)_ and assemble f~ and f* (Lemma 2).

§3. Optimal Bounds for Cubic Functions

In this section, we determine, for a class of functions, the optimal en-
closure width and compare it with wgere. The simplest nontrivial case
is when the function f is a univariate quadratic polynomial; however, in
this case, the slefe construction is optimal, because the vector of functions
a — La is a singleton and slefes are based on the optimal enclosures of
la— La|,[a — La]. Since explicit determination of the least-width piece-
wise linear enclosure is a challenge, we consider polynomials f of degree
d = 3 in Bézier representation on the interval U = [0..1]:

Flu) = iy fibf(u), bi(u) i= sy (1 — w)' i,

We approximate from the space of hat functions with m = 3 segments
and breakpoints at j/m, j = 0,...,m. Generalization of the results to
m > 3 pieces is not difficult; generalization to degree d > 3 has not yet
been attempted. Without loss of generality, we assume

Sz Infl, whee af= (] [ RTIATR]
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Fig. 3. a :=a} := —(2b3+b3)/3 with control polygon and slefe.

3.1. Computing wgefe
With Lf(u) := fo(1l —u) + fqu, we have
al .= —(2b{ +bd)/3, al:= —(b?+2bd)/3,
and a? — Lal = a?. One checks Lemma 1:
f—Lf =alAif+ajA,f.

The optimal enclosures for (a?)j:LQ have been tabulated; but here, we
derive them as explicit symbolic expressions. By symmetry, it is sufficient
to compute bounds for a := a?. Due to the convexity of a (see Fig. 3),
the piecewise linear interpolant at j/m is an upper bound. We express
[a] as the vector of its breakpoint values (e.g. the value of [a] at 1/3 is
—10/27):

277a] ~ [0, -10,-8,0].

The lower bound is computed by recursive minimization. The first segment
is the dominant segment in the sense that its tightest bound has the largest
width among the three segments (Fig. 3, see also Lemma 5). Therefore,
we calculate the values of |a] at 0 and 1/3 by shifting down the first
segment of the upper bound until it is tangent to a. The other two break
point values are computed by calculating the tangent line to a, keeping
one end fixed. This procedure yields the four break point values of the
lower bound

27| a] ~ [30,20,25 + ﬁ 52,53] 389’31
where
B =57, Bai=+/—10+203,
By m 221 ﬁ1 ﬂ n ﬁggﬁl\/11_12ﬂ2_2ﬁ1+2ﬂ1ﬂ2_

An approximation of the values is |a| ~ [—.0695, —.4399, —.3154, —.0087]
The width of a is

10 38
wslefe(a) = Woypt (a) = -4 B

9 913 0.0695.
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Let w; := (Ja] — |a])(i/m), i =0,1,2,3. Then, due to the symmetry
aj(t) = aj(1 —1),

Wslete (f3U) = e 3}{|A1f|wi + [Ag flwp—i}-

Since wg = wy; > wy > w3, the term with 4 = 1 is the maximal term, and
wslefe (3 U) = |A1 flwy + |Ax flws & 0.0695|A4 f| + 0.0191|A5f].
If we set |[A1f]:=1+¢, € €[0..00], and |Asf| := 1, then

wslefe (f3U) = —2%3(2706 + 567 + 97&’(& —9) — 3831 (e + 2)).

3.2. Computing wyp

We next determine wop, the width of the narrowest possible piecewise lin-
ear enclosure for f with break points at i/3 (that is, wept (f,[0..1/3]) based
on enclosing by one linear segment above and one below and wepy(f, [0..1])
on three). The next three lemmas show that (i) it is sufficient to com-
pare the width of functions with first and last coefficient equal zero;
(ii) an increase of the second derivative of f then increases wopy; (iii)
if |A1 f| > |Asf| then the first segment determines wop.

Lemma 3. Let ¢ be a linear function, U = [0..1] and f" > 0 on U. Then
Wopt (f;U) = wopt (f + ¢;U), and the t* at which the width is taken on is
the same for f and f + (.

Proof: Due to convexity,

Wopt(f + 6 U) = max(1 —#)(f(0) +£(0)) + #(f(1) + £(1)) — (F(t) + £(2))
= max(1 =) f(0) + (1) = f(1) = wope(f;U). O

Lemma 4. Let U =[0..1], f(0) = f(1) = g(0) = g(1) =0, f" >00n U,
g" = f" + ¢, where ¢ > 0 is a constant. Then wopt(g;U) > wopt (f;U).

Proof: g — f =—%(b} +b3) <0on (0.1). O

Lemma 5. If Ay f > |Asf| then wopt(f, [0-.1/3]) > wopt (f,[0.-1]).

Proof: Let w := wopt(f,[0..1/3]) be the minimal width of the first seg-
ment, and

U*::{l’ iff/'(%)>0 .:{1, iff”(%)<()

o;
! 0, else ’ ! 0, else.
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Fig. 4. (left) The enclosure (not a slefe!) used to prove dominance of the left-
most segment. (right) The discriminant of the intersection problem is
negative .

0 13 0 1

Fig. 5. (left) Linear f' > 0, (middle) inflection in the middle segment, (right)
inflection in the right segment (middle segment with respect to U’ :=

[1/3..4/3]) .

We show that the piecewise linear function *f with breakpoint values (Fig.
4, left) f(§)+a;w,i =0,...,3, yields and upper bound and ~f with values
f(&) —ofw,i=0,...,3, yields a lower bound.

For segments without inflection point, this follows from Lemma 4.
Since f" is linear, all segments have the same slope (see Fig. 5, left). The
leftmost segments is larger by a positive constant, because Ay f > |Asf].
In purely concave segments, Lemma 4 applies to the flipped derivative (see

Fig. 5, middle, dashed line segment). Now if Ay f < 0, let
Ayjf:=1+4¢ €€][0,1], and Asf:=-1.

Since Ay f > |Azf]|, there are no inflections in the interval Uy := [0..1/2].
If € € [0..1] then the inflection is in the interval U, := [1/2..2/3] and if
€ > 1 then the inflection is in the interval Us := [2/3..1].

If the inflection point belongs to the middle segment, we show that the
line segment connecting (1/3, f(1/3) — w) to (2/3, f(2/3)) only intersects
(t, f(t)) at 2/3; similarly, (1/3, f(1/3)) to (2/3, f(2/3) +w) only intersects
(t, f(t)) at 1/3. In the first case, the quadratic resulting from canceling the
factor (t—2/3) of f(t)—(f(1/3) —w)(1—1t) — f(2/3)t has the discriminant

1
- (—28884%/% 4 (17001 + 24795¢) A — 1 — 35502
T DygTras\ ~2888A" + (17001 + 24795¢) A — 175689 - 355023

where A := 57¢% + 93¢ + 39. For € € [0..1], the discriminant plotted in
Fig. 4, right attains a maximum of

28 — 56/9v/21 ~ —.51380432.
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Fig. 6. Convex cubic f. (left) Value of wgese(f; U) vs wéjpt(f; U). (right) The

U
ratio —U—wSIefj “opt (f;0) .
opt

Similarly, the maximum in the second case is 25/9 — 52/81v/39 ~ —1.231.
This lack of additional roots proves that *f and —f are an upper and a
lower bound respectively.

If € > 1, we can shift U to [1/3..4/3] and the segment Us = [2/3..1]
can be treated as a middle segment (c.f. Fig. 5,right). O

3.3. Comparison of w,p; and wgjefe

By symmetry, we assume that A;f > |Asf|. If Aof = 0 (and f(0) =
f(1) = 0) then f is a multiple of a? and wepy = Wslere.- Also, both wept
and wglefe scale linearly with A, f. We therefore normalize in the following
so that |A,f| = 1.

We first consider wops = wey, the case of no inflection. Without
loss of generality, A;f := 1+ ¢,e € [0,00], Aof := 1 and with A :=
V57€2 + 135¢ + 81, we compute

1 (949 — A)(—3A(L +€) + 11€% + 36e + 27
Wope (F;U) 5:—273( N34 62) )-

Figure 6, left plots wglefe against w(fpt. The gap between wgjere and w

increases with € but is finite at infinity:

(wslefe(f) - w(L)th(f))(e = OO) = % - % 2+ % B 5294531

The relative difference has a maximum of ca. 6% when ¢ = 0 (c.f.
Fig. 6,right), i.e. when f is of degree 2.

@]
opt

~ .0053353794.

If f has an inflection point, we may assume that A;f :=1+¢, € € [0, 00],
and Ay f := —1 and compute wopi = wg,e,
1 (9e+9—A)(—3A(1+€) + 11>+ 8 — 1)

woNi)t(va):_TB (€+2)2
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Fig. 7. Cubic f with inflection: (left) Value of wgiere(f; U), wopt(f; U) and the
width based on the convex hull of the control polygon. (right) The ratio

wslefe_w;)vpt U
woNpt (f7 ) .

where A := 1/57€e2 + 93¢ + 39. Now

_ 982 + 3081 — 228 — 3152

(wstere (f) = wope (f))(€ = 00) £l

~ .032775216.

Wslefe —W

The worst ratio ——~—=2*(f;U) occurs when f is of the type depicted
in Figure 2: if Ajf = —Asf = 1 then wj,(f) = 05593616039 and
walefe(f) = .08857673214. Although the ratio is almost 3:5, the slefe is
considerably tighter than the convex hull of the control polygon (c.f. Fig. 7,

left).

Acknowledgments. This research was made possible in part by the grant
NSF 9457806-CCR

References

1. Buck, R. C., Applications of duality in approximation theory, in Ap-
proximation of Functions (Proc. Sympos. General Motors Res. Lab.,
1964), Elsevier Publ. Co., Amsterdam, 1965, 27-42.

2. Farin, G., Tighter convex hulls for rational Bézier curves, Comput.
Aided Geom. Design 10, 1993, 123-125.

3. Hu, C.-Y., T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis,
Robust interval algorithm for curve intersections, Computer-Aided
Design 28, 1996, 495-506.

4. Hu, C.-Y., N. M. Patrikalakis, and X. Ye, Robust interval solid mod-
elling part I: representations, Computer-Aided Design 28, 1996, 807—
817.



344

5.

10.

11.

12.

13.

14.

J. Peters and X. Wu

Hu. C.-Y., Ni. M. Patrikalakis, and X. Ye, Robust interval solid mod-
elling part II: boundary evaluation, Computer-Aided Design 28, 1996,
819-830.

Kobbelt, L. P., K. Daubert, and H.-P. Seidel, Ray tracing of sub-
division surfaces, in Rendering Techniques '98 (Proceedings of the
Eurographics Workshop), Springer-Verlag, New York, 1998, 69-80.

Lutterkort, D., Envelopes for Nonlinear Geometry, PhD thesis, Pur-
due University, May 2000.

Lutterkort, D. and J. Peters, Linear envelopes for uniform B-spline
curves, Curves and Surfaces, St Malo, 2000, 239-246.

Lutterkort, D. and J. Peters, Optimized refinable enclosures of mul-
tivariate polynomial pieces, Comput. Aided Geom. Design 19, 2002,
851-863.

Nairn, D., J. Peters, and D. Lutterkort, Sharp, quantitative bounds
on the distance between a polynomial piece and its Bézier control
polygon, Comput. Aided Geom. Design 16, 1999, 613-633.

Pinkus, A. M., On L'-approximation, Cambridge University Press,
Cambridge, 1989.

Reif, U., Best bounds on the approximation of polynomials and splines
by their control structure, Comput. Aided Geom. Design 17, 2000,
579-589.

Sederberg, T. W. and R. T. Farouki, Approximation by interval Bézier
curves, IEEE Computer Graphics and Applications 12, 1992, 87-95.

Tuohy, S. T., T. Maekawa, G. Shen, and N. M. Patrikalakis, Approx-
imation of measured data with interval B-splines, Computer-Aided
Design 29, 1997, 791-799.

J. Peters and X. Wu

Dept. of CISE

University of Florida

Gainesville, FL 32611
jorg@cise.ufl.edu
http://www.cise.ufl.edu/~jorg



