
On the Optimality of Pie
ewise Linear

Max-norm En
losures based on Slefes

J�org Peters and Xiaobin Wu

Abstra
t. Subdividable linear eÆ
ient fun
tion en
losures (Slefes)

provide, at low 
ost, a pie
ewise linear pair of upper and lower bounds

f

+

; f

�

, that sandwi
h a fun
tion f on a given interval: f

+

� f � f

�

.

In pra
ti
e, these bounds are observed to be very tight. This paper

addresses the question just how 
lose to optimal, in the max-norm,

the slefe 
onstru
tion a
tually is. Spe
i�
ally, we 
ompare the width

f

+

�f

�

of the slefe to the narrowest possible pie
ewise linear en
losure

of f when f is a univariate 
ubi
 polynomial.

x1. Introdu
tion

Due to 
urved geometry, obje
ts in b-spline, B�ezier or generalized subdi-

vision representation pose numeri
al and implementation 
hallenges when

measuring distan
e between obje
ts, re-approximating for format 
onver-

sion, meshing with toleran
e, or dete
ting the silhouette. Naive lineariza-

tion, say triangulation by sampling, reapproximates without known error

and not safely from one side. Subdividable linear eÆ
ient fun
tion en
losures

(slefes) [7,8,9℄, by 
ontrast, are a low-
ost te
hnique yielding two one-sided,

pie
ewise linear bounds that sandwi
h nonlinear fun
tions. The width of

a slefe, i.e., the distan
e between upper and lower approximation, is easily

measured, be
ause it is taken on at a breakpoint, and re�nement yields

predi
tably tighter en
losures.

Slefe-based bounds are observed to be very tight. Yet, being linear,

the slefe 
onstru
tion 
annot be expe
ted to provide the best two-sided

max-norm approximation. Therefore, it is of interest to see how 
lose to

optimal the slefe 
onstru
tion a
tually is by deriving and 
omparing it

with the narrowest possible en
losure. Sin
e slefes generate the minimal

width en
losures for quadrati
s, we fo
us on univariate 
ubi
 polynomial

pie
es.
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Fig. 1. A 
ubi
 B�ezier segment inside its grey-shaded slefe.

1.1. Prior Work

The theory of slefes has its roots in bounds on the distan
e of pie
ewise

polynomials to their B�ezier or b-spline 
ontrol net [10,12℄. Compared

to these 
onstru
tions, en
losures yield dramati
ally tighter bounds for

the underlying fun
tions sin
e they do not en
lose the 
ontrol polygon.

Approximation theory has long re
ognized the problems of one-sided ap-

proximation and two-sided approximation [1℄. Algorithmi
ally, though,

a

ording to the seminal monograph [11℄ p. 181, the 
onvergen
e of the

proposed Remez-type algorithms is already in one variable `generally very

slow'. The only termination guarantee is that a subsequen
e must exist

that 
onverges. By 
ontrast, the slefes provide a solution with an expli
it

error very fast and with a guarantee of error redu
tion under re�nement.

The obje
t oriented bounding boxes for subdivision 
urves or surfa
es

in [6℄ are based on a min{max 
riterion and require the evaluation of

several points and normals on the 
urve or surfa
e. Thus, the dependen
e

on the 
oeÆ
ients is not linear. Linearity of the slefe 
onstru
tion is highly

desirable sin
e it allows us to solve hard inverse problems, su
h as �tting

spline 
urves into pres
ribed 
hannels. Farin [2℄ shows that for rational

B�ezier{
urves, the 
onvex hull property 
an be tightened to the 
onvex hull

of the �rst and the last 
ontrol point and so-
alled weight points. Hu et al.

[3,4,5,14℄ promote the use of interval spline representation (see Farouki and

Sederberg [13℄) for toleran
ing, error maintenan
e and data �tting. The

key ingredient of this use of interval arithmeti
 are axis-aligned bounding

boxes based on the positivity and partition of unity property of the b-

splines. En
losures 
omplement this work by o�ering tighter two-sided

bounds.

x2. Subdividable Linear EÆ
ient Fun
tion En
losures

The slefe of a fun
tion f with respe
t to a domain U is a pie
ewise linear

pair, f

+

; f

�

, of upper and lower bounds that sandwi
h the fun
tion on U :

f

+

� f � f

�

: Here, we fo
us on pie
ewise linear f

+

and f

�

and measure

the width, f

+

� f

�

, in the re
ursively applied L

1

norm: the width is as

small as possible where it is maximal { and, having �xed the breakpoint
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width = 0.2767 width = 0.0579 

Fig. 2. (left) A 
ubi
 B�ezier segment with 
oeÆ
ients 0;�1; 1; 0. The 
ontrol

polygon exaggerates the 
urve far more than the grey 3-pie
e slefe.

(right) After one subdivision at the midpoint, the width of the slefe

(grey) is roughly 1/4th of the width of the unsubdivided slefe (dashed) .

values where the maximal width is taken on (zeroth and �rst breakpoint in

Fig. 1), the width at the remaining breakpoints is re
ursively minimized

subje
t to mat
hing the already �xed break point values.

Slefes are based on the two general lemmas [7,9℄ and the on
e-and-for-

all tabulation of best re
ursive L

1

en
losures for a small set of fun
tions,

a := (a

i

)

i=1;:::;s

below.

Lemma 1. Given two �nite-dimensional ve
tor spa
es of fun
tions, B 6=

H, s := dimB � dim(B \ H), (b

i

)

i=1;:::;dimB

a basis of B, (a

i

)

i=1;:::;s

fun
tions in B, the embedding identity E : B ! B +H, and linear maps

L : B ! H; � : B ! IR

s

;

su
h that (i) (�

j

a

i

)

i;j

is the identity in IR

s�s

and (ii) ker� = ker(E�L),

then for any f = b � f :=

P

b

i

f

i

2 B,

(b� Lb) � f = (a� La) � (�f):

Remarks: For pra
ti
al 
omputation, (a � La) � (�f) has to have only

�nitely many terms, e.g. s < 1. Items (i) and (ii) make E � a� a

proje
tor into a spa
e invariant under L. In (ii), ker� � ker(E � L) is

needed sin
e for any f 2 ker� n ker(E � L), (a � La) � (�f) is zero, but

not (b�Lb) � f. Sin
e the width of the en
losure 
hanges under addition

of any element in ker(E � L) n ker�, we also want ker(E � L) � ker�.

Lemma 2. If, with the de�nitions of Lemma 1, additionally the maps

b�


;

d�e

:

B

s

! H

s

satisfy ba� La
 � a�La � da� Lae pointwise and 
om-

ponentwise, and (�f)

+

(i) := maxf0;�f(i)g, (�f)

�

(i) := minf0;�f(i)g

then

f

�

:= Lf + ba� La
 � (�f)

+

+ da� Lae � (�f)

�

;

f

+

:= Lf + ba� La
 � (�f)

�

+ da� Lae � (�f)

+

sandwi
h f , i.e., f

�

� f � f

+

.
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Example. Let B be the spa
e of univariate polynomials of degree d, say

in B�ezier form, �f the d � 1 se
ond di�eren
es of its B�ezier 
oeÆ
ients,

U = [0::1℄ and H the spa
e of pie
ewise linear fun
tions with break points

at i=m, i 2 f0; : : : ;mg. To obtain slefes, we determine and tabulate the

breakpoint values of ba

i

� La

i




m

2 H and da

i

� La

i

e

m

2 H that minimize

the width

w

slefe

(f ;U) := max

U

f

+

�f

�

= max

U

d�1

X

i=1

(da

i

� La

i

e

m

�ba

i

� La

i




m

) j�

i

f j:

The width is invariant under addition of 
onstant and linear terms to f

and one (DeCasteljau) subdivision step at the midpoint, t = 1=2 
uts the

width to roughly a quarter (see Figure 2).

The general slefe 
onstru
tion is as follows. (Note that (0),(1),(2),(3) are

pre
omputed, o�-line and (4) is 
heap, making the 
omputation of slefes

eÆ
ient.)

(0) Choose U , the domain of interest, and the spa
e H of en
losure fun
-

tions.

(1) Choose a di�eren
e operator � : B 7! IR

s

, with ker� = B \ H.

(2) Compute a : IR

s

7! B so that �a is the identity on IR

s

and ea
h a

i

mat
hes the same dim(B \ H) additional independent 
onstraints.

(3) Compute ba� La
 and da� Lae 2 H.

(4) Compute (�f)

+

and (�f)

�

and assemble f

�

and f

+

(Lemma 2).

x3. Optimal Bounds for Cubi
 Fun
tions

In this se
tion, we determine, for a 
lass of fun
tions, the optimal en-


losure width and 
ompare it with w

slefe

. The simplest nontrivial 
ase

is when the fun
tion f is a univariate quadrati
 polynomial; however, in

this 
ase, the slefe 
onstru
tion is optimal, be
ause the ve
tor of fun
tions

a � La is a singleton and slefes are based on the optimal en
losures of

ba� La
; da� Lae. Sin
e expli
it determination of the least-width pie
e-

wise linear en
losure is a 
hallenge, we 
onsider polynomials f of degree

d = 3 in B�ezier representation on the interval U = [0::1℄:

f(u) :=

P

d

i=0

f

i

b

d

i

(u); b

d

i

(u) :=

d!

(d�i)!i!

(1� u)

d�i

u

i

:

We approximate from the spa
e of hat fun
tions with m = 3 segments

and breakpoints at j=m, j = 0; : : : ;m. Generalization of the results to

m > 3 pie
es is not diÆ
ult; generalization to degree d > 3 has not yet

been attempted. Without loss of generality, we assume

�

1

f � j�

2

f j; where �f :=

�

�

1

f

�

2

f

�

:=

�

f

0

� 2f

1

+ f

2

f

1

� 2f

2

+ f

3

�

:
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Fig. 3. a :=a

3

1

:= �(2b

3

1

+b

3

2

)=3 with 
ontrol polygon and slefe.

3.1. Computing w

slefe

With Lf(u) := f

0

(1� u) + f

d

u; we have

a

d

1

:= �(2b

d

1

+ b

d

2

)=3; a

d

2

:= �(b

d

1

+ 2b

d

2

)=3;

and a

d

i

� La

d

i

= a

d

i

. One 
he
ks Lemma 1:

f � Lf = a

d

1

�

1

f + a

d

2

�

2

f:

The optimal en
losures for (a

3

j

)

j=1;2

have been tabulated; but here, we

derive them as expli
it symboli
 expressions. By symmetry, it is suÆ
ient

to 
ompute bounds for a := a

3

1

. Due to the 
onvexity of a (see Fig. 3),

the pie
ewise linear interpolant at j=m is an upper bound. We express

dae as the ve
tor of its breakpoint values (e.g. the value of dae at 1=3 is

�10=27):

27dae ' [0;�10;�8; 0℄:

The lower bound is 
omputed by re
ursive minimization. The �rst segment

is the dominant segment in the sense that its tightest bound has the largest

width among the three segments (Fig. 3, see also Lemma 5). Therefore,

we 
al
ulate the values of ba
 at 0 and 1=3 by shifting down the �rst

segment of the upper bound until it is tangent to a. The other two break

point values are 
omputed by 
al
ulating the tangent line to a, keeping

one end �xed. This pro
edure yields the four break point values of the

lower bound

27ba
 ' [30; 20; 25+

�

1

� 9

2

�

2

; �

3

℄�

38�

1

9

;

where

�

1

:=

p

57; �

2

:=

p

�10 + 2�

1

;

�

3

:=

261

8

+

�

1

� 9

4

�

2

+

3�

2

� �

1

8

p

11� 12�

2

� 2�

1

+ 2�

1

�

2

:

An approximation of the values is ba
 � [�:0695;�:4399;�:3154;�:0087℄

The width of a is

w

slefe

(a) = w

opt

(a) = �

10

9

+

38�

1

243

� 0:0695:
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Let w

i

:= (dae � ba
)(i=m), i = 0; 1; 2; 3. Then, due to the symmetry

a

3

1

(t) = a

3

2

(1� t),

w

slefe

(f ;U) = max

i2f0;1;2;3g

fj�

1

f jw

i

+ j�

2

f jw

m�i

g:

Sin
e w

0

= w

1

> w

2

> w

3

, the term with i = 1 is the maximal term, and

w

slefe

(f ;U) = j�

1

f jw

1

+ j�

2

f jw

2

� 0:0695j�

1

f j+ 0:0191j�

2

f j:

If we set j�

1

f j := 1 + �, � 2 [0::1℄, and j�

2

f j := 1, then

w

slefe

(f ;U) = �

1

243

(270�+ 567 +

9�

2

2

(�

1

� 9)� 38�

1

(�+ 2)):

3.2. Computing w

opt

We next determine w

opt

, the width of the narrowest possible pie
ewise lin-

ear en
losure for f with break points at i=3 (that is, w

opt

(f; [0::1=3℄) based

on en
losing by one linear segment above and one below and w

opt

(f; [0::1℄)

on three). The next three lemmas show that (i) it is suÆ
ient to 
om-

pare the width of fun
tions with �rst and last 
oeÆ
ient equal zero;

(ii) an in
rease of the se
ond derivative of f then in
reases w

opt

; (iii)

if j�

1

f j > j�

2

f j then the �rst segment determines w

opt

.

Lemma 3. Let ` be a linear fun
tion, U = [0::1℄ and f

00

> 0 on U . Then

w

opt

(f ;U) = w

opt

(f + `;U), and the t

�

at whi
h the width is taken on is

the same for f and f + `.

Proof: Due to 
onvexity,

w

opt

(f + `;U) = max

t

(1� t)(f(0) + `(0)) + t(f(1) + `(1))� (f(t) + `(t))

= max

t

(1� t)f(0) + tf(1)� f(t) = w

opt

(f ;U):

Lemma 4. Let U = [0::1℄, f(0) = f(1) = g(0) = g(1) = 0, f

00

> 0 on U ,

g

00

= f

00

+ 
, where 
 > 0 is a 
onstant. Then w

opt

(g;U) > w

opt

(f ;U):

Proof: g � f = �




6

(b

3

1

+ b

3

2

) < 0 on (0::1).

Lemma 5. If �

1

f > j�

2

f j then w

opt

(f; [0::1=3℄) � w

opt

(f; [0::1℄):

Proof: Let w := w

opt

(f; [0::1=3℄) be the minimal width of the �rst seg-

ment, and

�

+

i

:=

�

1; if f

00

(

i

3

) > 0

0; else

; �

�

i

:=

�

1; if f

00

(

i

3

) < 0

0; else.
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+
f

f
−
f

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

ε

d
is

cr
im

in
an

t

Fig. 4. (left) The en
losure (not a slefe!) used to prove dominan
e of the left-

most segment. (right) The dis
riminant of the interse
tion problem is

negative .

1/3 2/3 10

f"

2/30 1/3 1

f"

4/32/30 1/3 1

f"

Fig. 5. (left) Linear f

00

> 0, (middle) in
e
tion in the middle segment, (right)

in
e
tion in the right segment (middle segment with respe
t to U

0

:=

[1=3::4=3℄) .

We show that the pie
ewise linear fun
tion

+

f with breakpoint values (Fig.

4, left) f(

i

3

)+�

�

i

w; i = 0; : : : ; 3; yields and upper bound and

�

f with values

f(

i

3

)� �

+

i

w; i = 0; : : : ; 3; yields a lower bound.

For segments without in
e
tion point, this follows from Lemma 4.

Sin
e f

00

is linear, all segments have the same slope (see Fig. 5, left). The

leftmost segments is larger by a positive 
onstant, be
ause �

1

f > j�

2

f j.

In purely 
on
ave segments, Lemma 4 applies to the 
ipped derivative (see

Fig. 5, middle, dashed line segment). Now if �

2

f < 0, let

�

1

f := 1 + �; � 2 [0; 1℄; and �

2

f := �1:

Sin
e �

1

f > j�

2

f j, there are no in
e
tions in the interval U

1

:= [0::1=2℄.

If � 2 [0::1℄ then the in
e
tion is in the interval U

2

:= [1=2::2=3℄ and if

� > 1 then the in
e
tion is in the interval U

3

:= [2=3::1℄.

If the in
e
tion point belongs to the middle segment, we show that the

line segment 
onne
ting (1=3; f(1=3)�w) to (2=3; f(2=3)) only interse
ts

(t; f(t)) at 2=3; similarly, (1=3; f(1=3)) to (2=3; f(2=3)+w) only interse
ts

(t; f(t)) at 1=3. In the �rst 
ase, the quadrati
 resulting from 
an
eling the

fa
tor (t�2=3) of f(t)� (f(1=3)�w)(1� t)�f(2=3)t has the dis
riminant

1

(�+ 2)87723

(�2888A

3=2

+ (17001 + 24795�)A� 175689� 355023�;

where A := 57�

2

+ 93� + 39. For � 2 [0::1℄, the dis
riminant plotted in

Fig. 4, right attains a maximum of

28� 56=9

p

21 � �:51380432:
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p
t

Fig. 6. Convex 
ubi
 f . (left) Value of w

slefe

(f ;U) vs w

[

opt

(f ;U). (right) The

ratio

w

slefe

�w

[

opt

w

[

opt

(f ;U) .

Similarly, the maximum in the se
ond 
ase is 25=9� 52=81

p

39 � �1:231:

This la
k of additional roots proves that

+

f and

�

f are an upper and a

lower bound respe
tively.

If � > 1, we 
an shift U to [1=3::4=3℄ and the segment U

3

= [2=3::1℄


an be treated as a middle segment (
.f. Fig. 5,right).

3.3. Comparison of w

opt

and w

slefe

By symmetry, we assume that �

1

f � j�

2

f j. If �

2

f = 0 (and f(0) =

f(1) = 0) then f is a multiple of a

3

1

and w

opt

= w

slefe

. Also, both w

opt

and w

slefe

s
ale linearly with �

2

f . We therefore normalize in the following

so that j�

2

f j = 1.

We �rst 
onsider w

opt

= w

[

opt

, the 
ase of no in
e
tion. Without

loss of generality, �

1

f := 1 + �; � 2 [0;1℄, �

2

f := 1 and with A :=

p

57�

2

+ 135�+ 81, we 
ompute

w

[

opt

(f ;U) := �

1

243

(9 + 9��A)(�3A(1 + �) + 11�

2

+ 36�+ 27)

�

2

:

Figure 6, left plots w

slefe

against w

[

opt

. The gap between w

slefe

and w

[

opt

in
reases with � but is �nite at in�nity:

(w

slefe

(f)� w

[

opt

(f))(� =1) =

16

9

�

�

1

54

�

2

+

�

2

6

�

59�

1

243

� :0053353794:

The relative di�eren
e has a maximum of 
a. 6% when � = 0 (
.f.

Fig. 6,right), i.e. when f is of degree 2.

If f has an in
e
tion point, we may assume that �

1

f := 1+ �, � 2 [0;1℄,

and �

2

f := �1 and 
ompute w

opt

= w

�

opt

,

w

�

opt

(f ;U) = �

1

243

(9�+ 9�A)(�3A(1 + �) + 11�

2

+ 8�� 1)

(�+ 2)

2
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Fig. 7. Cubi
 f with in
e
tion: (left) Value of w

slefe

(f ;U), w

�

opt

(f ;U) and the

width based on the 
onvex hull of the 
ontrol polygon. (right) The ratio

w

slefe

�w

�

opt

w

�

opt

(f ;U) .

where A :=

p

57�

2

+ 93�+ 39. Now

(w

slefe

(f)� w

�

opt

(f))(� =1) =

9�

2

+ 30�

1

� 228� �

1

�

2

54

� :032775216:

The worst ratio

w

slefe

�w

�

opt

w

�

opt

(f ;U) o

urs when f is of the type depi
ted

in Figure 2: if �

1

f = ��

2

f = 1 then w

�

opt

(f) = :05593616039 and

w

slefe

(f) = :08857673214. Although the ratio is almost 3:5, the slefe is


onsiderably tighter than the 
onvex hull of the 
ontrol polygon (
.f. Fig. 7,

left).
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