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Abstrat. Subdividable linear eÆient funtion enlosures (Slefes)

provide, at low ost, a pieewise linear pair of upper and lower bounds

f

+

; f

�

, that sandwih a funtion f on a given interval: f

+

� f � f

�

.

In pratie, these bounds are observed to be very tight. This paper

addresses the question just how lose to optimal, in the max-norm,

the slefe onstrution atually is. Spei�ally, we ompare the width

f

+

�f

�

of the slefe to the narrowest possible pieewise linear enlosure

of f when f is a univariate ubi polynomial.

x1. Introdution

Due to urved geometry, objets in b-spline, B�ezier or generalized subdi-

vision representation pose numerial and implementation hallenges when

measuring distane between objets, re-approximating for format onver-

sion, meshing with tolerane, or deteting the silhouette. Naive lineariza-

tion, say triangulation by sampling, reapproximates without known error

and not safely from one side. Subdividable linear eÆient funtion enlosures

(slefes) [7,8,9℄, by ontrast, are a low-ost tehnique yielding two one-sided,

pieewise linear bounds that sandwih nonlinear funtions. The width of

a slefe, i.e., the distane between upper and lower approximation, is easily

measured, beause it is taken on at a breakpoint, and re�nement yields

preditably tighter enlosures.

Slefe-based bounds are observed to be very tight. Yet, being linear,

the slefe onstrution annot be expeted to provide the best two-sided

max-norm approximation. Therefore, it is of interest to see how lose to

optimal the slefe onstrution atually is by deriving and omparing it

with the narrowest possible enlosure. Sine slefes generate the minimal

width enlosures for quadratis, we fous on univariate ubi polynomial

piees.
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Fig. 1. A ubi B�ezier segment inside its grey-shaded slefe.

1.1. Prior Work

The theory of slefes has its roots in bounds on the distane of pieewise

polynomials to their B�ezier or b-spline ontrol net [10,12℄. Compared

to these onstrutions, enlosures yield dramatially tighter bounds for

the underlying funtions sine they do not enlose the ontrol polygon.

Approximation theory has long reognized the problems of one-sided ap-

proximation and two-sided approximation [1℄. Algorithmially, though,

aording to the seminal monograph [11℄ p. 181, the onvergene of the

proposed Remez-type algorithms is already in one variable `generally very

slow'. The only termination guarantee is that a subsequene must exist

that onverges. By ontrast, the slefes provide a solution with an expliit

error very fast and with a guarantee of error redution under re�nement.

The objet oriented bounding boxes for subdivision urves or surfaes

in [6℄ are based on a min{max riterion and require the evaluation of

several points and normals on the urve or surfae. Thus, the dependene

on the oeÆients is not linear. Linearity of the slefe onstrution is highly

desirable sine it allows us to solve hard inverse problems, suh as �tting

spline urves into presribed hannels. Farin [2℄ shows that for rational

B�ezier{urves, the onvex hull property an be tightened to the onvex hull

of the �rst and the last ontrol point and so-alled weight points. Hu et al.

[3,4,5,14℄ promote the use of interval spline representation (see Farouki and

Sederberg [13℄) for toleraning, error maintenane and data �tting. The

key ingredient of this use of interval arithmeti are axis-aligned bounding

boxes based on the positivity and partition of unity property of the b-

splines. Enlosures omplement this work by o�ering tighter two-sided

bounds.

x2. Subdividable Linear EÆient Funtion Enlosures

The slefe of a funtion f with respet to a domain U is a pieewise linear

pair, f

+

; f

�

, of upper and lower bounds that sandwih the funtion on U :

f

+

� f � f

�

: Here, we fous on pieewise linear f

+

and f

�

and measure

the width, f

+

� f

�

, in the reursively applied L

1

norm: the width is as

small as possible where it is maximal { and, having �xed the breakpoint
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width = 0.2767 width = 0.0579 

Fig. 2. (left) A ubi B�ezier segment with oeÆients 0;�1; 1; 0. The ontrol

polygon exaggerates the urve far more than the grey 3-piee slefe.

(right) After one subdivision at the midpoint, the width of the slefe

(grey) is roughly 1/4th of the width of the unsubdivided slefe (dashed) .

values where the maximal width is taken on (zeroth and �rst breakpoint in

Fig. 1), the width at the remaining breakpoints is reursively minimized

subjet to mathing the already �xed break point values.

Slefes are based on the two general lemmas [7,9℄ and the one-and-for-

all tabulation of best reursive L

1

enlosures for a small set of funtions,

a := (a

i

)

i=1;:::;s

below.

Lemma 1. Given two �nite-dimensional vetor spaes of funtions, B 6=

H, s := dimB � dim(B \ H), (b

i

)

i=1;:::;dimB

a basis of B, (a

i

)

i=1;:::;s

funtions in B, the embedding identity E : B ! B +H, and linear maps

L : B ! H; � : B ! IR

s

;

suh that (i) (�

j

a

i

)

i;j

is the identity in IR

s�s

and (ii) ker� = ker(E�L),

then for any f = b � f :=

P

b

i

f

i

2 B,

(b� Lb) � f = (a� La) � (�f):

Remarks: For pratial omputation, (a � La) � (�f) has to have only

�nitely many terms, e.g. s < 1. Items (i) and (ii) make E � a� a

projetor into a spae invariant under L. In (ii), ker� � ker(E � L) is

needed sine for any f 2 ker� n ker(E � L), (a � La) � (�f) is zero, but

not (b�Lb) � f. Sine the width of the enlosure hanges under addition

of any element in ker(E � L) n ker�, we also want ker(E � L) � ker�.

Lemma 2. If, with the de�nitions of Lemma 1, additionally the maps

b�

;

d�e

:

B

s

! H

s

satisfy ba� La � a�La � da� Lae pointwise and om-

ponentwise, and (�f)

+

(i) := maxf0;�f(i)g, (�f)

�

(i) := minf0;�f(i)g

then

f

�

:= Lf + ba� La � (�f)

+

+ da� Lae � (�f)

�

;

f

+

:= Lf + ba� La � (�f)

�

+ da� Lae � (�f)

+

sandwih f , i.e., f

�

� f � f

+

.
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Example. Let B be the spae of univariate polynomials of degree d, say

in B�ezier form, �f the d � 1 seond di�erenes of its B�ezier oeÆients,

U = [0::1℄ and H the spae of pieewise linear funtions with break points

at i=m, i 2 f0; : : : ;mg. To obtain slefes, we determine and tabulate the

breakpoint values of ba

i

� La

i



m

2 H and da

i

� La

i

e

m

2 H that minimize

the width

w

slefe

(f ;U) := max

U

f

+

�f

�

= max

U

d�1

X

i=1

(da

i

� La

i

e

m

�ba

i

� La

i



m

) j�

i

f j:

The width is invariant under addition of onstant and linear terms to f

and one (DeCasteljau) subdivision step at the midpoint, t = 1=2 uts the

width to roughly a quarter (see Figure 2).

The general slefe onstrution is as follows. (Note that (0),(1),(2),(3) are

preomputed, o�-line and (4) is heap, making the omputation of slefes

eÆient.)

(0) Choose U , the domain of interest, and the spae H of enlosure fun-

tions.

(1) Choose a di�erene operator � : B 7! IR

s

, with ker� = B \ H.

(2) Compute a : IR

s

7! B so that �a is the identity on IR

s

and eah a

i

mathes the same dim(B \ H) additional independent onstraints.

(3) Compute ba� La and da� Lae 2 H.

(4) Compute (�f)

+

and (�f)

�

and assemble f

�

and f

+

(Lemma 2).

x3. Optimal Bounds for Cubi Funtions

In this setion, we determine, for a lass of funtions, the optimal en-

losure width and ompare it with w

slefe

. The simplest nontrivial ase

is when the funtion f is a univariate quadrati polynomial; however, in

this ase, the slefe onstrution is optimal, beause the vetor of funtions

a � La is a singleton and slefes are based on the optimal enlosures of

ba� La; da� Lae. Sine expliit determination of the least-width piee-

wise linear enlosure is a hallenge, we onsider polynomials f of degree

d = 3 in B�ezier representation on the interval U = [0::1℄:

f(u) :=

P

d

i=0

f

i

b

d

i

(u); b

d

i

(u) :=

d!

(d�i)!i!

(1� u)

d�i

u

i

:

We approximate from the spae of hat funtions with m = 3 segments

and breakpoints at j=m, j = 0; : : : ;m. Generalization of the results to

m > 3 piees is not diÆult; generalization to degree d > 3 has not yet

been attempted. Without loss of generality, we assume

�

1

f � j�

2

f j; where �f :=

�

�

1

f

�

2

f

�

:=

�

f

0

� 2f

1

+ f

2

f

1

� 2f

2

+ f

3

�

:
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Fig. 3. a :=a

3

1

:= �(2b

3

1

+b

3

2

)=3 with ontrol polygon and slefe.

3.1. Computing w

slefe

With Lf(u) := f

0

(1� u) + f

d

u; we have

a

d

1

:= �(2b

d

1

+ b

d

2

)=3; a

d

2

:= �(b

d

1

+ 2b

d

2

)=3;

and a

d

i

� La

d

i

= a

d

i

. One heks Lemma 1:

f � Lf = a

d

1

�

1

f + a

d

2

�

2

f:

The optimal enlosures for (a

3

j

)

j=1;2

have been tabulated; but here, we

derive them as expliit symboli expressions. By symmetry, it is suÆient

to ompute bounds for a := a

3

1

. Due to the onvexity of a (see Fig. 3),

the pieewise linear interpolant at j=m is an upper bound. We express

dae as the vetor of its breakpoint values (e.g. the value of dae at 1=3 is

�10=27):

27dae ' [0;�10;�8; 0℄:

The lower bound is omputed by reursive minimization. The �rst segment

is the dominant segment in the sense that its tightest bound has the largest

width among the three segments (Fig. 3, see also Lemma 5). Therefore,

we alulate the values of ba at 0 and 1=3 by shifting down the �rst

segment of the upper bound until it is tangent to a. The other two break

point values are omputed by alulating the tangent line to a, keeping

one end �xed. This proedure yields the four break point values of the

lower bound

27ba ' [30; 20; 25+

�

1

� 9

2

�

2

; �

3

℄�

38�

1

9

;

where

�

1

:=

p

57; �

2

:=

p

�10 + 2�

1

;

�

3

:=

261

8

+

�

1

� 9

4

�

2

+

3�

2

� �

1

8

p

11� 12�

2

� 2�

1

+ 2�

1

�

2

:

An approximation of the values is ba � [�:0695;�:4399;�:3154;�:0087℄

The width of a is

w

slefe

(a) = w

opt

(a) = �

10

9

+

38�

1

243

� 0:0695:
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Let w

i

:= (dae � ba)(i=m), i = 0; 1; 2; 3. Then, due to the symmetry

a

3

1

(t) = a

3

2

(1� t),

w

slefe

(f ;U) = max

i2f0;1;2;3g

fj�

1

f jw

i

+ j�

2

f jw

m�i

g:

Sine w

0

= w

1

> w

2

> w

3

, the term with i = 1 is the maximal term, and

w

slefe

(f ;U) = j�

1

f jw

1

+ j�

2

f jw

2

� 0:0695j�

1

f j+ 0:0191j�

2

f j:

If we set j�

1

f j := 1 + �, � 2 [0::1℄, and j�

2

f j := 1, then

w

slefe

(f ;U) = �

1

243

(270�+ 567 +

9�

2

2

(�

1

� 9)� 38�

1

(�+ 2)):

3.2. Computing w

opt

We next determine w

opt

, the width of the narrowest possible pieewise lin-

ear enlosure for f with break points at i=3 (that is, w

opt

(f; [0::1=3℄) based

on enlosing by one linear segment above and one below and w

opt

(f; [0::1℄)

on three). The next three lemmas show that (i) it is suÆient to om-

pare the width of funtions with �rst and last oeÆient equal zero;

(ii) an inrease of the seond derivative of f then inreases w

opt

; (iii)

if j�

1

f j > j�

2

f j then the �rst segment determines w

opt

.

Lemma 3. Let ` be a linear funtion, U = [0::1℄ and f

00

> 0 on U . Then

w

opt

(f ;U) = w

opt

(f + `;U), and the t

�

at whih the width is taken on is

the same for f and f + `.

Proof: Due to onvexity,

w

opt

(f + `;U) = max

t

(1� t)(f(0) + `(0)) + t(f(1) + `(1))� (f(t) + `(t))

= max

t

(1� t)f(0) + tf(1)� f(t) = w

opt

(f ;U):

Lemma 4. Let U = [0::1℄, f(0) = f(1) = g(0) = g(1) = 0, f

00

> 0 on U ,

g

00

= f

00

+ , where  > 0 is a onstant. Then w

opt

(g;U) > w

opt

(f ;U):

Proof: g � f = �



6

(b

3

1

+ b

3

2

) < 0 on (0::1).

Lemma 5. If �

1

f > j�

2

f j then w

opt

(f; [0::1=3℄) � w

opt

(f; [0::1℄):

Proof: Let w := w

opt

(f; [0::1=3℄) be the minimal width of the �rst seg-

ment, and

�

+

i

:=

�

1; if f

00

(

i

3

) > 0

0; else

; �

�

i

:=

�

1; if f

00

(

i

3

) < 0

0; else.
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+
f

f
−
f

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

ε

d
is

cr
im

in
an

t

Fig. 4. (left) The enlosure (not a slefe!) used to prove dominane of the left-

most segment. (right) The disriminant of the intersetion problem is

negative .

1/3 2/3 10

f"

2/30 1/3 1

f"

4/32/30 1/3 1

f"

Fig. 5. (left) Linear f

00

> 0, (middle) inetion in the middle segment, (right)

inetion in the right segment (middle segment with respet to U

0

:=

[1=3::4=3℄) .

We show that the pieewise linear funtion

+

f with breakpoint values (Fig.

4, left) f(

i

3

)+�

�

i

w; i = 0; : : : ; 3; yields and upper bound and

�

f with values

f(

i

3

)� �

+

i

w; i = 0; : : : ; 3; yields a lower bound.

For segments without inetion point, this follows from Lemma 4.

Sine f

00

is linear, all segments have the same slope (see Fig. 5, left). The

leftmost segments is larger by a positive onstant, beause �

1

f > j�

2

f j.

In purely onave segments, Lemma 4 applies to the ipped derivative (see

Fig. 5, middle, dashed line segment). Now if �

2

f < 0, let

�

1

f := 1 + �; � 2 [0; 1℄; and �

2

f := �1:

Sine �

1

f > j�

2

f j, there are no inetions in the interval U

1

:= [0::1=2℄.

If � 2 [0::1℄ then the inetion is in the interval U

2

:= [1=2::2=3℄ and if

� > 1 then the inetion is in the interval U

3

:= [2=3::1℄.

If the inetion point belongs to the middle segment, we show that the

line segment onneting (1=3; f(1=3)�w) to (2=3; f(2=3)) only intersets

(t; f(t)) at 2=3; similarly, (1=3; f(1=3)) to (2=3; f(2=3)+w) only intersets

(t; f(t)) at 1=3. In the �rst ase, the quadrati resulting from aneling the

fator (t�2=3) of f(t)� (f(1=3)�w)(1� t)�f(2=3)t has the disriminant

1

(�+ 2)87723

(�2888A

3=2

+ (17001 + 24795�)A� 175689� 355023�;

where A := 57�

2

+ 93� + 39. For � 2 [0::1℄, the disriminant plotted in

Fig. 4, right attains a maximum of

28� 56=9

p

21 � �:51380432:
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Fig. 6. Convex ubi f . (left) Value of w

slefe

(f ;U) vs w

[

opt

(f ;U). (right) The

ratio

w

slefe

�w

[

opt

w

[

opt

(f ;U) .

Similarly, the maximum in the seond ase is 25=9� 52=81

p

39 � �1:231:

This lak of additional roots proves that

+

f and

�

f are an upper and a

lower bound respetively.

If � > 1, we an shift U to [1=3::4=3℄ and the segment U

3

= [2=3::1℄

an be treated as a middle segment (.f. Fig. 5,right).

3.3. Comparison of w

opt

and w

slefe

By symmetry, we assume that �

1

f � j�

2

f j. If �

2

f = 0 (and f(0) =

f(1) = 0) then f is a multiple of a

3

1

and w

opt

= w

slefe

. Also, both w

opt

and w

slefe

sale linearly with �

2

f . We therefore normalize in the following

so that j�

2

f j = 1.

We �rst onsider w

opt

= w

[

opt

, the ase of no inetion. Without

loss of generality, �

1

f := 1 + �; � 2 [0;1℄, �

2

f := 1 and with A :=

p

57�

2

+ 135�+ 81, we ompute

w

[

opt

(f ;U) := �

1

243

(9 + 9��A)(�3A(1 + �) + 11�

2

+ 36�+ 27)

�

2

:

Figure 6, left plots w

slefe

against w

[

opt

. The gap between w

slefe

and w

[

opt

inreases with � but is �nite at in�nity:

(w

slefe

(f)� w

[

opt

(f))(� =1) =

16

9

�

�

1

54

�

2

+

�

2

6

�

59�

1

243

� :0053353794:

The relative di�erene has a maximum of a. 6% when � = 0 (.f.

Fig. 6,right), i.e. when f is of degree 2.

If f has an inetion point, we may assume that �

1

f := 1+ �, � 2 [0;1℄,

and �

2

f := �1 and ompute w

opt

= w

�

opt

,

w

�

opt

(f ;U) = �

1

243

(9�+ 9�A)(�3A(1 + �) + 11�

2

+ 8�� 1)

(�+ 2)

2
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Fig. 7. Cubi f with inetion: (left) Value of w

slefe

(f ;U), w

�

opt

(f ;U) and the

width based on the onvex hull of the ontrol polygon. (right) The ratio

w

slefe

�w

�

opt

w

�

opt

(f ;U) .

where A :=

p

57�

2

+ 93�+ 39. Now

(w

slefe

(f)� w

�

opt

(f))(� =1) =

9�

2

+ 30�

1

� 228� �

1

�

2

54

� :032775216:

The worst ratio

w

slefe

�w

�

opt

w

�

opt

(f ;U) ours when f is of the type depited

in Figure 2: if �

1

f = ��

2

f = 1 then w

�

opt

(f) = :05593616039 and

w

slefe

(f) = :08857673214. Although the ratio is almost 3:5, the slefe is

onsiderably tighter than the onvex hull of the ontrol polygon (.f. Fig. 7,

left).

Aknowledgments. This researh was made possible in part by the grant

NSF 9457806-CCR

Referenes

1. Buk, R. C., Appliations of duality in approximation theory, in Ap-

proximation of Funtions (Pro. Sympos. General Motors Res. Lab.,

1964), Elsevier Publ. Co., Amsterdam, 1965, 27{42.

2. Farin, G., Tighter onvex hulls for rational B�ezier urves, Comput.

Aided Geom. Design 10, 1993, 123{125.

3. Hu, C.-Y., T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis,

Robust interval algorithm for urve intersetions, Computer-Aided

Design 28, 1996, 495{506.

4. Hu, C.-Y., N. M. Patrikalakis, and X. Ye, Robust interval solid mod-

elling part I: representations, Computer-Aided Design 28, 1996, 807{

817.



344 J. Peters and X. Wu

5. Hu. C.-Y., Ni. M. Patrikalakis, and X. Ye, Robust interval solid mod-

elling part II: boundary evaluation, Computer-Aided Design 28, 1996,

819{830.

6. Kobbelt, L. P., K. Daubert, and H.-P. Seidel, Ray traing of sub-

division surfaes, in Rendering Tehniques '98 (Proeedings of the

Eurographis Workshop), Springer-Verlag, New York, 1998, 69{80.

7. Lutterkort, D., Envelopes for Nonlinear Geometry, PhD thesis, Pur-

due University, May 2000.

8. Lutterkort, D. and J. Peters, Linear envelopes for uniform B{spline

urves, Curves and Surfaes, St Malo, 2000, 239{246.

9. Lutterkort, D. and J. Peters, Optimized re�nable enlosures of mul-

tivariate polynomial piees, Comput. Aided Geom. Design 19, 2002,

851{863.

10. Nairn, D., J. Peters, and D. Lutterkort, Sharp, quantitative bounds

on the distane between a polynomial piee and its B�ezier ontrol

polygon, Comput. Aided Geom. Design 16, 1999, 613{633.

11. Pinkus, A. M., On L

1

-approximation, Cambridge University Press,

Cambridge, 1989.

12. Reif, U., Best bounds on the approximation of polynomials and splines

by their ontrol struture, Comput. Aided Geom. Design 17, 2000,

579{589.

13. Sederberg, T. W. and R. T. Farouki, Approximation by interval B�ezier

urves, IEEE Computer Graphis and Appliations 12, 1992, 87{95.

14. Tuohy, S. T., T. Maekawa, G. Shen, and N. M. Patrikalakis, Approx-

imation of measured data with interval B-splines, Computer-Aided

Design 29, 1997, 791{799.

J. Peters and X. Wu

Dept. of CISE

University of Florida

Gainesville, FL 32611

jorg�ise.ufl.edu

http://www.ise.ufl.edu/�jorg


