Test B Geometric Modeling

Name:

IMPORTANT: You may have to make simple, reasonable assumptions to arrive at an answer. State any such assumption.
An answer 'yes' or 'no' is worth 0 points if it does not explain the reasoning.
Write answers cleanly on the space provided. Use the back of the previous page if more space is needed.

1 Bounding Constructs

[$2+2$ points $]$ We define three curve segments, $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}$ by their Bernstein-Bézier coefficients

$$
\mathbf{c}_{1}:\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
2
\end{array}\right], \quad \mathbf{c}_{2}:\left[\begin{array}{c}
-4 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad \mathbf{c}_{3}:\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
$$

- Use bounding constructs to prove or disprove that the two curve segments \mathbf{c}_{1} and \mathbf{c}_{2} intersect.
- (*) Use bounding constructs to prove or disprove that the two curve segments \mathbf{c}_{3} and \mathbf{c}_{2} intersect.

2 curves, general

(3 points - somewhat atypical as a test question) The V-shaped function is convex. Show that one cannot, in general, expect that there exists a function that is convex, interpolates several points from a convex function and is C^{1}, regardless of the representation of the curve.

3 Differential Geometry

(6 points) For the curve with BB-coefficients

$$
\left[\begin{array}{l}
-1 \tag{1}\\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],
$$

determine the tangent, the osculating plane, the main normal, the binormal, the curvature, and the torsion at $\left[\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right]$.

