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ABSTRACT

This paper contributes a systematic investigation of location-based similarity measures between discrete regions. It is shown that the
number of measures is finite, and a complete list is presented and discussed. In literature one finds one or the other of these measures
in use. But everywhere a practical approach leads to the measures, and no reference to alternatives is given. Here it is shown if – and to
what extent – alternatives exist.
Similarity is a concept widely used; refering to space it is a basis for handling positional uncertainty or imprecision, for matching spatial
entities, for merging spatial data sets, for change detection, for generalization, and so on. Similarity needs a measure to be quantifyable;
a measure is the basis for any decision.
In this paper the focus is on similarity of a pair of discrete spatial objects, where only their location is considered. Location refers to the
interrelation between position, shape and size of the objects. – Excluded from comparison are thematic attributes, relations in scenes,
and matching. Furthermore, stochastic signals (as e.g. image regions) or fuzzy regions are not considered, but not excluded.
With the only precondition that a measure should be symmetric, normed, and free of dimension, area ratios are built and investigated. The
list of ratios is complete, and only some of the ratios fulfill the precondition. These ratios are useful candidates for similarity measures, and
their behaviour and semantical interpretations are discussed. Different measures refer to different reference systems; here, the different
measures characterize different properties or interrelations between the position, the shape, and the size of two regions. None of the
measures is a measure of overall similarity. Consequently, at least two of the listed measures are necessary. The two measures have to
be complementary in the way that both together characterize common and distinct features of the regions.

1 INTRODUCTION

1.1 Motivation

Similarity is a concept widely used; referring to space and Geo-
graphic Information Systems (GIS) it is the basis for handling po-
sitional uncertainty or imprecision, for matching spatial entities, for
merging spatial data sets, for change detection, for generalization,
and so on. Since similarity is the basis for any decision in this
context, it needs a measure to be quantifyable.

On the other hand, similarity represents an undecidable problem,
which has been discussed in philosophy for two thousand years in
the categorization controversy, where similarity is the central no-
tion for abstraction (Flasch, 1986). The basic question is to find
a common reference frame for measuring similarity: there are so
many aspects of physical, linguistic or semantic similarity, that a
statement ’A is similar to B’ contains no information as long as the
aspects are not specified. For this reason the paper starts with a
thorough clarification of location and location-based similarity.

Spatial entities in data bases, here assumed as regions, are mod-
els of real world objects. The comparison of the location of two
regions from different data sets is based on the hypothesis that
both are modeling the same object. The grade of similarity allows
an assessment of that hypothesis. Conceptualizing the real world,
a context-dependent level of detail, a dynamic world with changes,
and random errors in data capture cause that models are most
likely not identical. The differences can only partly be described
stochastically, so methods like hypothesis testing are not helpfull
in this situation. In contrast, similarity is a concept with a continu-
ous measure between identity and distinctness. Specific measures
yield additional information about the kind of similarity. In the con-
text of comparing spatial data sets similarity yields a usefull tool for
decision making.

1.2 Focus of the Paper

This paper contributes a systematic investigation of similarity mea-
sures between two discrete regions from different data sets (Fig. 1).
Focus is on location, and it is assumed that the data sets repre-
sent some common space, so that location may correspond. Loca-
tion refers to the interrelation between position, shape and size of
the objects (Fig. 2). – Excluded from comparison are thematic at-
tributes, relations in scenes, and matching. Furthermore, stochas-
tic regions (as in image processing) or fuzzy regions are not con-
sidered, but not excluded.

A
B

Figure 1: Given two regions A and B from two independent data
sets: to what extent are they similar?

It is shown that the number of possible location-based similarity
measures is finite (at least an elementary set), and a complete list
is presented and discussed. In literature one finds one or the other
of these measures in use. But usually a practical approach leads
to these measures, and no reference to alternatives is given. Here
it is shown if – and to what extent – alternatives exist.

With the only precondition that a measure should be symmetric,
normalized, and free of dimension, area ratios are built and in-
vestigated. The list of ratios is complete, and only some of the
ratios fulfill the precondition. These ratios are useful candidates for
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Figure 2: Location refers to the interrelation between position,
shape and size.

similarity measures, and their behaviour and semantical interpreta-
tions are discussed. Different measures refer to different reference
systems; here, the different measures characterize different prop-
erties or interrelations between the position, the shape, and the
size of two regions. None of the measures is a measure of overall
similarity. Consequently, at least two of the listed measures are
necessary. The two measures have to be complementary in the
way that both together characterize common and distinct features
of the regions.

1.3 Structure of the Paper

The paper starts investigating similarity as a concept (Section 2),
and clarifies location as a reference frame for similarity of regions
(Section 3). Location-based measures are introduced based on
intersection sets (Section 4). The size of the intersection sets is
normalized by setting into ratios. These ratios are investigated and
discussed in Section 5. In the conclusion (Section 6) this approach
is discussed in a broader context.

2 SIMILARITY, AND SIMILARITY MEASURES

In this chapter concepts of similarity are collected. The overview
is used to define the topic of this paper as well as to broaden the
narrow view of geometry on similarity.

A concept of similarity exists:

� in mathematics: a transformation h � S � T is a similar-
ity if there is a constant number r such that f�h�x�� h�y�� �
r f�x� y� for all x� y � S (Edgar, 1990). For example, two
geometric figures are similar if the ratio of all related pairs of
edges is constant. – This concept of similarity does not refer
to the size of r and is not quantifyable.

Another concept is congruence, but that does not allow gra-
dation. But in topology similarity can be applied; (Bruns and
Egenhofer, 1996) derive similarity measures of scenes by con-
ceptual neighborhoods of relations.

� in statisitics: two signals are correlated (or linear dependent) if
their covariance is different from 0. Similarity of signals is de-
scribed often by the cross correlation coefficient, a symmetric,
normalized correlation measure (e.g. in (Jähne, 1995)). The
coefficient is based on the distance of the two signals. – This
concept is more strict than the common sense concept, which
does not require dependency.

� in common sense: proximity, or closeness to equality (which
per se does not refer to coincidence in location). It depends
whether one is considering the common features (similarity)
or the distinct features (dissimilarity) which basis for a simi-
larity measure is chosen. Often the distance from equality is
accepted as a measure for similarity, as in statistics. – This
concept is open for continuous or discrete gradation or order
(’A is more similar to B than to C ’).

� in psychology / cognitive science: similar things belong to cat-
egories which are characterized on the basis of shared prop-
erties (with some additional aspects) (Lakoff, 1987). Catego-
rization tends to count the common features. Tversky pos-
tulates that similarity of objects increases with the number of
common features, and decreases with the number of distinct
features (Tversky, 1977). This concept exceeds also the tradi-
tional concepts based on distances because a distance con-
trols distinct features only. – Tversky’s rule influences the ar-
gumentation in this paper strongly.

Similarity of visually perceived spatial objects is a topic of
Gestalt-theory (Metzger, 1936).

� in neuropsychology: neurons are trained by repetition of the
same (or similar) signals, and response to a stimulus is pro-
portional to the grade of similarity of an input signal to the
trained pattern. – This concept of similarity is compatible with
counting common features; it produces a continuous measure
of similarity.

� in applied sciences (engineering, operation research, etc.):
two entities, or two situations are similar with a certain de-
gree determined by the costs of mapping one onto the other.
Costs are related to distances: only mapping of distinct fea-
tures raise costs. As Vosselman pointed out, sometimes it is
more usefull to determine benefits instead of costs (Vossel-
man, 1992); mapping common features would increase the
benefits. Nevertheless, the considered features are not nec-
essarily numeric (Stevens, 1946), which requires additional
efforts to determine the measure function.

It becomes evident that the concepts vary, and no overall concept
emerges. There are so many aspects of physical, linguistic or se-
mantic similarity, that a statement ’A is similar to B’ contains no
information as long as the aspects are not specified which are
referred to. Collecting similarity measures makes sense only for
general classes of aspects, as done here for location. As we will
see, the derived measures will describe even different aspects of
location (Sect. 5.2).

Another conclusion from the derived measures is evidence that two
measures are required to describe similarity completely. Similarity
is regards the number of common properties – here: coincident
location –, as well as the number of distinct properties. The num-
ber of common properties characterizes similarity (in a narrower
sense), contrasted with the number of distinct properties that char-
acterizes dissimilarity.

Notational remark: The notion similarity is used in this paper as
a general concept as well as a concept regarding common proper-
ties only.

3 SIMILARITY OF REGIONS

In this section the discussion of similarity is focused on regions.
The concept of location is presented, and sources for deviations
in location are discussed. At the end we have good reasons to
choose elements for similarity measures.

3.1 Location of Regions

In this paper no assumptions are needed about history, context,
or quality of the two considered data sets. They are presumed as
referring to the same part of the world, and no explanations are
given or derived for locational deviations between the objects of
the two data sets (as e.g. different context, different level of detail,
different observers, ...). Similarity is only considered in relation to
location here.



Location of regions can be characterized by a large number of pa-
rameters describing their shape, their orientation, and their position
individually (cf. Fig. 2):

� Measures of shape, like the Euler number, or the size of the
region;

� measures of orientation, like the angle between reference and
inertia axis;

� measures of position. In two-dimensional space that is a pair
of coordinates in a suited reference system. The reference
system in GIS is often IR� (but non-euclidic (spheric) or dis-
crete ones are also possible).

The concept of location is related to coverage of space; the set of
points or atoms occupied in the plane by the considered regions
are compared, not their attributes (like shape, orientation or posi-
tion). However, location includes shape, orientation and position
indirectly: a change in shape means a change in location at some
points in the plane, and so on.

Further two regions from different data sets are compared neglect-
ing (problems by) representational differences. The following argu-
mentation is independent from representational issues.

3.2 Sources for Different Locations

Consider the observation process (Fig. 3). The continuous real
world is mapped by perception and abstraction to a conceptual
model, and that model is mapped by data capture to a data set.
Comparing objects from two data sets requires the inversion of
some paths in the two branches in that hierarchy.

real world

abstraction 1 abstraction 2

data set 1 data set 2

T1 T2

U1 U2

V1 V2

Figure 3: Mapping two data sets requires to go back to common
ground, here: to the real world.

The mapping process from the real world to a data set is called Tk
in Fig. 3, with k � f�� �g. The mapping is a process of two distinct
steps, an abstraction of continuous real world to discrete concepts
(Uk) and a measurement of conceptualized objects (Vk).

Tk � Vk�Uk

Looking for a mapping function between the data sets Sk requires
inversion of one of those derivation processes, e.g. by

S� � T��T
��
� �S��

This task is ill-posed by:

1. irreversible mental processes, especially conceptualization and
simplification (abstraction in Uk),

2. dimensional aspects (data sets are assumed to be two-dimensional,
the real world is (at least) three dimensional) (projection in
Uk),

3. observation errors (in Vk).

real world

data set 1 data set 2

V1 V2

abstraction

Figure 4: If two data sets are based on a common conceptual-
ization of the world, all differences between the data sets are due
to observation errors. Only then the derivation process should be
reversible.

The second problem can be constrained by parallel projection. The
last problem can be modeled stochastically, which allows formulat-
ing inversion by an estimation problem. The first problem, however,
is irreversible.

Figure 4 shows a reversible case because here the only reason for
differences between two data sets are observation errors. Possible
differences can be modeled stochastically.

S� � V��U�U
���V ��

� �S�� � V��V
��
� �S��

A practical example for this figure may be an operator who uses a
stereo pair of images to derive two building data sets in sequence
by the same capturing method. But if he uses two different meth-
ods, let us say, stereo-plotting and construction by primitive vol-
umes (CSG), then non-stochastic constraints by object models in-
fluence the results.

Usually we have to deal with the general case (Fig. 3). With the
lack of a mathematical transformation between S� and S�, match-
ing of data sets is referred back to empirical methods, e.g. on de-
cisions based on similarity measures. When applying empirical
methods, however, it is difficult to give theoretical reasons. The
measures investigated here are based on local coincidences and
differences, which are perhaps the most general similarity of (mod-
els of) spatial objects. To remain general we neglect all other pos-
sible measures here, and any possibility of analysing the types of
differences (shift, rotation, affinity, ...).

It is clarifying to distinguish similarity of regions at different levels.
Similarity is a binary relation; the two arguments can:

� refer to different objects in the real world. In this case sim-
ilarity concerns shape only, and the difference in position or
orientation will not be considered.

� refer to the same object, but to different concepts of abstrac-
tion. In this case similarity concerns the two contexts, and
location-based measures can be used to specify one type of
describing indicators.

� refer to the same object class and abstraction level, but to
different data sets. In this case similarity in location con-
cerns identity, or at least part-of relations. Similarity will be
used to match regions, to detect differences in data sets, e.g.,
changes, and so on.

In special circumstances the third case can be treated as an esti-
mation problem of a shift between two correlated (spatial) signals.
That is common practice in image matching (Ackermann, 1984).
But then the distinct properties between the two signals (regions)
break the model und must therefore be small. In this paper it
is avoided to make any restriction about the shape or a correla-
tion between the two compared regions. For that reason matching
techniques are not considered further.



We classify the reasons for different locations of two matching re-
gions into:

1. Uncertainty

� in abstraction: when observers differ significantly in their
spatial concepts (cf. (Burrough and Frank, 1996)), or in
the level of detail for a concept.

� in measurements: clearly (and uniquely) defined con-
cepts measured several times will differ in their descrip-
tion (data sets), due to measurement methods, instru-
ments, observers, and random influences.

2. Errors

� gross error. Gross errors prohibit correct matching of
two regions from two data sets. Gross errors occur in
shape: e.g., an ’outlier’ in one boundary polygon, and
gross errors occur in position or orientation: e.g., if the
size of shift or rotation is of a magnitude that dissimi-
larity predominates. Then the similarity measures pre-
sented in this paper will be low; detection and elimina-
tion is possible only in global optimization with robust
methods if a majority of matches is gross-error-free.

� systematic error. Systematic errors of location can be
caused by the observation method, e.g., shadows in au-
tomatic object extraction (Weidner and Förstner, 1995).
They cause a dissimilarity trend in the comparison of all
pairs of objects between two data sets (shift, rotation,
affinity, scale, and so on). But similarity measures fall
short to derive more detailed information, because they
do not allow to distinguish shape, position, and orienta-
tion, and they are not signed. For another approach of
comparing regions see (Ragia and Winter, 1998) in this
volume.

� random error. Random errors break equality of regions
to any kind of similarity in any of the dimensions shape,
position, and rotation. Random errors are typically small,
so that similarity measures will be high.

3. Temporal aspects

GIS databases contain immobiles – movable regions are usu-
ally not stored. But also the world of immobiles is not static,
and databases represent regions with reference to a point (or
interval) in time (Snodgrass, 1992). Comparing regions from
two datasets requires consideration of database time:

� creation or deletion of regions in one data set lead to
mismatches (or no matches) with other data sets.

� change of regions in a static space can be reduced to
creation and deletion. Examples are creation or dele-
tion of parts of a region (construction of an annex), or
deletion of an individual region and creation of a new
one (displacements; division of parcels). – Other changes
in a data set refer not to the real world, but to reference
frames; they base on recalculation of networks or trans-
formations. They keep identities, but require a complete
database revision.

Changes regard all aspects of location.

Temporal aspects give reason for dissimilarities at a descrip-
tive level; the observable phenomena – similarity measures –
look like gross or systematic errors, significant changes pre-
sumed.

Up to now, we discussed the location of regions, and reasons for
differences between data sets, even if they refer to the same ob-
jects and abstraction level. We saw that matching of data sets is
an ill-posed problem which requires heuristics, i.e. empirical ap-
proaches.

3.3 Approach for Location-Based Measures

Location of an object is understood as space covered by that ob-
ject (Fig. 1). Measures based on location can count (or integrate)
atomic elements of space; that are points in IR�, and raster cells
in ZZ�. Binary location-based similarity measures will count atoms
covered by both objects, or atoms covered by one but not by the
other object.

Location-based similarity is a concept related to the topological re-
lationship equal, in a sense of more or less. The strong math-
ematical formulation of topological relationships (e.g. by empty-
ness / non-emptyness of intersection sets, (Egenhofer and Herring,
1990)) can be softened to graded or fuzzy or uncertain topological
relationships (Wazinski, 1993, Winter, 1996). For that aim the sizes
of intersection sets are combined to ratios.

This paper states that the number of such measures (at least the
elementary set) are finite. The next chapter collects location-based
measures, and the consecutive chapter investigates the ratios of
those measures.

4 LOCATION-BASED MEASURES

In this chapter we derive the location-based measures, with spe-
cial attention to be complete. They will be based on the sizes of
(intersection) sets, with a strong interrelation to weighted topologi-
cal relationships.

4.1 Partition of the Plane

Studying relative location refers at the most general level to topol-
ogy. In this section topological relationships are characterized by
two-dimensional intersection sets. Later the qualitative relation-
ships will be specified by the size of sets.

It is generally assumed in the following that all treated areal objects
are existing and not empty. Location of areal objects is represented
in GIS usually as bounded parts of the plane (vector model), or
as sets of (regular) atoms (raster model, tesselation). Here an
approach by a location function is preferred:

f�x� y� �

�
� if �x� y� �� A

� if �x� y� � A
(1)

with �x� y� � IR� (vector model) or �x� y� � ZZ� (raster model),
respectively. That keeps us independent from representational is-
sues. Without loss of generality, in the following it is referred to
IR� only. But the formulas can be applied to ZZ�, too, by replacing
integrals by sums.

Changing from an object view to a location view (Winter, 1998) is
the first step of solving the geometric matching problem. If one is
not interested in all other aspects of comparing, but only in posi-
tion, then it is sufficient to distinguish space between ’region’ (fore-
ground) and ’no region’ (background).

The location function (Eq. 1) distinguishes two sets, the interior
(f�x� y� � �) and the exterior (f�x� y� � �) of an area A. The
function needs no concept of neighborhood. Therefore, open and
closed sets cannot be distinguished in the functional representa-
tion. The inverse of function f , f��, yields the complement of A,
i.e. �A. For two areas, A and B, a set of in total four (intersection)
sets can be derived. Consider Figure 5. Region A from a data set
A and region B from a data set B have an arbitrary position relative
to each other (in the figure they are overlapping, and the rectangle
A is left of the rectangle B). Their intersection sets form a partition
of the planar space with at most four sets:

A � B

�A � B

A � �B
�A � �B

(2)



All other sets are unions of those intersection sets. For example:

A � �A � B� � �A � �B�
B � �A � B� � ��A � B�
A � B � �A � B� � ��A � B� � A � �B�

¬ ∩ ¬A B

¬ ∩A B

A B∩ ¬

A B∩

Figure 5: Sets A and B given as rectangles; their intersection sets
form a partition of the plane. Background is assumed to be unlim-
ited.

The main interest is in the size of the sets. An elementary operation
sizeof is introduced here, shortly written in mathematical notation
by j � j. The application of this operation on sets in IR� shall yield
their size, independent from the representation of the sets. We
define:

��� � jA � Bj �
RR
x�y

f�x� y� g�x� y� dx dy

��� � jA � �Bj �
RR
x�y

f�x� y� g���x� y� dx dy

��� � j�A � Bj �
RR
x�y

f���x� y� g�x� y� dx dy

��� � j�A � �Bj �
RR
x�y

f���x� y� g���x� y� dx dy

(3)
Once the sizes are known, (families of) topological relationships
can be distinguished. To become qualitative, the four size mea-
sures of Eq. 3 are classified and grouped into tuples:

� The sizes of intersection sets, � (Eq. 3), can be mapped to a
binary measure m with values 0 = empty and 1 = non-empty:

�� m �

�
� if � �� �
� if � � �

(4)

� The size ��� (Eq. 3) is – for finite A and B – never empty.
It contributes no qualitative information. With unlimited func-
tions f and g, its size is always 	, so it contributes even no
quantitative information. m is 1, constantly.

Then a situation between regions A and B can be described
qualitatively by combinations of the binary measure m, where
it is sufficient to set up triples fm���m���m��g. That yields
�� � � theoretically possible combinations.

� No pair of (m���m��) and (m���m��) can be (empty, empty).
That follows from the presumption that neither A nor B is
empty. With A � ��� � ��� and B � ��� � ��� at least
one of the intersection sets in each pair must be not empty.
That excludes three of the eight triples: f�� �� �g, f�� �� �g,
f�� �� �g.

The remaining five triples correspond to the following separable
topological relationships:

1. f�� �� �g (disjunct/touching): A and B have no part in com-
mon;

2. f�� �� �g (overlap): A and B have parts in common and parts
not in common;

3. f�� �� �g (equal): all parts of A are parts of B and vice versa;

4. f�� �� �g (contains/covers): all parts of B are part of A, and A
has additional parts;

5. f�� �� �g (containedBy/coveredBy): all parts of A are part of
B, and B has additional parts.

Using four intersection sets looks similar to the work of (Egenhofer
and Franzosa, 1991) who determined the topological relationship
between A and B qualitatively. But they investigated the intersec-
tion sets of interiors and boundaries with the result that they can
separate eight (families of) topological relationships for simple ar-
eas.

While Egenhofer and Franzosa were restricted to simple areas, the
classification here works also for complex areas (multiply-connected,
or multiple components). The used intersection sets are of the di-
mension of the considered space. For that reason the model is
indepent from representation (vector or raster). With this subset
of the Egenhofer relations Fig. 6 is a kind of generalization of the
conceptual neighborhood graph (Egenhofer and Al-Taha, 1992).

Disjoint

Overlap

Equals

ContainedByContains

Figure 6: Topological relationships representable by the two-
dimensional intersection sets of Eq. 3, related by conceptual neigh-
borhood.

We are now able to describe an area by a function, and to de-
termine a topological relationship between two areas qualitatively.
The next step is to become quantitative.

4.2 Size Measures

In this section the size measures of Eq. 3 are investigated numeri-
cally.

The domain of values for the size of an arbitrary set X in IR� is
dom �jXj� � 	��	
. But regions A and B shall be limited to finite
sets which may not be empty (Fig. 5). Then � � jAj� jBj �	.

We derive the sizes of intersection sets:

� � jA �Bj 
 min�jAj� jBj�
� � j�A � Bj 
 jBj
� � jA � �Bj 
 jAj

j�A � �Bj � 	

(5)

All other sets are unions of intersection sets; with the property of
partitions to be pairwise disjoint the sizes of unions can be written
as sums:

jA � Bj � jA � Bj� j�A � Bj� jA � �Bj
j�A � Bj � jA � Bj� j�A � Bj� j�A � �Bj
jA � �Bj � jA � Bj� jA � �Bj� j�A � �Bj
j�A � �Bj � jA � �Bj� j�A � Bj� j�A � �Bj

(6)

In the following we use unions as short forms for the combination
of intersection sets. The domains of the binary unions are easy to
determine from the domains of the intersection sets. If one term of
the sum in Eq. 6 is 	, the domain is fixed to 	, too. Only the first
union is a finite set:

max�jAj� jBj� 
 jA � Bj 
 jAj� jBj
j�A � Bj � 	
jA � �Bj � 	
j�A � �Bj � 	

(7)



In this section we collected the sets and the domain of their sizes.
The size measure is based on integration. It is shown that the
elementary sets are complete. – In a next step we establish two
criteria for similarity measures, and derive such measures from the
size measures.

5 LOCATION-BASED SIMILARITY MEASURES

In this chapter we derive location-based similarity measures, with
special attention on completeness. The size measures of Chap-
ter 4 are used and coupled with three criteria for similarity mea-
sures – to be symmetric, normalized, and free of dimension. It will
be possible to set up lists of such measures and to describe their
properties.

5.1 Criteria for Similarity Measures

In this section three criteria are established to specify similarity
measures. With these criteria it will be possible to derive such
measures from the size measures.

The criteria are:

1. Symmetry

From our assumptions the situation between A and B is sym-
metric; no region is preferred as e.g. a prototype or a model
of the other. In such neutral situations a measure must be
independent from the order of the considered regions A and
B:

similar �A�B�
�
� similar �B�A� (8)

2. Domain limitation

It is usefull to have normalized measures. Only in this case
two measures can be compared.

� 
 similar �A�B� 
 � (9)

For this reason suited ratios are introduced as similarity mea-
sures. (Suited ratios and their meaning of such ratios are dis-
cussed in Section 5.2.)

3. Free of dimension

Similarity measures shall be free of dimension, because sim-
ilarity is no physical concept or property. That is reached by
ratios of measures with the same dimension.

First we consider symmetry in the size measures. With the partition
into (at most) four intersection sets, in principle 16 combinations
are possible. The numbers follow from the sequence of binomial
coefficients

�
n
k

�
, with n � �, the number of intersection sets, and

k � f�� �����g, the number of combined elementary sets:

� k � �: one 0-tuple, the empty set (excluded by presumption);

� k � �: four 1-tuples, the elementary intersection sets;

� k � �: six 2-tuples, binary unions of intersection sets;

� k � : four 3-tuples, triple unions of intersection sets;

� k � �: one 4-tuple, the union of all four intersection sets,
equal to IR�.

The cases with k � � and k � � are meaningless in the context
of similarity. From all other tuples only a few are symmetric (taking
advantage from abbreviations by unions, cf. Eq. 6):

� k � �: A �B, �A � �B

� k � �: �A � �B� � ��A � B�, �A �B� � ��A � �B�

� k � : A �B, �A � �B

In the following it is sufficient to investigate this reduced set of sets,
as the only possible symmetric sets. We pass over to their sizes,
and investigate the ratios of size measures to find normalized sim-
ilarity measures (Eq. 9).

For that purpose the domains of size values are used (Eqs. 5,
7). Then directly follows that three of the six measures cannot be
normalized because they are fixed to	. The remaining three sizes
are:

jA � Bj
jA � �Bj� j�A � Bj
jA � Bj

(10)

Looking at their value domains show the requirement of two addi-
tional size measures as upper bounds: min�jAj� jBj�, and jAj �
jBj. A third measure, max�jAj� jBj�, is linear dependent with the
other two, by jAj� jBj � min�jAj� jBj� �max�jAj� jBj�. Then it is
sufficient to introduce min�jAj� jBj� and max�jAj� jBj�. All three of
these measures are independent from location, and for that reason
they are not considered as candidates for location-based similarity
measures. Besides, these measures are symmetric.

Remark. Another symmetric, location-invariant measure exists:
jAj � jBj. This measure has the value domain � � jAj � jBj �
	. It would be usefull for setting up normalized ratios (in the next
section). But it is of a higher dimension than the measures above,
and is therefore excluded.

5.2 Composing the Similarity Measures

In this section the remaining size measures are normalized, and
the resulting ratios are investigated in their meaning. The com-
binations of nominators and denominators will be complete for all
location-sensitive measures in nominators.

With three location-sensitive size measures (Eq. 10) the list of
nominators contains three elements. Measures for the denomi-
nator may never take the value 0. This argument excludes the
measures jA � Bj and j��A � B� � �A � �B�j from the list of
possible denominators. With six measures altogether, and two ex-
cluded measures, the list of denominators contains four elements.
Therefore, a matrix of  � � ratios is to be investigated now (Tab.
1).

nominator jA � Bj j�A � Bj� jA � �Bj jA � Bj
denominator
jA �Bj s�� s�� s��
min�jAj� jBj� s�� s�� s��
max�jAj� jBj) s�� s�� s��
jAj� jBj s�� s�� s��

Table 1: Combination of all possible ratios of size measures.

In detail:

s�� Domain of values 	�� �
. 0 stands for totally disjoint regions
(A � B � �), and 1 stands for identical regions (A � B �
A�B). This ratio is a prototypical example of a location-based
similarity measure, increasing with the grade of similarity.

s�� Domain of values 	�� �
. 0 occurs only if A � B, and 1 occurs
if A and B are totally disjoint. With this behaviour the ratio
complements s��, which bases on the complementing nom-
inators with regard to the denominator. One should call it a
dissimilarity measure, decreasing with the grade of similarity.

s�� Domain of values 	�
, trivially.



s�� Domain of values 	�� �
. 0 stands for totally disjoint regions,
and 1 stands for complete coverage/containment or identity
(). The ratio does not recognize the proportion in size be-
tween A and B, and therefore it is not suited as a similarity
measure. But this ratio could be used as a measure for the
grade of (symmetric) overlap.

s�� Domain of values 	��	�. Again, 0 occurs only if A � B.
But the denominator is not sufficient to normalize the nomina-
tor. That property excludes this ratio from the list of similarity
measures. Additionaly, values different from 0 are difficult to
interpret, because nominator and denominator are not corre-
lated.

s�� Domain of values 	��	�. 1 occurs if A � B, and the ratio
increases in all other cases. With not being normalized, this
ratio is excluded from the list of similarity measures.

s�� Domain of values 	�� �
. 0 occurs if both regions are disjoint,
and 1 occurs only if A � B, in contrast to s��. With its sen-
sitivity for proportions between A and B this ratio is a suited
similarity measure.

s�� Domain of values 	�� �
. 0 occurs if A � B, and 2 occurs if
A is disjoint from B and jAj � jBj. As long as one region is
covered/contained in the other region, the value of the ratio is
limited by an upper bound of 1. As long as both regions are
disjoint, the value of the ratio is limited by a lower bound of
1. In any case of overlap no prediction can be made. – This
ratio could be normalized by division by 2; then it represents
a dissimilarity measure (decreasing with growing similarity).

s�� Domain of values 	�� �
. The value 1 stands for all cases of
coverage/containment or identity. The value 2 occurs for dis-
joint regions, if jAj � jBj. – Neither the domain nor the be-
haviour recommends this ratio as a similarity measure.

s�� Domain of values 	�� �
�

. 0 stands for disjoint regions, and �

�
stands for A � B. If we would normalize the ratio (by multipli-
cation with 2), the result would be a mean size of A and B as
denominator ( jAj�jBj

�
�

min�jAj�jBj��max�jAj�jBj�
�

. With that
the behavior of the (normalized) ratio s�� is in between of s��
and s��. It yields no new information.

s�� Domain of values 	�� �
. 0 occurs if A � B, and 1 occurs if A
and B are disjoint. Again, this is a mean ratio of s�� and s��,
but this one fulfills the conditions of a (dis-)similarity measure.

s�� Domain of values 	 �
�
� �
. The lower bound occurs if A � B.

1 occurs in all cases of disjoint regions, but is reached also
in all other topologic relations, if jAj and jBj are different in
the order of magnitude. This ratio represents an extraordinary
dissimilarity measure.

In summary, from the possible ratios of size measures the following
are similarity measures: fs��� s��� s��g , and another list are dis-
similarity measures: fs��� s��� s��� s��g. Both lists are complete
with regard to the given criteria.

5.3 Combination of Similarity Measures

In this section combinations of similarity measures are investigated.
Evidence is given that both lists above are needed, which is sup-
ported by some examples of recent applications (Harvey et al.,
1998).

Tversky already postulates that similarity of A to B “is expressed
as a function h of three arguments: ... the features that are com-
mon in both A and B; ... the features that belong to A but not to
B; ... the features that belong to B but not to A.” ((Tversky, 1977),
p. 330). – With this argumentation in mind, our lists of similarity
and dissimilarity become more transparent. All similarity measures

are based on the nominator jA � Bj, which represents the com-
mon features between A and B. All dissimilarity measures, with
one exception, are based on the nominator j�A � Bj� jA � �Bj,
which represents the distinctive features of A and B. The excep-
tion, s��, treats topological relations combined with orders of mag-
nitude, which mixes different kinds of features, metric and topologic
ones.

These considerations lead to the expectation that in praxis one
measure from each list is required to assess similarity completely.

Consider a recent example (Harvey et al., 1998). To evaluate a
match of two regions they introduce two measures: an inclusion
function, which is in fact identical to s�� and yields the grade of
overlap instead of similarity (but nevertheless: the common fea-
tures), and a surface distance, which is identical to s�� and mea-
sures dissimilarity (distinctive features). That confirms the hypoth-
esis that two measures are needed. The interesting question re-
mains whether other pairs of measures would have been also use-
full. The authors do not discuss their choice.

Another example is mentioned in (Ragia and Winter, 1998). There
the matching of two buildings from two data-sets has special re-
quirements, with regard to the aggregation levels of the data-sets.
part of-relations are accepted as a match. Similarity is replaced
by weighted topological relations, e.g. by s�� and s��. With this
choice distinctive features are not considered, only common fea-
tures.

Similarity of regions is to be handled distinctly to similarity of lower
dimensional entities. Recently, (Walter, 1997) matches lines and
points. He works only with distance measures (costs), neglecting
a weight for common features. That is justified for one-dimensional
data-sets, because the probability that two lines coincide by chance
is very small (the probability for two points is even zero).

Similarity of spatial relations cannot be treated by sizes of sets (the
single exception are topological relations). For example, (Bruns
and Egenhofer, 1996), (Egenhofer, 1997) are investigating spatial
scenes. Though they involve metric refinements of topological re-
lations (cf. Eq. 3), they need an additional concept of similarity for
other spatial relations. They also work with distance measures,
which they derive from conceptual neighborhood graphs.

6 SUMMARY, DISCUSSION AND CONCLUSION

This paper presents a systematic investigation of location-based
similarity measures between discrete regions of different data sets.
It is shown that only seven of such measures exist if only mea-
sures are considered which are symmetric, normalized, and free
of dimension. The set of similarity measures can be classified into
the measures counting common features of regions, and measures
counting distinct features. A complete description of similarity re-
quires one measure from both classes.

With measuring the sizes of intersection sets some similarity mea-
sures are related strongly to graded topological relationships. s��
represents a grade of equals, s�� represents a grade of overlaps,
s��, as the complement of s��, represents a grade of disjoint.
Gradations of containment cannot be found; but a concept of a
graded containment may coincide with the grade of overlap, intu-
itively. Boundary based topological relationships are not treated
here.

Tversky proposes a contrast model which expresses similarity be-
tween objects as a weighted difference of the measures of their
common and distinct features (Tversky, 1977):

s�A�B� � h�A � B�A� B�B �A�
� �h�A � B� � �h�A�B� � �h�B � A�

(11)

The advantage of that approach is to have only one measure for
overall similarity. But on the other hand there can be proposed



as much measures s as different weights �, �, � exist, and no
obligatory idea for such weights exists. The choice depends on
the context of a comparison, which is not treatable systematically.
Here it is omitted to discuss combinations of weights.

But a few statements about the weights are possible. A symmet-
ric measure requires � � �. The special case of a cost model
is included, by setting � � �, and also a benefit model can be
represented by � � � and � � �.

One could criticize that our concept of location, based on sets of
points (IR�) or atoms (ZZ�), is too specific in parametrization. In-
deed, other frames of (locational) reference are possible (Bittner
and Stell, in press). Moreover, with the Hausdorff distance a dis-
tance measure exists which is more general in parametrization of
space (Edgar, 1990). The Hausdorff distance is symmetric and
one-dimensional (the set sizes above are two-dimensional in pla-
nar space). r is zero iff A � B. Any other value (� �) does not
allow to conclude to a topological configuration. That disadvantage
cannot be adjusted because an adequate measure of common fea-
tures is not known. For that reason the Hausdorff distance cannot
be completed to a similarity measure.

With the binary location function (Eq. 1) only discrete regions are
tested for similarity. That fits to data sets in today’s spatial data
bases, where a need for quality description is realized but usually
not available. On the other hand, the presented model for similar-
ity measures could be refined for uncertain or imprecise regions.
The idea is to replace a binary function f by a spatial distribution
function, which corresponds to a convolution of f with a distribution
function, e.g. a Gaussian. The consequences have to be worked
out elsewhere.

The presented similarity measures increase linear with common lo-
cation. That is a consequence of setting elementary set sizes into
ratios. Such a model is purely mathematical, and there is no rea-
son to assume that cognitive concepts of humans are comparable,
with the exception of simplicity.

Similarity is a general concept applied in many spatial decision
problems (as well as in other disciplines). The systematic inves-
tigation succeeded by limiting to a strict frame of reference. Con-
centrating on location of two spatial objects (regions), an elemen-
tary set of similarity measures can be presented. To what extent
the model can be expanded is to investigate.
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