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Abstract. The spatial world consists of regions and relationships be-
tween regions. Examples of such relationships are that two regions are
disjoint or that one is a proper part of the other. The formal specification
of spatial relations is an important part of any formal ontology used in
qualitative spatial reasoning or geographical information systems. Vari-
ous schemes of relationships have been proposed and basic schemes have
been extended to deal with vague regions, coarse regions, regions varying
over time, and so on. The principal aim of this paper is not to propose
further schemes, but to provide a uniform framework within which sev-
eral existing schemes can be understood, and upon which further schemes
can be constructed in a principled manner. This framework is based on
the fundamental concepts of part and of complement. By varying these
concepts, for example allowing a part-of relation taking values in a lattice
of truth values beyond the two-valued Boolean case, we obtain a family
of schemes of spatial relations. The viability of this approach to spa-
tial relations as parameterized by the concepts of part and complement
is demonstrated by showing how it encompasses the RCC5 and RCC8
schemes as well as the case of ‘egg-yolk regions’.

1 Introduction

1.1 Spatial Relations

The spatial world consists of regions — occupied by particular countries, seas,
or mountain ranges, regions where specific philosophies, ontologies, or poisonous
fungi flourish. These regions are not separate things, unrelated to each other:
some regions are parts of others, regions may be disjoint, regions may touch only
at their boundaries. More elaborate relationships than these examples exist: one
region may be disjoint from another but be contained within its convex hull; two
regions may vary over time and at all times the regions overlap but neither is
ever a proper part of the other.

Various systems of regions and formalized relations between them have been
used in qualitative spatial reasoning and in geographical information systems
(GIS). Some references to work in this area can be found in section 1.2 below.
These systems can be used as foundations for formal ontologies for geographic,



and more generally, spatial, entities. That is, we can use formalizations of re-
gions and their relationships to construct formal descriptions of objects in the
geographic world.

This paper does not describe further formal schemes of spatial relations,
although the technique it introduces can be used to do this. Instead it shows
how some of the existing schemes can be derived in a uniform way from the
concepts of part and complement alone. The central idea is that the relationship
of a region, A, to a region, B, can be measured by a triple of values:

( A is part of B, A is part of the complement of B, B is part of A ).

The Region Connection Calculus (RCC) [CBT97,Ste00a] provides an axiomati-
zation of regions, and taking A and B to be regions in this sense and interpreting
part-of and complement as in RCC, this triple gives us three Boolean values. For
example, ( true, false, true ) in the case that A and B are equal. The classifi-
cation arising from the different triples of Boolean values is an extension to the
usual RCC5 system in that empty regions are permitted. This is described in
detail in section 2 below.

The significance of the new approach, based on the triple of values, is that
it can easily be used to provide systems of spatial relations in contexts other
than the crisp regions axiomatized in RCC. Examples of such contexts include
vague regions, regions varying over time, regions which are both vague and vary
over time, coarse regions and so on. Different systems of spatial relations arise
by taking different notions of part and complement. The main message of the
paper is thus:

In order to construct a system of spatial relations for a particular
kind of region, it is only necessary to provide appropriate notions
of part and complement for that kind of region.

The part-of relation need not be Boolean valued, and cases where it is three-
valued and six-valued appear in the paper. The first three-valued example ap-
pears in section 3 below, which shows how RCCS8 fits into our framework. Sec-
tions 4 and 5 apply the framework to vague regions. Definitions of part for vague
regions are presented in section 4 and the systems of spatial relations which result
are discussed in section 5.

1.2 Previous Work on Spatial Relations

There are two principal families of spatial relations. These are the ‘intersection
models’ developed by Egenhofer et al., and the schemes based on the Region
Connection Calculus developed by Cohn et al. In each case there are two basic
schemes, one of which subsumes the other.

Given spatial regions A and B, with interiors A°, B°, and boundaries 0 A,
OB respectively, the 4-intersection model [EF91] measures how A relates to B
by noting which of the intersections in the sequence (0A N JB, A° N B°, 0AN



B°, A° N dB) are empty and which are non-empty. The 9-intersection model,
introduced in [EH91], is an extension of this which uses intersections involving
complements of regions as well as interiors and boundaries.

The two schemes based on the Region-Connection Calculus are known as
RCC5 and RCCS8, as they distinguish five and eight relationships respectively.
Unlike the 4- and 9-intersection models, which take regions to be sets of points
with topological structure, the RCC schemes are based on an axiomatization of
regions as primitives, not constructed from points. Descriptions of RCC5 and
RCCS8, with references to the papers where they first appeared, can be found
in [CB197].

These schemes have been extended in various ways to allow for more sophisti-
cated distinctions in how regions relate to each other. Finer distinctions between
relationships of regions than are provided by the 4-intersection model can be ob-
tained by counting the number of connected components in the intersection of
A with B, and in certain other regions determined by A and B. The investiga-
tion of this use of connected components is due to Galton [Gal98]. Another way
of extending the 4-intersection model, which provides for still finer distinctions
than in Galton’s technique, is described in [EF95]. The RCC schemes have been
extended to systems such as RCC15 and RCC23 [CB*97], which take account
of the convex hulls of the regions involved.

Diintsch et al. [DWMO01] have shown how an analysis of RCC5 and RCC8
from the viewpoint of relation algebras leads to extensions which they call RCC7
and RCC10. These include, for example, making distinctions between regions
being disjoint with their union being the whole space, and disjointness without
the union being the whole space.

Although many researchers have assumed that reasoning with systems of
qualitative relations would be related to how humans actually reason, there have
been relatively few empirical studies of this issue. The cognitive adequacy of sets
of spatial relations has been investigated by Renz and others in [RRK00,KRR97].
Other work by Renz and Nebel addresses the efficiency of reasoning with spatial
relations [RN98], and Renz’ recent book [Ren02] discusses this as well as other
related work.

Another direction for extension is to vague regions. Two approaches based
on the 9-intersection model, are the work of Clementini and Di Felice [CF97]
on regions with ‘broad boundaries’, and the work of Zhan [Zha98] using fuzzy
regions. The extension of the RCC schemes to accommodate vague regions has
been addressed by Lehmann and Cohn [LC94], and by Cohn and Gotts [CG96].

2 RCC5 and its extension to permit empty regions

2.1 The RCC5 Scheme

If A and B are regions satisfying the axioms of the Region-Connection calculus,
the relationship of A to B can be classified as one of the following possibilities.

— A is disjoint from B.



— A and B overlap but neither is a part of the other.
— Ais inside B, i.e. A is a proper part of B.

— A contains B, i.e. B is a proper part of A.

— A and B are equal.

These five cases form a jointly exhaustive and pairwise disjoint (JEPD) set of
relations. Thus, for any given regions A and B, exactly one of the five cases holds.
The RCCS5 relationship between A and B can be defined using only the part-of
relation, <, and the complement operation, —. Consider the triple of Boolean
values

(A<B, A<-B, B<A).

Knowing these three Boolean values allows us to determine the relationship
between A and B, as shown in table 1. The first five lines of the table give the
usual RCC5 possibilities.

2.2 Extended version of RCC5

A triple of Boolean values gives eight cases in total, but RCC5 only distinguishes
five cases. The discrepancy is due to the assumption in the RCC theory that
regions must be non-empty. This insistence that regions be non-empty does
seem to be widely accepted in work on qualitative spatial reasoning. One reason
for this position has been advanced by Bennett [Ben95, section 3.5].

“If null-regions are allowed, they have properties which may seem counter-
intuitive (for example the null region is both part of and disconnected
from any other region) and many useful and apparently sound inferences
may not hold if it is allowed that one of the regions involved may be null.”

However, it is easy to find practical situations in which a query to a spatial
database might be expected to return the empty region. For example one might
want to select part of a region A having some property, where in fact the property
is not satisfied anywhere in A. Thus are certainly pragmatic reasons for allowing
the empty region. However, there are certainly situations where the empty region
does need to be treated differently from other regions. What is being proposed
here is not that the empty region can be handled in the same way as any other
region, but that it is not appropriate to exclude it to the extent which sometimes
appears to be thought necessary.

The objection that allowing the empty region causes problems, because, for
example, it is both part of and disconnected from any other region, can be
overcome. It is true that if we keep the RCC5 scheme and allow the empty
region, we cannot avoid losing the mutually exclusive property. The solution
to this difficulty is not to proscribe the empty region, but to extend the five
cases distinguished by RCC5. This extension is that set out in table 1, and will
be referred to as RCC5". The relationship between two non-empty regions in
RCC51 is exactly the same as in the RCC5 case.



A<BI[A<-B|B<A
) | false | true | false
) | false | false | false
)

A and B are disjoint and non-empty DC(A

A and B share a non-empty proper part PO (A,
A is a non-empty proper part of B PP (A

A has B as a non-empty proper part PPi (A,

A and B are equal and non-empty EQ (A4,

A and B are equal and empty QEQ (A, B)| true | true | true

A is the empty proper part of B @PP (A, B)| true | true | false

B is the empty proper part of A @PPi(A, B)| false | true | true

true false | false
false | false true
) | true | false | true

Table 1. Extended RCC5 using a two-valued part-of relation

3 An extended version of RCCS8

The basic scheme (A < B, A < =B, B < A) can be applied to spatial regions, as
in its application to RCC5, but can be used, more generally, for arbitrary sets
A and B, since no topological structure is assumed on A and B. To deal with
RCC8 we need a more elaborate notion of part. Instead of the statement ‘A is a
part of B’ being either true or false, we allow it to take one of three truth values.
To do this we have to assume regions have interiors. Denoting the interior of A
by A°, the three-valued relation part-of relation is defined:

T if A<B°
A<B={M if AZB° and A<B
F if AZB

Assuming regions to be regular closed, we define the complement, =B, to be
the set-theoretic complement of the interior, so =B = (B°)’. Using the fact that
(—B)° = B’, we get the following

T if A<B
A<-B={M if ALB and A< (B°)
F if A< (B

The triple of values (A < B, A < =B, B < A) allows for 3% = 27 possibilities, but
only 11 of these can actually occur. For example, it is impossible that A B =T
and A g =B = M. For this would imply A < B° and A < (B°)’, so that A is the
empty region. But then we have to have A  -B = T contrary to the original
assumption. A detailed analysis of the various cases reveals that only 11 cases
occur, and these correspond exactly to the usual RCC8 cases together with three
extra cases. These three cases allow that both A and B are empty (FEQ), that
A is the empty proper part of B (@PP), and that B is the empty proper part of
A (@PPi) The 11 cases are set out in table 2.

4 Vague Regions

We have seen in sections 2 and 3 how the RCC5 and RCC8 relations between
two crisp regions can be expressed using appropriate concepts of part and com-



DC [ EC [ PO [ TPP [TPPi|NTPP|NTPPI| EQ |GEQ|@PP [GPPi
AXB| F | F | F | M| F | T | F [T |T|[T]/F
A-B| T|M | F | F|F | F | F | F|T|T/|T
BgA| F | F|F|F|IM|F| T |T|T]|F|T

Table 2. Extended RCCS8 using a three-valued part-of relation

plement. This section investigates how these concepts can be extended to vague
regions. In particular, two possible notions of part for vague regions are intro-
duced, one taking values in a set of three truth values, and the other being a
six-valued relation. This six-valued relation is used in section 5 to provide a
simple way of extending RCC5™ to vague regions.

4.1 A Semantic Approach to Vague Regions

The application of the triple-based classification scheme to vague regions can
be carried out without any commitment to a specific definition of vague region.
All that is assumed is that associated to the set of vague regions RY is a set
of crisp regions R, and that the purpose of a vague region is to describe a set
of crisp regions. Thus each vague region v, has an associated set of possible
crispings, [v]. The crisp regions R need to support a partial order, <, and a
complement operation — : R — R, and there are greatest and least elements T
and L respectively with respect to <. The complement operation is assumed to
satisfy the equation ——r = r, and to be order reversing in the sense that r < s
implies —s < —r. These assumptions are easily seen to be satisfied in the case
that R — {L} is a set of regions satisfying the axioms of the region-connection
calculus, but there is no need to assume that R has this particular form.

In making statements about vague regions, we often need to say that certain
things hold under all crispings of a regions, or under some crisping. Thus we
make use of logical symbols [J, and ¢,, with the following definitions, where
(v) is any formula containing the free variable v.

Oupv) =Va € [l p@)  and  Oup(v) = 3z € o] (@)

This approach in which a vague region v € RV has an associated semantic
interpretation [v] C R allows us to deal simultaneously with several different
proposal for vague regions. For example, taking R — {L} to be a model of the
region-connection calculus, and defining RV = {(r,s) € Rx R | r < s} we
have the ‘egg-yolk’ regions described in [LC94,CG96]. In this case one possible
semantics is [(r,s)] = {# € R | r < x < s}. However, some notions of vague,
or uncertain, region for which this semantics is not suitable, are easily accom-
modated within the framework. For instance, the boundaries of a parcel of land
may be disputed between two parties. In this case the disputed land is a vague
region, v, where [[v] = {ry, 72} is a set consisting of the two interpretations held
by the two sides to the dispute. Although an egg-yolk region, (r,s), can easily



be constructed, by taking r = 71 N7, and s = r; U ra, the above semantics for
(r, s) is inappropriate in this context.

Cohn and Gotts [CG96, p178] emphasize that they do not associate any
particular permitted set of crispings with an egg-yolk region: “We do not and
need not specify ezactly where the limits of acceptability lie”. In the present
paper it is assumed that a set of possible crispings is given, but it would be
possible to extend the framework by replacing the set of crispings by a fuzzy
set of some kind. This would allow some potential crispings to be unequivocally
crispings whereas others would have some degree of doubt associated with them.

4.2 Part-of Relations for Vague Regions

A simple three-valued part of relation can be defined for vague regions. Using
the notation <3 for this relation, the three possible values of u <3 v correspond
to the situations that u is part of v no matter how either is crisped, that u is a
part of v under some crispings but not others, and that u is never a part of v
under any crisping. The relation is defined as follows.

T (true) if O,0,u<w
u<gv=4¢ M (maybe) if ¢,0,u<vand ¢0,0,uLv
F (false) if O,0,ugwv

A more sophisticated measure of the extent to which u is a part of v uses the
formulee O,0,u < v and ¢,0,u < v. These express the statement that for
every crisping of u, it is possible to find a crisping of v such that u < v, and the
statement that there is some crisping of u such that however v is crisped, u < v.
These formule are related to two others appearing in the definition of <3 by
the lattice of implications shown in figure 1. We can then measure the extent to

Qulvu < v

N

Ou0vu <o Ouldvu <

O, 00u <w

Fig. 1. Implications between facts about crispings

which u is a part of v by noting which of these four formula are true and which
false. Because of the implications between the four, only six subsets of these
are possible. The six subsets correspond to the upper sets in the lattice of four
formulae above. This leads to the lattice of six mutually exclusive and exhaustive



possibilities in figure 2. Note that for any formula P(z), -0, P(z) = {,~P(z)
and =0, P(z) = O,—P(z). Thus, for example, in the diagram O,0,u £ v is
equivalent to =Q,O,u < v.

O,00u <w

Oudyu < v and
O,0yu < v and

OuOvu ﬁ v \
O, 0yu < v and Ouyu < v and
Du()vu ﬁ v OuDvu ﬁ v

AN

QuOvu < v and
O,0»u £ v and
Ouvu L v

O.00u Lo

Fig. 2. Lattice of the six truth values

It is convenient to have a notation for the six truth values, and the diagram
below shows the one used here. Each of the six values corresponds to a subset
of the lattice of four values in figure 1, so Top corresponds to the top element
of the four holding; Left, and Right are the left and right elements respectively;
Both is both left and right; and All and None are all the elements and none of
them respectively.

The notation < will be used for the six-valued part-of relation, so the expres-
sion u < v will take one of the six values in figure 3.

5 Relating Vague Regions

To use the scheme
( A is part of B, A is part of the complement of B, B is part of A )

as a way of classifying relationships between vague regions, we can use either the
three-valued relation, <j, or the six-valued relation, <, as the notion of part. In
either case the appropriate notion of complement is given by defining —v to be
the vague region with semantics [-w] = {-z € R |z € [v]}.

If we classify the relationship of u to v by the triple (u <3 v,u <3 —v,v <3 u),
there are 27 cases. All of the 27 cases can arise, and in the majority of cases
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Fig. 3. Notation for the six truth values

specific inferences may be drawn about which RCC5™ relationships hold under
possible crispings. For example, the triple (M, F, F), corresponds to the fact that
under some crispings u and v overlap, and under other crispings u is a proper
part of v, but no other RCC5% relationships are possible under any crispings.
Not all the 27 triples yield information as specific as this. In cases where two or
three of the components of the triple take value M, we cannot be certain exactly
which RCC5™ relationships are possible.

If we classify the relationship of u to v by the triple (v < v,u < —v,v X u),
there are 62 = 216 potential cases. Some of these 216 cases are impossible without
any further assumptions about the nature of vague regions or their crispings;
other restrictions arise once additional assumptions are made. In the remainder
of this section these restrictions are analysed. The discussion is divided into two
parts; first we examine restrictions that hold under any notion of crisping, and
secondly the restrictions which arise from assuming that the set of all crispings
is closed under intersections.

5.1 General Restrictions

We first consider the restrictions on the 216 potential values of a triple (u <
v,u % —w,v < u) which do not make assumptions about the structure of [u]
and [v].

Lemma 1 If O0,0,u <v and O0,0,v < u and ¢,0,v < u then O,0,v < u.

Proof From O,0,u < v and 0,0,v < wu, it follows that O,0,v = wu. This
means that every crisping of v is also a crisping of w, i.e. that [v] C [u].



From O,0,u < v and ¢,0,v < u, it follows that ¢,0,v = u. This means
that some crisping of v is equal to every crisping of u, so u must be a crisp
region. But, since [v] C [u], we deduce that both u and v are crisp regions
with the same unique crisping. In particular, 0,0,v < u.

As an immediate consequence we have:

Lemma 2 If the relationship between regions u and v is (a,b,c), then neither
of the following combinations for a and c is possible.

1. a = All and ¢ = Both,
2. a = Both and ¢ = All.

It is convenient to arrange the remaining restrictions by fixing the middle
component u < —v and considering what restrictions this places on the other
two components. The results are given in the following lemmas, each dealing
with one possible value of the middle component for which restrictions exist.

Lemma 3 If u < —wv = Right, then {,0,v < u is impossible, and hence v < u
cannot be Right or Both or All.

Proof As ¢,0,u < —w, some crisping of u is outside every crisping of v. Now
if 0,0,v < u, then also some crisping of v is inside every crisping of wu.
This can only be if v admits the empty region as a cripsing. But this would
contradict our assumption that {,0,u £ —w.

Lemma 4 If u < —w = Left, then {,0,u < v is impossible, and hence u < v
cannot be Right or Both or All.

Proof Similar to Lemma 3.

Lemma 5 If u X —wv = All, then

1. u K v # Both and u < v # Left,
2. v u# Both and v X u # Left.

Proof The two parts are similar, so we only give the details of the first.
If O,0,u < v then every crisping of u is inside some crisping of v, but since
O0.,0,u < —w, every crisping of u is outside every crisping of v. This can
happen only if [u] = @, or if Ju] = {L}. In either case O0,0,u < v holds.
Thus whenever O,0,u < v, we also have O,[0,u < v. This prevents u < v
taking either of the values Left or Both.

Lemma 6 If u < —v = Both then u g v # All, and v < u # All.

Proof If u < v = All, then O,0,u < v so every crisping of u is outside every
crisping of v. But, 0, 0,u < —w so every crisping of u is outside some crisping
of v. This can happen only if Ju] = @, or if [u] = {L}. In either case
O0,0,u < —wv holds, which contradicts our assumption that © < —v = Both.
A similar argument shows that v < u # All.

10



5.2 Restrictions for N-Closed Crispings

One possible semantics for egg-yolk regions is that the set of crispings is any re-
gion containing the yolk and contained within the egg. This provides an example
where [u] has the property that the intersection of any two crispings is again a
crisping, a situation we shall refer to as N-closed. Another example could be the
crisping of the boundary of a country C in the case that additional territories 1
and ty are disputed between other countries A and B but where C' has an undis-
puted core territory c. In this case the set of crispings of the country C might be
{e,cUt1,cUty,cUt; Uta}. In this example the set of crispings is N-closed, but
is not dense, in the sense that any region intermediate between two crispings is
itself a crisping. This denseness property would be possessed by the crispings of
egg-yolk regions under the semantics just mentioned.

In this subsection we examine the restrictions which are placed upon the
triple (u < v,u % —w,v < u) by the assumption that [u] and [v] are N-closed.
We shall see that these restrictions, in conjunction with ones of the previous
subsection, serve to reduce the potential 216 values to 85.

Lemma 7 If [u] is N-closed and u X ~v = All then u X v # Top and v X u #
Top.

Proof If u < v = Top then some crisping of u is inside some crisping of v,
but since ¢,0,u < v, some crisping of u is outside every crisping of v. The
same argument as in lemma 9 leads to a contradiction. This argument can
also be used to show that u < v = Left is impossible, but this case has
already been excluded without the assumption of N-closure in lemma 5. The
demonstration that v < u # Top is similar.

Lemma 8 If [u] is N-closed and u < ~v = Top, then neither u < v nor v 5 u
can take any value in the set {Right, Both, All}.

Proof If u < v takes one of the values Right, Both, or All, then ¢, 0,u < v. Thus
some crisping of u is inside every crisping of v. But since u < —v = Top,
we have ¢, Q,u < —w, i.e. some crisping of u is outside some crisping of v.
So as [u] is N-closed, L € [u], but then ¢,0,u < —v which contradicts
u < —v = Top.
The restriction on the possible values of v < u follows similarly.

Lemma 9 If [u] is N-closed and u < —v = Both, then neither u X v nor v % u
can take a value in the set {Left, Top}.

Proof If $,0,u < v some crisping of u is outside some crisping of v, but since
Oud,u < —w, some crisping of u is outside every crisping of v. Thus u
contains two disjoint crispings. So, as Ju] is N-closed, L € [u]. This implies
that ¢,0,u < v, so the cases u < v = Top and u < v = Left are impossible.
Similarly, v < u & {Left, Top}.

Lemma 10 If [v] is N-closed and u < —v = Left then v X u & {Top, Left}.

11



Proof If v < u € {Top, Left} then ¢, 0yv < u, but as u g ~v = Left, we have
O, Qvu < —w. Thus some crisping of v is inside some crisping of u while every
crisping of u is outside some crisping of v. As [v] is N-closed, L € [v] and
so v < u & {Top, Left}.

Lemma 11 If [u] is N-closed and u < —v = Right then u < v & { Top, Left}.
Proof Similar to lemma 10.

From these lemmas the 216 potential cases reduce to 85, as summarized in
the following theorem.

Theorem 12 If [u] and [v] are N-closed, then the value of the triple (u <
v, u X w, v u) will either be one of the 51 cases permitted by the following
constraints,

(ENS U= vXUE
, None, both, Kight ght one, lop, Left
All; N Both, Righ Righ N Top, Lef
{None, Top, Left} Left  |{All, None, Both, Right}

{None, Top, Right} Top {None, Top, Right}
{None, Both, Left} Both {None, Both, Left}
{None, All, Right} All {None, All, Right}

or one of the 34 cases where u < —v = None but where either (a) u < v # All or
v < u # Both or (b) u < v # Both or v 5 u # All.

The theorem shows that 216 — 85 = 131 cases can never arise. To show that all
the 85 cases can actually arise is a separate task, and this is accomplished in the
following section by producing explicit instances of all the cases for a particular
notion of vague region.

6 Special Case of Egg-Yolk Regions

The classification schema using the six-valued part of relation can be applied to
the specific case of egg-yolk regions. It is not necessary to assume we are working
with pairs of regions which satisfy the RCC axioms, the analysis can be carried
out under the assumption that we have a set of crisp regions R, including the
empty region, which form a Boolean algebra. In this situation, the set of egg-yolk
regions is given by RV = {(r,s) € R x R | r < s}. For a region v = (r,s) € RV
the notation v will be used to denote r, and v to denote s.

Even if R is based on a set of RCC regions, the elements of RV are more
general than the egg-yolks studied in [LC94,CG96], since for a region, v, it is
permitted that v = v and that v or ¥ may be empty. This greater generality
is significant, since our analysis includes for example relations between a crisp
and a non-crisp region and relations between regions where the empty crisping
is permitted. Both these cases are excluded by the restrictions in [CG96].

12



If the semantics of egg-yolk regions is given by [v] = { € R | v < z < T},
the four formulae used to determine the value of u < v can all be expressed in
terms of u, v, v, and u as folows.

O,0,u <wv iff

u
O,0.,u<wv iff w

<w
<

6.1 Realizing 85 values of (u 5 v,u X —v,v < u)

The aim of this subsection is to show that all the 85 cases which are potential
values of the triple (u < v,u < —w,v < u) do actually arise for some notion
of vague region. It is not necessary to have any kind of spatial structure in the
‘regions’ in order to do this, simple sets are adequate. We start with the set
{1,2,3,4,5}, and work with pairs u = (u,w) where u C w C {1,2,3,4,5}. The
semantics is given by [u] = {z C {1,2,3,4,5} | u C = C u}. The tables 3, 4, 6, 5,
and table 7 detail examples of u and v which cover all the 85 values. It is
interesting to note that all but one of these values, (Top, None, Top) could be
found using only a four element set.

tKvutwrvkulu uwlv v AR TIE S R VR TA R T u v v

All Al Al 1y 310 O Both Both Both|{} {1} [{} {1}
All Al Right| {} {}|{} {1} Both Both Right| {} {1} |{} {1,2}
All Al None|{} {} {1} {1} Both Both None|{} {1} [{2} {1,2}
Right  All Al 1 {} {14 {3 O Right Both Both|{} {1,2}|{} {1}
None All Al {13 {134 {3 {3 None Both Both {1} {1,2}| {} {2}
Right All  Right| {} {1}|{} {2} Right Both Right| {} {1,2}|{} {2,3}
Right All None| {} {1}|{2} {2} Right Both None|{} {1,2}|{3} {1,3}
None All Right|{1} {1} {} {2} None Both Right|{1} {1,2}| {} {2,3}
None Al None|{1} {1}[{2} {2} None Both None|{1} {1,2}|{3} {2,3}

Table 3. Realizations of possible relations between egg-yolk pairs when u < —v is Both
or All
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uKvuIwWuvKUu|l u u v v
Left Top Left | {1} {1,2} | {2} {1,2}
Left Top Top | {1} {1,2} | {2} {1,2,3}
Left Top None| {1} {1,2} |{2,3} {1,2,3}
Top Top Left | {1} {1,2,3}| {2} {1,2}
None Top Left [{1,2}{1,2,3}] {3} {1,3}
Top Top Top | {1} {1,2,3} {3} {1,3,4}
Top Top None| {1} {1,2,3}|{3,4} {1,3,4}
None Top Top [{1,2} {1,2,3}| {3} {2,3,4}
None Top None|{1,2} {1,2,3}|{3,4} {1,3,4}

Table 4. Realizations of possible relations between egg-yolk pairs when u  —v = Top

uIvTUIwUSUl u u v v
Left Left Al | {1} {1} |{} {1}
Left Left Right| {1} {1} |{} {1,2}
Left Left None| {1} {1} [{2} {1,2}
Top Left Al | {1} {1,2} [{} {1}
Left Left Both| {1} {1,2} |{} {1,2}
None Left All [{1,2} {1,2} |{} {1}
Top Left Right| {1} {1,2} |{} {1,3}
Top Left None| {1} {1,2} |{3} {1,3}
Top Left Both| {1} {1,2,3}|{} {1,2}
None Left Right|{1,2} {1,2} |{} {2,3}
None Left Nonel{1,2} {1,2} ({3} {1,3}
None Left Both [{1,2} {1,2,3}| {} {2,3}

Table 5. Realizations of possible relations between egg-yolk pairs when u < —v = Left

uKvuX WUl u u v v
All  Right Left |{} {1} | {1} {1}
All Right Top |{} {1} | {1} {1,2}
All  Right None|{} {1} ({1,2} {1,2}

Right Right Left | {} {1,2}| {1} {1}
Both Right Left | {} {1,2}| {1} {1,2}

None Right Left [{1} {1,2}| {2} {2}
Both Right Top | {} {1,2}| {1} {1,2,3}

Right Right Top | {} {1,2}| {2} {2,3}

Right Right None|{} {1,2}|{2,3} {2,3}
Both Right None|{} {1,2}|{2,3} {1,2,3}

None Right Top |{1} {1,2}| {2} {2,3}

None Right None {1} {1,2}|{2,3} {2,3}

Table 6. Realizations of possible relations between egg-yolk pairs when v < —v = Right
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UIVUIWUIU

u u

v v

All
All
All
Right
Both
All
None
Left
Both
All
Right
Right
Both
Right
Right
Both
Left
None
None
Left
Top
Left
None
None
Left
Both
Right
Left
None
Top
Top
Top
Top
Top

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

All
Right
None

All
Both

Left

All

All
Right

Top
Right
None
None
Both

Left

Left
Right
Right
None
None

All
Both
Both

Left

Left

Top

Top

Top

Top
Right
None
Both
Left

Top

{1y {y
{13 {1
{1+ {1}
{13 {12}
{1 {12}
{1y {12}
{1,2} {1,2}
{1,2} {1,2}
{1 {12}
{13 {12}
{1 {12}
{1 {12}
{13 {12}
{13 {1,2,3}
{13 {1,2,3}
{13 {1,2,3}
{1,2} {1,2}
{1,2} {1,2}
{1,2} {1,2}
{12} {1,2}
{1,2} {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3}
{13 {1,2,3}
{13 {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3}
{1,2} {1,2,3,4}
{1,2} {1,2,3,4}
{1,2} {1,2,3,4}

{1+ {1}
{1y {12}
{1,2} {1,2}
{1+ {1}
{1y {12}
{1,2} {1,2}
{1+ {1}
{1 {12}
{13 {123}
{1,2} {1,2,3}
{1y {13}
{13} {1,3}
{1,3} {1,2,3}
{1y {12}
{1,2} {1,2}
{1,2} {1,2,3}
{13 {1,2,3}
{2} {23}
{2,3} {2,3}
{2,3} {1,2,3}
{1 {12}
{1r {1,2,3}
{2p {23}
2,3} {2,3}
2,3} {1,2,3}
{1,2} {1,2,3,4}
{1,3} {1,3,4}
{2,3} {1,2,3,4}
{2,3} {2,3,4}
{13 {1,2,4}
{2,4} {1,2,4}
{13 {1,2,3}
{2,3} {1,2,3}
{2,4} {1,2,4,5}

Table 7. Realizations of possible relations between egg-yolk pairs when v < —v = None
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6.2 Relationship to the Cohn and Gotts Egg-Yolk Classification

Cohn and Gotts [CG96] document 46 possible relations between egg-yolks pairs.
Their classification is based on the relative positions of the eggs and yolks and,
unlike the present paper, does not derive the classification from considerations
of the semantics of vague regions. However the 85 possible values of (u < v,u <
—v,v < —wu) identified in our analysis do include exactly the 46 cases identified by
Cohn and Gotts. Our 85 cases reduce to 46 if it is assumed that empty crispings
are not permitted, and that the yolk is a proper subset of the egg.

In [CG96] the relationship of u to v is determined by the quadruple of RCC5
relationships between the pairs (u,v), (u,?), (W,v), and (u,7). We have shown
earlier that RCC5 can be derived from concepts of part and complement alone.
If this approach is used we see that the Cohn and Gotts classification arises from
four triples of values, that is each triple to determine the RCC5 classification
for one element of their quadruple. The resulting twelve boolean values can be
arranged in a table, and this establishes the precise correspondence between our
six-valued approach and that of [CG96].

u<v]u<-wlv<u| RCC5*(u,v)
u<v|u<-v|v<u| RCC5"(u,v)
u<v|u<-wlv<u| RCC5'(u,v)
u<v|u<-v|v<u| RCC5"(u,?v)
(uv,u<gw,v=u)

The four values in each column determine one of the three components of our
approach to relations between vague regions. However the same twelve values,
read as rows provide exactly the four components needed to determine the rela-
tionship between two vague regions in Cohn and Gotts approach.

7 Conclusions and Further Work

This paper has introduced a new and versatile technique for producing systems
of spatial relations. The technique is based only on the fundamental concepts of
part and of complement, and can be used in constructing formal ontologies for
spatial regions in qualitative spatial reasoning and in geographical information
systems.

The viability of the technique has been demonstrated by showing how it leads
to

1. a classification extending RCC5 which allows regions to be empty,

2. a similar extension to RCCS,

3. a classification for vague regions, which includes as a special case, the clas-
sification of relationships between egg-yolk regions.
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The derivation of the classification for vague regions has led to the identification
of a six-valued part of relation as being appropriate for vague regions. This six-
valued relation appears to be of some independent interest, and contributes to
our understanding of the mereology of vague regions.

There are several directions for further work based on the ideas in this pa-
per. A particularly promising area for further work would be to consider relations
between abstract graphs in the context of work on discrete representations of
space [Ste00b]. A data model for graphs in spatial databases has been inves-
tigated by Erwig and Giiting [EG94], and a discussion of notions of part and
complement for graphs appears in work by Stell and Worboys [SW97]. As there
is more than one notion of complement for graphs, some work is needed to in-
vestigate which of these is most appropriate to produce a scheme for relations
between graphs. The ideas on vague regions in this paper could then be ap-
plied to handle vague graphs using one of the notions of vague graphs suggested
in [Ste99].
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