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Abstract. For a long time topological predicates between spatial ob-
jects have been a main area of research on spatial data handling, reason-
ing, and query languages. But these predicates still suffer from two main
restrictions: first, they are only applicable to simplified abstractions of
spatial objects like single points, continuous lines, and simple regions,
as they occur in systems like current geographical information systems
and spatial database systems. Since these abstractions are usually not
sufficient to cope with the complexity of geographic reality, their gen-
eralization is needed which especially has influence on the nature and
definition of their topological relationships. This paper gives a formal
definition of complex crisp regions, which may consist of several compo-
nents and which may have holes, and it especially shows how topolog-
ical predicates can be defined on them. Second, topological predicates
so far only operate on crisp but not on fuzzy spatial objects which oc-
cur frequently in geographical reality. Based on complex crisp regions,
this paper gives a definition of their fuzzy counterparts and shows how
topological predicates can be defined on them.

1 Introduction

Representing, storing, quering, and manipulating spatial information is impor-
tant for many non-standard database applications. Specialized systems like ge-
ographical information systems (GIS), spatial database systems, and image
database systems to some extent provide the needed technology to support these
applications. For these systems the development of formal models for spatial ob-
jects and for topological relationships between these objects is a topic of great
importance and interest, since these models exert a great influence on the effi-
ciency of spatial systems and on the expressiveness of spatial query languages.
In recent years, significant achievements have been made on the design of
topological predicates for spatial objects with precisely defined boundaries, so-
called crisp spatial objects. However, the structure of spatial objects upon which
current topological predicates operate is restricted and not sufficient to cope with
the complexity of geographic reality. For spatial regions this means that at most
simple regions and topological predicates between them can be found in current
GISs and spatial database systems. Only very few approaches exist for more



complexly structured regions. General topological predicates on complex regions
possibly consisting of several components and possibly having holes have so far
not been designed. But in real applications complex regions are by far more
common than simple ones. It is one of the goals of this paper to give a definition
of complex crisp regions and to provide topological predicates for them.

Additionally, the current mapping of spatial phenomena, of the real world to
exclusively crisp spatial objects turns out to be an insufficient abstraction for
many spatial applications, because the feature of spatial vagueness or spatial
fuzziness is inherent to many geographic data [2]. Spatial fuzziness captures the
property of many spatial objects in reality which do not have sharp boundaries or
whose boundaries cannot be precisely determined. Examples are natural, social,
or cultural phenomena like land features with continuously changing properties
(such as population density, soil quality, vegetation, pollution, temperature, air
pressure), oceans, deserts, English speaking areas, or mountains and valleys. We
will designate this kind of entities as fuzzy spatial objects.

The definition of topological predicates on fuzzy spatial objects in general
and fuzzy regions in particular is currently an open problem. For two fuzzy
regions A and B we would like to be able to pose and answer queries like

Do regions A and B overlap a little bit?

Determine all pairs of regions that nearly completely overlap.
Does region A somewhat contain region B?

Which regions lie quite inside B?

Section 2 discusses related work. In Section 3, we present a formal model of
complex crisp and fuzzy regions. For fuzzy regions we use a representation that
reduces these objects to collections of so-called crisp a-level regions. This en-
ables us to transfer our whole formal framework (and later all the well known
implementation methods available) for crisp regions to fuzzy regions. In Sec-
tion 4, based on well known topological relationships for simple crisp regions, in a
bottom-up strategy we first define topological predicates for simple crisp regions
with holes and afterwards for complex crisp regions with additional multiple
components. Section 5 presents an approach for designing topological predicates
for fuzzy regions. Finally, Section 6 draws some conclusions.

2 Related Work

This section summarizes some related work on the definition and representation
of crisp and fuzzy regions (Section 2.1) and on the design and definition of binary
topological predicates between regions (Section 2.2).

2.1 Crisp and Fuzzy Regions

In the past, a number of data models and query languages for crisp spatial
data have been proposed with the aim of formulating and processing spatial
queries in databases (see [12] for a survey). Spatial data types like point, line,



or region, that are the central concept of these approaches, provide fundamental
abstractions for modeling the structure of geometric entities, their relationships,
properties, and operations. However, data models expressing spatial vagueness
are rare. Fzact models [4,8,11] transfer type systems for spatial objects with
sharp boundaries to objects with unclear boundaries. The approaches in [4,11]
extend the indeterminate boundary of a region into a boundary zone, called broad
boundary, which is situated around the region. The concept of vague regions [8]
generalizes these approaches in the sense that such a region can be a pair of
arbitrarily located, disjoint crisp regions. The kernel region describes the area
which definitely belongs to the vague region. The boundary region describes the
area for which it is not sure whether it or parts of it belong to the vague region or
not. Models based on rough sets [16] work with lower and upper approximations
of spatial objects. Models based on fuzzy sets [1,13,14] model the vagueness
resulting from the imprecision of the meaning of a concept. A concept like ‘ocean’
or ‘Southern England’ cannot be modeled with crisp but with fuzzy means. Fuzzy
spatial data types defined on an abstract (Euclidean space) and on a discrete (grid
partition) geometric basis are introduced in [13,14].

2.2 Crisp and Fuzzy Topological Predicates

Our definitions are based on the so-called 9-intersection model [6] from which a
complete collection of mutually exclusive topological relationships can be derived
for each combination of spatial types. The model is based on the nine possible
intersections of boundary (0A), interior (A°), and exterior (A~) of a spatial
object A with the corresponding components of another object. Each intersection
is tested for the topologically invariant criteria of emptiness and non-emptiness.
2% = 512 different configurations are possible from which only a certain subset

makes sense depending on the combination of spatial objects just considered.

A restriction of the 9-intersection model with respect to regions is that regions
must be homeomorphic to the closed disc, that is, they must be connected and
are not allowed to have holes. These regions are usually called simple regions. For
two simple regions, eight meaningful configurations have been identified which
lead to the eight predicates of the set Ty, = {disjoint, meet, overlap, equal,
inside, contains, covers, and coveredBy}. Each predicate is uniquely determined
so that all predicates are mutually exclusive and complete with regard to the
topologically invariant criteria of emptiness and non-emptiness.

In this paper we aim at a formal definition of topological predicates for crisp
and fuzzy complex regions with multiple parts and possibly with holes. It is sur-
prising that topological predicates on crisp complex regions have so far not been
defined. In [3] the so-called TRCR (Topological Relationships for Composite Re-
gions) model only allows sets of disjoint simple regions without holes. In [7] only
topological relationships of simple regions with holes are considered. Topological
predicates on fuzzy spatial objects, let them be simple or complex, have so far
not been defined.



3 A Model for Crisp and Fuzzy Complex Regions

In this paper we only consider topological predicates that operate on regions.
Hence, in this section, we first clarify the structure and semantics of region
objects. We begin with an abstract model for very general crisp complex regions,
which results in a spatial data type region. Based on this specification, we define
a data type fregion representing a fuzzy region as a collection of crisp regions
with special properties. This representation is later used as operand of fuzzy
topological predicates.

3.1 Modeling Crisp Regions

Our definition of regions is based on point set theory and point set topology [9].
Regions are embedded into the two-dimensional Euclidean space IR? and are thus
point sets. Unfortunately, the use of pure point set theory for their definition
causes problems. If regions are modeled as arbitrary point sets, they can suffer
from undesired geometric anomalies. These degeneracies relate to isolated or
dangling line and point features as well as missing lines and points in the form
of cuts and punctures. A process called regularization [15] avoids these anomalies.

We briefly summarize some needed concepts from point set topology. Let X
be a set and T' C 2X. The pair (X, T) is called a topological space if the following
three axioms hold: (i) U,V € T=UNV €T, (ii)) S CT = UyesU € T, and
(ili) X € T, @ € T. T is called a topology for X. The elements of T are called
open sets and their complements in X are called closed sets. Several operations
identify certain parts of a set. Let S C X. The interior of S is defined as the
union of all open sets that are contained in S and is denoted by S°. The closure
of S is defined as the intersection of all closed sets that contain S and is denoted
by S. The exterior of S is the union of all open sets that are not contained in S,
that is, S~ := (X —5)°. The boundary of S is the intersection of the closure of S
and the closure of the complement of S, that is, S := SN X — S. Furthermore,
we have S = S§° U 88S.

In our case X := IR? holds. The concept of regularity defines a point set
S as regular closed if S = S°. We define a regularization function reg, which
associates a set S with its corresponding regular closed set as reg,(S) := S°. The
effect of the interior operation is to eliminate dangling points, dangling lines,
and boundary parts. The effect of the closure operation is to eliminate cuts and
punctures by appropriately supplementing points and to add the boundary. We
are now already able to give a general definition of a type for complex crisp
regions:

region = {R C IR? | R is bounded and regular closed}

In fact, this very “structureless” definition models complex crisp regions possi-
bly consisting of several components and possibly having holes. But since the
topological predicates of the 9-intersection model only work on simpler regions,
we have to take a more fine-grained and structured view of regions.



A simple region is a bounded, regular closed set homeomorphic (that is,
topologically equivalent) to a two-dimensional closed disc!. This, in particular,
means that a simple region has a connected interior, a connected boundary, and
a single connected exterior. Hence, it does not consist of several components,
and it does not have holes.

The concept of a hole is topologically not inferable since point set topology
does not distinguish between outer exterior and inner exteriors of a set. This
requires an explicit and constructive definition of a region containing holes and
a use of the topological predicates for simple regions. Let = : {1,...,k} —
{1,...,n},k,n € N,k < n, be a total, injective mapping, and let {Fq, ..., F,}
be a set of simple regions. The regular set F' = Fy — |J;_; Fy is called a simple
region with holes or a face, and Fi, ..., F, are called holes (Figure 1c) iff

(i) V1 <i < n: contains(Fo, F;) V (covers(Fy, F;) A |FonNF;| =1)
(i) V1 <i<j<n:disjoint(F;, F;) V (meet(F;, Fj) AN |F;NF;|=1)
(iii) A{m(1),... ,w(k)} C{1,...,n} : meet(Fy, Fr(1)) A
meet(Fr(1), Fr2)) N ==+ N meet(Frp—1y, Frry) N meet(Fr, Fo)
(iv) 39{71’(1), .,m(k)}C{1,...,n}: meet(F,r(l),F,r@)) A
meet(Fﬂ(g),Fﬂ(g)) A A meet(F,r(k,l),Fﬂ(k)) A ’meet(F,r(k),Fﬂ(l))

The first two conditions allow a hole within a face to touch the boundary of Fy
or of another hole in at most a single point. This is necessary in order to achieve
closure under the geometric operations union, intersection, and difference (see
also [10,12]). For example, subtracting a face A from a face B may lead to such
a hole in B. On the other hand, to allow two holes to have a partially common
border makes no sense because then adjacent holes could be merged to a single
hole by eliminating the common border (similarly for adjacency of a hole with
the boundary of Fj). The third condition prevents the formation of “open hole
chains” where any two subsequent holes meet and both the first and the last hole
touch Fy. The fourth condition prevents the formation of “closed hole chains”
within the face where any two subsequent holes meet and both the first and the
last hole meet. All four conditions together ensure uniqueness of representation,
that is, there are no two different interpretations of the point set describing a
face. Hence, a face is atomic and cannot be decomposed into two or more faces.
For example, the configuration shown in Figure la must be interpreted as two
faces with two holes and not as a single face with four holes.

Let F = Fy — U, F? be a simple region with holes Fi, ..., F;,. Then the
boundary and the interior of F are given as follows (Figures 1d and 1e):

(i) OF = U7, OF;
(i) F° = F§ — Ui, F.

Let {Fi, ...,F,} be a set of simple regions with holes, that is, faces. The
regular set F' = |J_, F; is called a (complez) region iff

! D(z, €) denotes a two-dimensional closed disc with center « and radius € iff D(x, €) =
{y € X |d(z,y) < €} where d is a metric on X.
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Fig. 1. Unique representation of a face (a), a complex region with five faces (b), a
simple region with two holes (c), its boundary (d), and its interior (e).

(i) VI<i<j<n:FNF; =9
(i) V1<i<j<n:0F;,NO0F; =@ Vv |0F;N0F}| is finite)

Figure 1b shows an example of a region with five faces. The definition requires
of a face to be disjoint to another face, or to meet another face in one or several
single boundary points, or to lie within a hole of another face and possibly share
one or several single boundary points with the boundary of the hole. Faces having
common connected boundary parts with other faces or holes are disallowed. The
argumentation is similar to that for the face definition.

Let F = JI, F; be a region with faces {F1, ..., F,}. Then the boundary of
F is given as OF = |J;_, OF;, and the interior of F is given as F° = JI_| FY =
F — OF.

3.2 Some Basic Concepts of Fuzzy Set Theory

Fuzzy set theory [17] is an extension and generalization of Boolean set theory.
Let X be a classical (crisp) set of objects. Membership in a classical subset A
of X can then be described by the characteristic function x4 : X — {0,1} such
that for all z € X holds x4(z) = 1if and only if x € A and x 4(z) = 0 otherwise.
This function can be generalized such that all elements of X are mapped to the
real interval [0,1] indicating the degree of membership of these elements in the
set in question. We call pz : X — [0,1] the membership function of A, and the
set A ={(z,p5(x)) |z € X} is called a fuzzy set in X. Elements z € X that do
(not) belong to A get the membership value  4(z) = 1 (0).

A [strict] a-cut or [strict] a-level set of a fuzzy set A for a specified value a
is the crisp set Ay [A%] ={r € X | pz(z) > [>]a A 0 < a <[<]1}. The strict
a-cut for & = 0 is called support of 4, i.e., supp(/i) = A§. For a fuzzy set A and
a,f € [0,1] we obtain X = Ag and a < § = A, D Ap. The set of all levels
a € [0,1] that represent distinct a-cuts of a given fuzzy set A is called the level
set Ajof A: Ay ={a€0,1]|3z€X:psz)=a}.

3.3 Modeling Fuzzy Regions

A “structureless” definition of fuzzy regions in the sense that only “flat” point
sets are considered and no structural information is revealed has been given in



[13]. For our purposes we deploy a “semantically richer” characterization and
approximation of fuzzy regions which describes them as collections of crisp a-
level regions®[13]. This view defines a fuzzy region in terms of regularized, nested
a-cuts. Let F be a fuzzy region. Then we represent a region F), for an a € [0,1]
as

Fo =reg.({(z,y) € R?* | pp(z,y) > a})

We call F,, an a-level region. Clearly, F,, is a crisp complex region whose bound-
ary is defined by all points with membership value a. In particular, F,, can have
holes and consist of multiple parts. The kernel of F' is then equal to F}o. An
essential property of the a-level regions of a fuzzy region is that they are nested,
i.e., if we select membership values 1 = a3 > a2 > -+ > @y > any1 = 0 for
some n € IN, then F,, C F,, C--- C F,, C F,,,,. We here describe the finite
case. If Az is infinite, then there are obviously infinitely many a-level regions
which can only be finitely represented within this view if we make a finite se-
lection of a-values. In the finite case, if [A;| = n + 1 and if we take all these
occurring membership values of a fuzzy region, we can even replace "C” by
”C” in the inclusion relationships above. This follows from the fact that for any
p€ Fy, —F,,_, with i € {2,...,n+ 1}, pp(p) = a;. For the continuous case,
we get up(p) € [as,a5-1). As a result, we obtain:

A fuzzy region is a (possibly infinite) set of a-level regions, i.e., I =

{Fo; |1 <i <|Ag|} with a; > ajp1 = Fy; CF,,,, for1 <i < |[Az|-1.

In Section 5 we will use this characterization for a definition of topological pred-
icates on fuzzy regions. We can then reduce these predicates to topological pred-
icates on collections of crisp regions. Unfortunately, the 9-intersection model
only provides topological predicates for simple regions. Hence, we first need to
generalize this concept to topological predicates for complex crisp regions. An
essential requirement of such a collection is that any two predicates are mutually
exclusive and that all predicates together cover all topological configurations.

4 Topological Predicates on Complex Crisp Regions

It is not an objective of this paper to find all possible topological relationships
between two complex regions. We here confine ourselves to a straightforward
generalization of the eight topological relationships for simple regions to complex
regions. This procedure may be regarded as an ad hoc approach leading to too
coarse predicates. But for many spatial applications this predicate collection is
practicable enough, and a more fine-grained differentiation is even not desired.
In the following we use as a syntactical simplification the notation
(P1|Py]...|Py)(F,G) for the term P,(F,G) vV P(F,G) V ... V P,(F,Q)
where P; : region X region — IB is a topological predicate for each 1 < i < n.

? Other structured characterizations given in [13] describe fuzzy regions as multi-
component objects, as three-part crisp regions, and as a-partitions.



4.1 Topological Predicates on Simple Regions with Holes

As a first step to a general definition of topological predicates for complex crisp
regions we consider such predicates for simple regions with holes and base their
definition on the topological predicates for simple regions as they have been
derived from the 9-intersection model (Section 2.2).

Let F and G be two simple regions with holes, that is, F = Fy —J_, F; and
G = Go — U;n:1 G;. We consider F' and G to be disjoint if they have nothing
in common, that is, either Fy and Gy are disjoint, and thus implicitly also their
corresponding holes due to the definition of F' and G, or Fy (or Gy, respectively)
and implicitly its holes are completely inside a hole G; of G (F; of F, respectively)
(Figure 2a). Formally, we can then define the predicate disjoints., as

disjoint s (F,G) = disjoint(Fp,Go) V
(31 <i < n:inside(Go, F;)) V
(31 < j < m:inside(Fy,Gj))

The predicate meets,, is defined as follows (Figure 2b):

meetsn, (F,G) = meet(Fy,Go) V
(31 <i < n: coveredBy(Gy, F;)) V
(31 < j <m: coveredBy(Fy,Gj))

We consider F' to be inside G if Fj is inside G and if each hole G of G is either
disjoint from Fy or inside a hole F; of F. (Figure 3a). The definition for the
predicate inside g, is:

insidesry,(F,G) := inside(Fy,Gp) A
(V1< j <m: disjoint(Fy,G;) V
(inside(Gj, Fy) A 31 <i<n:inside(Gj, F;)))

We do not have to take into account the topological relationships between the
F’s and Gy in our definition, because inside(Fo,Go) = inside(F;,Go) due to
F; C Fp for 1 <i < n. The predicate containss, is symmetric to the predicate
insidegyy,, that is, contains g, (F, G) := inside s (G, F).

We consider F' and G to be equal if Fy and Gy are equal, if F' and G have
the same number of holes, and if each hole F; of F' coincides with a hole G; of
G and vice-versa, that is,

@) (b)

Fig. 2. Examples for the predicates disjointsm(F,G) (a) and meetsh (F, G) (b).
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Fig. 3. Examples for the predicates insides(F,G) (a) and coveredBys+(F,G) (b).

equal s, (F,G) = equal(Fy,Go) AN n=m A
Ar:{1,...,n} = {1,... ,n}, 7 bijective,
V1<i<n: equal(F;, Grgs)

F' is considered to be covered by G if F' is a proper subset of G and if F’s
boundary touches G’s boundary (Figure 3b).

coveredBy o, (F,G) := —((insidegrn|equalsr)(F,G)) A
(inside|coveredBy|equal)(Fy,Go) A
(V1 < j <m : ((disjoint|meet)(Fy, G;) V
(31 <@ < n: (inside|coveredBy|equal) (G}, F}))))

The predicate coversg., is symmetric to the predicate coveredBygp, that is,
covers sy (F, G) := coveredBy g1, (G, F).

Finally, the predicate overlaps, (Figure 4) covers all remaining topological
situations. This predicate can, of course, be defined directly in order to give an
exact characterization of the remaining topological situations. But this makes
the definition unnecessarily complicated and longish. We define instead:

overlaporn, (F,G) = —((disjoint gpp, | meet gpp | coveredBy opn | cOvETs spp |
inside spp| contains s |equal srp ) (F, G))

The set Ty = {disjointsyp, meetsy, overlaps.y, coveredBygyn, coverssy,
insidesrn, containssy,, equalsp, } provides a complete coverage of topological re-
lationships for two simple regions with holes, and its elements are mutually
exclusive. Completeness of Ty, follows immediately from the complementary
character of the definition of overlap,,;. Hence, at least one predicate must hold

Fig. 4. Examples for the predicate overlap s (F, G).



for any pair F,G of simple regions with holes. Mutual exclusion of each pair
of different topological predicates P, and P, can be proved by showing that
—(P(F,G) A P:(F,G)) holds for any pair F,G. Since we have k¥ = 8 pred-
icates, we have to check the diversity of % (k* — k) = 28 predicate pairs. We
will not show the validity for the predicate pairs here in detail but only tell the
strategy. First, we can use the mutual exclusion of the topological relationships
for simple regions employed in the definition of some predicates. For instance,
disjoint s, and meet s, exclude each other since disjoint and meet as well as in-
side and coveredBy are mutually exclusive in the 9-intersection model. Second,
several predicates use the negation of other predicates on simple regions with
holes for their definition. For instance, overlap ., excludes all other predicates.
Similarly, coveredBy ., excludes both insides, and equalsy,. Overall, at most
one predicate is valid for any pair F,G.

The set Ty, of topological predicates on simple regions with holes is in
two ways compatible with the set T' of topological predicates on simple regions
obtained by the 9-intersection model. First, if both F' and G do not have holes,
then Ty, and T coincide. Second, each of the eight topological predicates on
simple regions with holes has the same boolean results for the nine intersections
as the corresponding predicate on simple regions (see Section 2).

4.2 Topological Predicates on Complex Regions

With the aid of the topological predicates on simple regions with holes we are now
able to define the corresponding predicates on complex regions. Let F = |JI_, F;
and G = |J]L, G; be complex regions where the F; and G; are simple regions
possibly with holes. We define the following predicates:

disjoint.,(F,G) = V1<i<nV1<j<m:disjointsn(F;,G;)
meet., (F,G) := -disjoint..(F,G) A
(V1<i<nV1<j<m: (disjointsy|meetsy)(Fi, Gj))
insidec(F,G) = V1<i<n31<j<m:insides(F;,G;)
contains.(F,G) := insidec (G, F)
equal . (F,G) = n=m A (37 :{1,...,n} = {1,...,n}, 7 bijective,
V1< <n: equalgon (Fiy Grs)))
coveredBy . (F,G) := —((insidec|equal.)(F,G)) A

(V1<i<n3l<j<m:
(inside spp | coveredBy sph, | equal 51, ) (Fi, G))
covers..(F,G) := coveredBy.(G,F)
overlap.,(F,G) := —((disjoint .r|meet.,|coveredBy o, |covers .|
inside ¢ | contains . |equal o) (F, G))

With similar arguments as in the last section we can recognize that two complex
regions satisfy exactly one of these topological predicates. In other words, the



topological predicates of the set T, = {disjoint.,, meet ., insider, containscy,
equal ., coveredBy.,, covers,,, overlap., } are mutually exclusive and complete.
Note that the predicates disjoint.,, meet.,, equal .., and overlap., are symmet-
ric whereas the others are not.

One could possibly get the impression that in practice most topological con-
figurations of two complex regions will be classified as overlapping. But this is a
fallacy. In many geographic applications spatial partitions (maps) form the ba-
sic underlying structure. Their essential feature is a non-overlapping constraint
imposed on the regions composing a partition.

5 Topological Predicates on Fuzzy Regions

In this section we introduce a concept of topological predicates for fuzzy regions.
In a similar way as we can generalize the characteristic function x4 : X — {0,1}
to the membership function pz : X — [0,1] (Section 3.2), we can generalize
a (binary) predicate p, : X xY — {0,1} to a (binary) fuzzy predicate py :
XxY > [0,1]. Hence, the value of a fuzzy predicate can be interpreted as
the degree to which the predicate holds for its operand objects. In our case of
topological predicates, X =Y = region, {0,1} = bool, and X=Y = fregion
hold. For the set [0,1] we have to introduce a new type fbool for fuzzy booleans.

For the definition of fuzzy topological predicates, we take the view of a fuzzy
region as a set of a-level regions (Section 3.3). We know that an a-level region
is a crisp complex region (Section 3.1), and in the last section we have defined
topological predicates on complex regions. This preparatory work now enables
us to reduce topological predicates on fuzzy regions to topological predicates on
collections of crisp regions®.

The approach presented in this section is generic in the sense that any mean-
ingful collection of topological predicates on complex crisp regions can be the
basis for our definition of a collection of topological predicates on complex fuzzy
regions. If the former collection additionally fulfils the properties of completeness
and mutual exclusion (which is the case for T¢,), the latter collection automati-
cally inherits these properties.

The open question now is how to compute the topological relationships of
two collections of a-level regions, each collection describing a fuzzy region. We
use the concept of basic probability assignment [5] for this purpose. A basic
probability assignment m(F,,) can be associated with each a-level region F,,
and can be interpreted as the probability that F,, is the “true” representative
of F. It is defined as

m(Fy;) = o — aigq

3 Note that x4 is a unary crisp predicate and that p 4 is a unary fuzzy predicate.
4 Another great benefit of this approach is its easy implementability through well
known concepts for crisp spatial objects and for crisp topological predicates.



for 1 < ¢ < n for some n € IN with ay = 1 and ay1 = 0. That is, m is built
from the differences of successive «;’s. It is easy to see that the telescoping sum
Srm(Fy) =1 —apy1 =1—0=1.

Let ¢ (F, G) be the value that represents a (binary) property 7 between two
fuzzy regions F' and G. Based on the work in [5] property 7 of F and G can be
determined as the summation of weighted predicates by®

G) = Z Z m(Fa;) -m(Ga;) - Ter(Fai, Gay)

where 7¢(F,;,Ga;) yields the value of the corresponding property m, for two
crisp a-level regions Fy; and G, . This formula is equivalent to

n

= Z Z —aip1) (o — 1) “ Ter(Fas, Gay)

Jj=1

~.
[y

If 7y is a topological predicate of Ty = {disjoints, meets, overlaps, equaly,
insides, containsy, coversy, coveredBys} between two fuzzy regions, we can com-
pute the degree of the corresponding relationship with the aid of the pertaining
crisp topological predicate 7., € Tecr. The value of 7, (Fu;,Gq;) is either 1
(true) or 0 (false). Once this value has been determined for all combinations of
a-level regions from F' and G, the aggregated value of the topological predicate
7y (F, G) can be computed as shown above. The more fine-grained the level set A
for the fuzzy regions F' and G is, the more precisely the fuzziness of topological
predicates can be determined.

It remains to show that 0 < 7y (F,G) <1 holds, that is, 7y is really a fuzzy
predicate. Since a; — a1 > 0 for all 1 < i < n and since e (Fy,,Ga;) > 0
for all 1 < 4,j < n, 77(F,G) > 0 holds. We can show the other inequality by
determining an upper bound for 7y (F, G):

M=
M=

7Tf(Fa G) = (ai - ai-i-l) : (aj - aj+1) : Wcr(FanGaj)
i=1 j=1
n n
< Z Z(a - a’i-l-l) ' (aj - aj+1) (since ﬂ-CT(Fa“Gaj) < 1)
i=1 j=1
=(a1 —a)(og —an) + -+ (a1 —az)(on —apyr) + -+
(an — an—i-l)(al —a2) + -+ (an — apt1)(@n — ant1)
= (a1 —ag)((al —ag)+-- +(an—an+1)) + -+
(an — Oén+1)((041 —a)+ -+ (an — an—i—l))
=(a1 —a2)+ -+ (an —ant1) (since Z i —r1) = 1)
=1
% For reasons of simplicity, we assume that Az = Ag =: A. Otherwise, it is not

difficult to “synchronize” Az and Ag by forming their union and by reordering and
renumbering all levels.



Hence, 77 (F,G) <1 holds.

An alternative definition of fuzzy topological predicates, which pursues a
similar strategy like the one discussed so far, is based on the topological pred-
icates on simple regions possibly with holes, that is, on predicates msp, € Tsrp-
If Fy, is an a-level region, let us denote its faces by Fy,,,. .., Fy,,, . Similarly,
we denote the faces of an a-level region G,; by Gg;,,--- ,Ga].gj. We can then

define a topological predicate 7r} as

T (F,G) = zn:zzz a; — aiy1) - (a5 — a41) - Torh (Fais; Gayr)

i=1 k=1 j=1 =1 fi-gi

It is obvious that 7 (F, G) > 0 holds since all factors have a value greater than or
equal to 0. We can also show that 7} (F, G) < 1 by the following transformations:

Qi — @ (g —aj
( +1f)~ _;.J j+1) (Torh (Faes Gayy) < 1)
g J

D R

Hence, 77 (F,G) < 1 holds. As a rule the predicates 7y and 7} do not yield the
same results. Assume that F,,, and G, fulfil a predicate 7. € T¢,. This fact
contributes once to the summation process for m;. But it does not take into
account that possibly several faces F,,, (at least one) of F,, satisfy the corre-
sponding predicate ms € Tsr, With several faces Gg, (at least one) of G-
This fact contributes several times (at most f; - g;) to the summation process
for m;. Hence, the evaluation process for 7} is more fine-grained than for ;.

Both generic predicate definitions reveal their quantitative character. If the
predicate ¢, (Fa;, Ga;) and the predicate e, (Fua,,, Ga;, ), respectively, is never
fulfilled, the predicate 77 (F, G) and 7} (F, G), respectively, yields false. The more
a-level regions of F' and G (simple regions with holes of F,,; and G,) fulfil the
predicate m¢p(Fo;,Ga;) (Terh(Fayy,Gajp)), the more the validity of the predi-
cate my (m;) increases. The optimum is reached if all topological predicates are
satisfied.

6 Conclusions

In this paper we have developed a formal and coherent definition for simple
regions with holes, crisp complex regions, fuzzy complex regions, and for cor-
responding topological predicates. Spatial query langages can now also be em-
ployed to pose queries using topological relationships on more complex regions.
For fuzzy predicates their computationally determined quantification has to be



additionally considered in a query language. A solution could be to embed ade-
quate qualitative linguistic descriptions of topological relationships as appropri-
ate interpretations of the membership values into spatial query languages. For
instance, depending on the membership value yielded by the predicate insidey,
we could distinguish between a little bit inside, somewhat inside, quite inside,
nearly completely inside, and completely inside. These linguistic terms could then
be incorporated into spatial queries. Another subject of further investigation will
be how these spatial data types and topological predicates can be implemented
in an efficient, numerically robust, and topologically consistent manner.
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