Thematic Map Modeling!

Michel Scholl and Agnes Voisard
IN.R.I.LA., 78153 Le Chesnay, France
(scholl, voisard)@bdblues.altair.fr

Abstract

We study here how to provide the designer of geographic databases with
a database query language extensible and customizable. The model presented
here is a first step toward a high level spatial query language adapted to the
manipulation of thematic maps.

For this, we take as an example a toy application on thematic maps, and
show by using a complex objects algebra that application dependent geometric
operations can be expressed through an extension of the replace operator of

[ABSS].

1 Introduction

The representation and manipulation of geometric information require the use of two tech-
nologies: database systems and computational geometry. Several recent proposals have been
made for the modeling and design of Geographic Information Systems (GIS) (see for example
[LM84], [OMS86], [SW86], [MODS87], [Dav88], [RFS88]). For a comprehensive study on the
requirements for the design and implementation of large-scale GIS, see [Fra84], [SMSEST].
Several spatial query languages have recently been proposed in [CF80], [CK81], [BB81],
[Fra82], [SDMO8T7], [CJ88], [Gut88]. A survey on data structures for spatial databases can
be found in [Sam84].

One characteristics of GIS is that they cover an extremely wide range of applications
for which, neither a common definition of objects, nor a common set of functions on these
objects exist. Designing a close general information system for geographic applications
therefore becomes an ambitious and somewhat hazardous task.

It is our belief that there might exist a set of application dependent basic objects and
operations on these objects, and that the database system should permit an easy extension of
this set or an easy change to another set more adapted to a particular application. Examples

!This work was partially supported by a grant from the french PRC BD3, and by the BRA ESPRIT
W.G. Basic GOODS.



of applications we consider are cartography and urban planning which both manipulate
thematic maps.

In order to validate the concepts presented in the paper, we consider a restricted appli-
cation with limited functionalities since it manipulates only regions, i.e. subsets of R? (and
neither lines nor points).

This application is described in Section 2. Basically, one would like to answer queries
such as:

o “Display the districts of the province of Toulouse”,
o “From the map of the districts of France, zoom to the map of provinces”,
o “Querlay the map of crops with the map of the province of Rennes”,

o “Create the map of districts from the map of provinces belonging to the North of
France” (district boundaries as well as data associated to districts must be entered),

o “Display districts with more than 20% of the people voling for the communist party
in the district of Lille”.

For designing such an application, the following are required:

e some high level query and manipulation language with the confidence that, when the
application changes (and therefore the query language changes), there are only mini-
mal incremental changes to bring to the system in order to provide new functionalities,

e a powerful manipulation of a large amount of data.

A candidate approach is to take an "extended” relational system where we model ge-
ometric information by means of specific attributes with the two-dimension space for do-
main. By exztended we mean that the database system is augmented with capabilities such
as defining and running specific functions associated with a given domain (see for example
[SR86, GCK'89]). Then by attaching application dependent functions to geometric objects,
one may hope to design specific GIS.

Augmenting the relational query language by specific geometric operators was, to our
knowledge, first proposed in [CF80]. In [SRG83], abstract data types are proposed for
geometric objects and their operations. A similar approach to [SRGS83] is described in
[Ore86]. But the most significant integration of geometric data type and operators into a
relational algebra is due to [Gut88].

However such approaches suffer from the following drawbacks:

1. Data structures represented by relational systems are very poor. More recent database
approaches such as complex object models [HY84], [KV85], [BK86], [Hul87], [AGS87],



[AB8S]), or object oriented systems (see for example [KT88], [K*89], [BBBT8S],
[LRVS88], [LR89]) are more powerful for representing complex data structures.

2. User defined operations are not part of the relational model. This is why extended
relational systems are currently designed. The disadvantage of such an approach is its
lack of flexibility: once the extended relational system has been designed, it becomes
cumbersome to adapt it to new functionalities required by other applications and
users.

Although object oriented systems provide the representation of complex structures and
a flexible definition of user defined operations, they do not yet provide query languages.
Their interface can still be considered as a low level approach not adapted to unsophisticated
users who require a high level language for spatial queries.

The purpose of this paper is to show that user defined geometric operations can be
embedded into a very general database query language, in a simple and flexible way.

In some sense, our model can be seen as continuing the work reported in [Gut88]: we
believe that an algebraic approach is a powerful tool for efficiently manipulating large sets
of data. However, our approach differs from the above work in two aspects:

1. To relational algebra, we prefer a complex object algebra because of its expressive
power.

2. Such a complex object model is still unsufficient for representing user defined geometric
operations. This is why we suggest not to embed the geometric operations into the
data model, but rather to associate them to the data model through simple and general
constructs.

As far as implementation of the spatial query language is concerned, object-oriented
systems are good candidates. But object-oriented features such as object identity or inher-
itance are not necessary at the language level.

The paper is organized as follows: Section 2 describes the application chosen for illus-
trating our approach. The model presented in Sections 3 and 4 is a first step towards the
definition of a high level spatial query language adapted to the manipulation of thematic
maps. Recall that the objective is to associate a powerful database modeling tool indepen-
dent of the (geometric) application, to an adaptative manipulation of geometric objects. It
is our belief that the same methodology can be applied for the design of GIS manipulating
lines.

In Section 3, we define what is a map and which are the operations on maps, i.e. we
define a query language on maps. We also define regions as well as a set of operations on
regions. We show that these operations on maps are sufficient to implement primitives such
as those described in Section 2.



In Section 4, we show that these operations on maps apparently closely related to the
application can be expressed by means of very general constructs: the approach followed
for modeling maps is basically a complez objects approach. Among all existing models we
chose the model of [AB88]. Such a model is adequate for representing and manipulating
databases whose objects have various complex structures. Besides it includes a powerful
operator called replace. This operator applies a function to each element of a set of objects.
This operation is necessary for expressing elaborate operations on complex structures. But
classical operations such as selection and projection can be expressed by a replace as well.

The function specification in replace is not user defined in [AB88]. We extend this
specification to express various user defined (geometric) functions, and call it apply. This
provides independence between (i) an algebraic language for general (non geometric) data
manipulations on maps independently of the application and (ii) the operations on basic
geometric objects specific to a given application.

Section 4 defines the apply construct and shows how the operations on maps described
in Section 2 are expressed through the apply construct. The map representation chosen may
imply certain redundancies. They are discussed in Section 5.

2 A toy application

In this Section, we informally describe a few primitives for thematic maps manipulation. A
more formal presentation will be given in Section 3. We just assume here that a map has two
kinds of components: non-spatial and spatial components. The former take alphanumerical
values, while the latter represent geometric regions.

The operations described here are the following: projection, fusion, cover, map overlay,
superimposition, selection, windowing, and finally clipping.

¢ Projection:

This operation corresponds to the relational projection. As an example, take map m of
figure 2.1. The attributes “crop” and “district” whose domains are respectively “string”
and “integer” represent its non-spatial components. Assume that we want to get the map
of districts, without mention of the crops of each district: we have to project out attribute
“crop”.



wheat
district 3

Figure 2.1: projection on attribute “district”

Assume now that instead of projecting the previous map on districts, we want to get
the map of crops (without mention of the districts). After having applied the projection
operation, two neighbour regions may have the same crop value. Then we may want to
replace such neighbour regions by a single region, i.e. erase their common boundary. The
fusion operation realizes the geometric union of the regions of a map which have the same
value for a given component. Figure 2.2.a represents the map m of crops and districts.
Figure 2.2.b represents the map of crops after projecting out the district name and realizing
the fusion of regions with common crop value: we do not distinguish anymore districts

boundaries.

district 4

wheat

district 3

Figure 2.2: projection and fusion of map m on attribute “crop”

If we further fusion the two regions of Figure 2.2.b, after projecting out attribute “crop”,

we obtain the cover of m, i.e. the (geometric) union of the regions of m (Fig 2.3).



wheat
district 3

Figure 2.3: cover of map m

e Map overlay:

Figure 2.4 exhibits an example of map overlay on maps with same cover. In the case
where both maps do not have the same cover, the cover of the resulting map would be the
intersection of the covers of the two maps.

district 1 district 1
. . wheat ,corn
district 1 /
corn : : -
) ) district 2 ) )
wheat corn
mi mo district 2

district 2

Figure 2.4: map overlay between m; and my

e Superimposition:

Superimposing a text, an icon, a caption or a map onto a given map is useful in cartography.
Figure 2.5 shows an example of superimposition of a map mg onto a map m;. We assume
that the cover of mg is included in the cover of m;.



Figure 2.5: superimposition of my onto my

e Selection:

Consider again the example of Figure 2.1. Getting the map of districts producing
“wheat” corresponds to the relational selection (Figure 2.6).

district 4 district 4

Figure 2.6: example of relational selection

The following operations are examples of geomeltric selections:

¢ Windowing:

Windowing (Figure 2.7) allows to get the regions of a map whose intersection with a
given window is not empty.



rye | corn o R rye |[corn
wheat S : : wheat
m w

Figure 2.7: windowing of map m with window w

As another example, consider the query “what are the communes whose distance to a
given point p is less than r=twenty kilometers”. Windowing is applied where the window
is the circle with center p and radius r:

: 2

1 Step 1 1 N 2 1 2

' X X

: / 3 —_ 3 _ 3

| /4 5 4 5

N2 mo
particular
point - 20 km

2.8: “communes whose distance to a given point is less than 20 kilometers”

¢ Clipping:

This operation allows to select the part of a map which is inside a window.

Figure



rye | corn o e
o : : rye | cOTD
wheat
wheat
w
m

Figure 2.9: clipping of a map m with a window w

3 The model

We are interested in querying a set of thematic maps in two distinct ways: (i) issuing queries
with respect to the alphanumeric information associated to maps (e.g. relational selection),
and (ii) asking information related to the geometric component of the map (e.g. geometric
selection, map overlay). Database systems efficiently manipulate sets of objects. This is
why it sounds natural to represent a thematic maps database by a set of maps, where a
map is a set of tuples. A tuple basically represents a geometric region to which is usually
associated non geometric information.

In this section, we introduce a data model on maps. Operations on maps are database
operations extended with geometric operations on regions.

We first introduce regions and operations on regions (Section 3.1). The data model on
maps is then defined (Section 3.2). Finally, Section 3.3 illustrates this map data model on
the application described in Section 2.

Notations
In the sequel, we adopt the following conventions: we use greak letters, v for a geometric
type, and 7, p,... for a non geometric type.

Capital letters such as A, B, ... are used for alphanumeric attribute names, and R, S,
... for geometric ones. Values are denoted by lower case letters.

3.1 Regions
3.1.1 Definition of a region

An elementary region is a subset of the two-dimension space R* (figure 3.1). It can be :

e a polygon (e.g. 73, 74),



e a subset of Ry bounded by lines (e.g. 1, rq),

e the union over R? of several connected or non connected parts of the plane (e.g. r3 U
7'4).

A region can be:

e an elementary region, or

e a set of elementary regions.
-
-
// \
T
K

Figure 3.1: a few examples of elementary regions

Let us consider now the following example:

Figure 3.2: elementary regions or set of regions

Looking at Figure 3.2, we may choose between the three following interpretations: (i) r; and
o are two distinct elementary regions, (ii) the geometric union of r; and r; is an elementary
region, and (iii) the set of elementary regions {ry, 72} is a region.

More precisely, let v be a given subset of R?.

e 7isaregion type, called atomic type: an elementary region is a region of type (domain)

~

l]‘-

e {7} is a region type: a set of elementary regions is a region of type {7}.

10



3.1

.2 Operations on regions

We introduce now a set of operations on regions which is sufficient to implement the appli-

cation of Section 2, and which will be useful to describe operations on maps:

1. we first use a boolean algebra over R?, where the operators 4, e and - are interpreted

3.2

3.2.

by the corresponding set operations: union, intersection and difference:
(a) + (union) :
r1, ro, 1 + ro of type 7.
(b) e (intersection):
r1, o, T1 ® 79 Of type 7.
(c) - (difference):
ry, ro, 71 — 19 of type 7.
We then extend this algebra with the following operations:
. we introduce the “non-empty” unary predicate over v, denoted # ().
r # (0 is true if 7 is not the empty subset of R%, where r is of type 7.
Similarly, if 7 is of type {7}, r = {s1,...5,} # {0} if there is at least one s; such that

s; £ 0.
e )=
def
B{rL, s T} = P14 o+ T
This operator performs the union over Ry of the elementary regions elements of a set
and gives as an output a single elementary region.

. 1 (set from singleton): v — {7}.
A= {r}.
This operator transforms an elementary region r into a set with unique region r.

. intersection is extended by:
def
(@) (Y} xvy—={7}: {ri,.,rn}or = {rier,...,r 01}

b)) yx {7y} —={7}:re{r,...,r} def {rery,...,rer,}.

(o) {rtx{rt—={r}:res def {teu|ter, uc s}, where r, s are of type {7} and
t, u are of type 7.

Maps

1 Definition

A map is a set of tuples. As an example of tuple, [A:a, B :b, R:r] will designate a region
with geometric attribute R with value r and with two non geometric attributes A and B
with respective values a and b.

We do not require the existence of non geometric attributes (e.g. {[R : r]} represents a

map including a single region). However a map must have at least one geometric attribute.

11



We accept maps with several geometric attributes. This is explained in Section 5.

To define more formally a map, we follow the complex objects approach of [AB88]. Maps
are typed objects defined as follows.

Types and objects
We assume an infinite set of attribute names (geometric or not), a given set of non-geometric
domains {Dy, ..., D,,} and a given set of geometric domains {Ay, ..., A}, where A; C R2.

Types are constructed from domains, attribute names, and the set {} and tuple [ ]
constructors. Each object is an instance of a type which is defined as follows:

1. if D (A) is a domain, then D (A) is a type (geometric or not).

2. if 7, ..., 7, are types and Ly, ..., L, are attributes names not used in any of them,
then [Ly : 71, ..., L, : 7] is a tuple type.

3. if 7 is a type and L an attribute name not used in it, then {L : 7} is a set type.

4. if 7 is a type and L a name not used in it, then L : 7 is a named type.

We illustrate this definition by examples of maps and associated types:
{R:7,R:s}of type {R:7}
{[A:a,B:b,R:1,S:5s]} of type {[A : string, B : string, R: 7,5 : 7]}
S:{[A:a,B:{C:1,C:2},R:r]} of type
S :{[A: string, B : {C : integer}, R : v]}

3.2.2 Operations on maps

To define operations on maps, the algebra of [AB88] is extended with “geometric” opera-
tions. Let us consider first the standard database operations. Among the useful operations
are the following ones: projection, selection, cartesian product, nest and set operations. We
recall the usual notations for the four first operations:

1. Relational algebra operations:

(a) Projection is denoted by Tiist of attribute names- Lhe value of the component A of
tuple ¢t of map m is denoted: ¢.A.

(b) Selectionis denoted by ocondition. For example, “all the regions of a map m whose
altitude is more than 1000 meters” where m is of type: {[Height : integer, Crop:
string, R : 7]} is expressed by:

“ﬂR(O—Height>1000(m))” .

(c) Cartesian product is denoted by Xx. For example, m; x my where my is of
type? {[A, Ri]} and my is of type {[B, Ry]} will generate a map m of type
{[A7B7R17R2]}‘

?From now on, when there is no ambiguity, we omit in a tuple type, the type of each component; for

example, {[A, R]} denotes type {[A : String, R: v]}.

12



2. Nesting map m on attribute A is denoted Nest4(m). As an example, if m is of type
{[A : String, R : 7]} nesting m on attribute A will group in a single tuple all regions
having the same value for attribute A. Nest4(m)is of type {[A : String, S : {R:7}]}.

“Geometric” operations on maps are now introduced:

1. Fusion W:
without loss of generality, consider a map m of type {[A : 7, R : {7}]}. The fusion
operation replaces in each tuple of m the set of regions by its geometric union . Let
m' = ¥(m). m' is of type {[A: 7, R' : 7]} and has the following value:

m!' = {t/|t € m,t’.A =t AANU.R = @tR}

2. Geometric selection denoted by g, where G stands for geometric condition.
G is one of the following predicates:
L.Rek # 1,
t.Ret.S#0,
where k is a constant of type 7, (or {7}), {.R and ¢.5 are component regions of type
7, (or {7}).

oc(m) keeps the tuples of m for which condition G is true.

3. Geometric product ©:
Or—Rr,s(m) is only defined if m has at least two geometric attributes R and S. Its
type is that of m except that attributes R and S are replaced by a single geometric
attribute 7. The value of ®7_pg,s(m) is defined as follows:

m' ={t'|tem,!.T=t.Ret.S Nt'.A=1t.A for each non geometric attr. A in m }.
As an example, consider m of type :{[A, B, R, 5]}, the product m'is of type {[A, B, T]},

and is defined as:
To each tuple ¢ of m corresponds a tuple t' in m’ = @7_p s(m) such that:

'A=1A
t'.B=1.B
' T=tRet.S.

We next illustrate these definitions with more involved operations that are expressible
in the algebra just described:

1. Geometric join Mg:
Given two maps my and mo with respective geometric attributes Ry and R,, we have:

def
my Mg my = O(0R,er,28(M1 X Mm3))

Consider for example my of type {[A4, R1]}, and my of type {[B, R3]}.
m = my Mg mg is of type {[A4, B, R]} and has for value:
m = {t | t1 € my, tg € Mo, t.A= tl.A, t.B=13.B, t.R =1,.R1e15.R, 7£ @}

?One could also choose as built-in predicate ¢t e R # §.

13



2. Cover C:
As an example, consider the map representing the partition of France into districts.
The cover of this map would include a single region (without alphanumeric data)
representing the whole country without the inner borders between districts.

Assume first each tuple of map m, whose cover we are looking for, has a single geo-
metric attribute R of type 4. Then C (m) is defined as follows:

C(m)=nN&mr(m).

Observe mp(m) is a projection of m on the geometric attribute R. It is a map including
a set of regions: by definition of the projection, it is of type {R : v}. Obviously mr(m)
represents a geometric object (region) as well, closed under the operations defined in
Section 3.1.2. Applying to this region, the fusion operator @, we get a single region.
Applying to this region the singleton operator M, we indeed get a map which represents
the cover of m. (More formally, to be consistent with the type of regions defined
in Section 3.1.1, there should be a mapping between regions and named geometric
components of a map).

Let us now relax the assumption that R should be of type 7. Assume indeed, that R
is of type {7}. Then mr(m) would be of type {R : {7}}. Then, Uy (7r(m)), where
Ligy is the set-collapse operator of the algebra of complex objects [AB8S], represents
indeed a region of type {7} and the cover is expressed as:

C(m) =066 Ll{}(ﬂ'R(m))

We shall see below that cover is useful for expressing the “superimposition” primitive
of Section 2.

3.3 Back to the application of Section 2

We show in this section how the various user primitives of Section 2 can be expressed by
means of the above operations on maps:

¢ Projection and fusion (Figure 2.2).
Extracting the map of cereals, given the map m of districts and cereals of type
{[crops, districts, R]} (Figure 2.2), is expressed by the following expression:

7 .
W N eStcrops Terops,R (m)

We first project out the district attribute, then we gather in a same tuple the regions
having same crop value (Nest), and finally we apply the fusion operation.

¢ Map overlay (Figure 2.4) is trivially expressed through geometric join M.

14



e Similarly, windowing (Figure 2.7), i.e. selecting the set of regions intersecting with
a given window w is expressed by a geometric selection:

Ut.Row#@(rnl)v

where {.R is the region value of tuple ¢ in map m. Observe that if w is small enough,
this allows to select a region (or a set of regions, if a map is not a partition of its
cover) by windowing inside the region.

¢ Clipping (Figure 2.9), which consists in keeping from map m, only what is inside a
given window w is expressed by:

m Mg Mw,
where Mw is the map with type {[R : 7]} and with single tuple [R : w].

e We end up with a more complicate operation: superimposition (Figure 2.5). This
may be seen as:

1. taking the cover of the map (m3) that we want to superimpose onto a map (my).

2. before superimposing my, we have to erase the location corresponding to the
cover of my. In other words we have to make a “geometric difference” denoted
S between mq and my (we assume that C(mq) D C(mz)). We get map ms.

3. we finally superimpose mg, i.e. take the (relational) union of ms and mq
In summary, superimposition is expressed as:
(m1 6 ma) Umgy

o Geometric difference can be expressed as (i) taking the difference of covers as a win-
dow, and (ii) clipping:

my & mg = my Mg MN(C(mq) — C(my)).

4 The apply operator

To express the geometric operations on maps (Section 3.2), we only need (i) operations on
regions, and (ii) a constructor called apply. It is denoted by: “apply < f > (m)”. It takes
as an input a map m and gives as an output a map m’ obtained from m by applying f to
each tuple of m.

The apply operator is not new. It is similar to the Lisp “Mapcar”, and is an extension
of the replace operator of the algebra of [AB88]*.

Let m be amap of type {7} and f a partial function of 7 to 7’. f denotes a transformation
to “apply” to each member of a set of a given type.
apply < f > (m) is of type {7’} and is defined as:

*The original name replace has been changed into apply because it sounded closer to the intnitive meaning
of this constructor.

15



apply < [ > (m)={f(1)[t € m A f(1) is defined}.

Informally speaking, if fis applied on a map m, f can have other input parameters than
m, for example my, ..., m,, and is constructed from other apply functions and/or algebraic
operations on m,myq,...,m,. This operator is extremely powerful. In particular, it can
express a variety of algebraic operations such as selection, projection, nest, unnest.

apply is just an extension of replace to take as specifications for the function f, the
operations of the algebra of regions: f is not only constructed from other apply specifications
or algebraic operations on maps, but also from operations of the algebra of regions (Section
3.1.2). We show below that operations on maps such as geometric selection, fusion, join,
can be expressed by an apply operation.

Let us first define more formally the construction of an apply specification. For a more
complete definition, see [AB8S].

1. Basis for an apply specification:
def

if B is an attribute name in 7, then B is an apply specification, and B(t) = ¢.B.

2. Tuple construction:
it ASy,..., AS,, are apply specifications from 7 to 7q,...,7, and By, ..., B,, are at-
tribute names, then [By : ASy,..., B, : AS,] is an apply specification from 7 to
[By: 71, ..., By : 7). Its effect is defined by:
[Bl : ASl, ,Bm . Asm](t) = [Bl : ASl(t), 7B’m : ASm(t)]

3. Application of an operation: although not necessary, we give separate construc-
tions for operations of the algebra of maps and for operations of the algebra of regions.

(a) if op(My, ..., M) is an algebraic operation from 7y, ..., 7, to 7" and ASy,..., AS,
are apply specifications from 7 to 7, ... 7, then op(ASy, ..., AS,) is an apply
specification from 7 to 7’. Note that 7;, 77 are types of any attribute (geometric
or not).

(b) if op(r1,...,7) is an operation on regions from 71, ..., v, to 7’ (where 7;, 7’ are
geometric types) and ASq, ..., AS,, are apply specifications from 7 to 71, ..., Vm
then op(AS, ..., ASy,) is an apply specification from 7 to 7'

In both cases, the effect of op(AS1, ..., AS,,) is defined by:
op(ASy, ..., ASy) (1) = op(AS1(L), ..., ASy(1)).

4. Expression of conditional:
The effect is that of a selection. Again, we separate the case of regular selection from
that of geometric selection.

(a) if ASy, ASy, AS5 are apply specifications from 7 to 71,73, 73, then “if A516A5,
then AS3” is an apply specification from 7 to 73. It defines a partial function:

f1) = { ASs(t) if ASy(1)0ASH(1)

unde fined otherwise

16



6 is one of the built-in predicates of the algebra on complex objects.

(b) if ASy, ASy are apply specifications from 7 to v, 7', then “if AS; # () then ASy”
is an apply specification from 7 to 7’. It defines a partial function:

i) :{ AS5(1) if ASy(t) £ 0

unde fined otherwise

Proposition [AB8S8]: the set of apply specifications is closed under composition. O

We end up this section in expressing the three main “geometric” operations on maps
which have been described above (Section 3.2), through the following apply specifications:

¢ Geometric product ¢ :
Let m be a map of type {7}, where, without loss of generality, assume
T =1[By:p, By :p, Ry 1 v, Ry : 7]. Then the geometric product O7_pg, R, is
expressed as:

apply < [By : By, By : B2, R: Ry e Ryl > (m).

Indeed, it is an apply specification from 7 to 7/ = [By : u, By : u, R : 7], and can be
seen as the tuple construction: [By : ASy, By : ASy, R : AS3 e AS,], where the AS;
are the following apply specifications:

ASl = B1
ASQ = B2
ASs = Ry
AS4 = RQ.

We denote the geometric product by apply < e > (m) (generic notation independent
of the type of m).

e Similarly fusion & is denoted by apply < & > (m), and if m has the above type {7},
it is expressed as: apply < [By : B1, B2 : B, R: R1 @ R3] > (m).

e Geometrical selection og:

consider map m of type 7 with two geometric attributes R and S and the selection
04 Ret.5#0; it is expressed as the following apply specifications:

AS1 =R

ASQ =95

AS3 = AS e AS,

if AS3 # () then I,
where I is the identity specification on 7. Selection can then be specified as a com-
position of two apply’s: apply < # 0 < e > >. If we had chosen {.R # () as a
built-in predicate for geometric selection (see footnote 4), selection would be specified
as apply <# 0 >.

Likewise, one can define other apply specifications for the other operations of the section
above, such as geometric join or cover. Consider the case of join: the join of mq and mq
can be expressed as:

17



my Mg mg = apply <# 0 < ¢ >> (my X my).

We first compute the cartesian product of mq and ms, then apply the “e” operation, and

finally check whether each tuple has a non-empty geometric component.

5 Redundant maps having same cover

A map is said to be in normal form if it has a single geometric attribute. Assume we are
initially given a set of normal maps. Obviously, normal maps are not closed under the
operations of Section 3.2.2: the cartesian product of two normal maps gives a map with
two geometric attributes. This is why we did not require in the definition of maps (Section
3.2.1) that the number of geometric attributes in a map be limited to one.

Consider now a map my of type {[A, R1]} and a tuple t; = [A : @, Ry : r1] of my. Tuple
t1 is to be interpreted as follows: to each point p of r; is associated the value @ for attribute
A. Its “semantics” can thus be viewed as:

{la,p] | p € ri}

Then, consider a map my of type {[B, R2]} and the cartesian product my x ms.

Tuple t =[A:a, B:b, Ry:71, Ry:ry] of my X my can be interpreted as the set:

{[a7b7p7q] | P € T, q € T?}

Cartesian products of normal maps are in general of poor interest (e.g. display couples
of districts such that district 1 has a city with more than one million of inhabitants and
corn is grown in district 2).

Usually, given a tuple with two geometric attributes with values r; and ry, one is
interested in the geometric intersection r; @ ro: given a tuple [Crop : corn, Ry : 1] of
map my and a tuple [District : dy, Ry : 73] of map my, the information of interest is
[Crop : corn, District : dy, R : riery] which is one tuple of the map overlay m = my Mg mo.

Cartesian product [C'rop : corn, District : dy, Ry : 71, Ry : 73] is only an intermediate
step in the computation of map overlay:

Mg= O(0R,er,20(M1 X M3))
Observe that

Ne= O'R¢Q)(®(’nll X ’nlg)).

18



®(mq X my) is a normal map. Then, one may wonder whether it is not sufficient to keep
all maps in normal form. This is possible if to each non normal map, we apply geometric
product ©.

In the above example, the tuple cartesian product [A:a, B : b, Ry : 71, Ry : ry] would
be replaced after having applied © by: [A:a, B : b, R: 7y e7r3] and would be interpreted
as the intersection of regions rq, 79, i.e. as:

{[avbvpvp] | peETL, PE TQ}

But such a “normalization” (applying ® to a non normal map) should lead to “equiv-
alent” information:

Given rq e 73 for all tuples of ®(my x my), are we able to reconstruct m; and msg, i.e.
all values 1 and r37 The answer is of course no in the general case.

However, it turns out that for a very useful class of maps, ® is done without loss of
information. The theorem below states that if m; and my are normal maps with identical
cover, then ®(my X my) is equivalent to my X my, i.e m; and mgy can be reconstructed from

@(m1 X mg).

For the sequel of this section, assume all maps m are of type: {[R, A]}, where A
designates any complex object type on the non geometric attributes of m.

We further assume that a map, say with two geometric attributes R; and R5, has been
obtained at some point by applying cartesian product to two maps, say my and mgy in
normal form and of types: {[Rq, A1]} and {[R2, 43]}.

m = my X my is of type {[R1, R, Ay, A3]}.

Theorem 5.1 If my; and my are two normal maps with same cover, then:
m; = WNesty, (14, r(O(m1 X my))),i € [1,2],
where m' = ©(my X my) is a normal map of type {[R, A1, As]}.

This is illustrated in the following diagram, on the example of mq.

19



mi X Mgy > my

TA1,R:

m/ " N

Y
3
3

TAL R Nesty,

Proof (Sketch):

Each tuple of m' is of type [R, Ay, A3]. By projection on R and A; and nest on Ay, we
get a map m"” of type {[R1 : {R}, A1]}. Let us show that wm'"' = m;.

To each tuple ¢ of m' corresponds a tuple ¢; in m; which has the same value for the
non geometric attributes:
Ta, (M) = wa, (m") = 74, (m") = w4, (my X 103) = 74, (M1).

Let [aq,71] be the value of tuple ¢; in mq and [aq, {s1, ..., s,}] be the value of tuple ¢ in
m///‘

By construction of m’, we have for all ¢ € [1,n],
S, =T108T2,,

where 75 ; is a region of map my (we have for some tuple {5 in mg: {3.Ry = 73;).
{r21,...r2.,} is the set of regions of ms.

Then applying ¥ to m’ implies applying & to the component R of each tuple ¢ of m'":
Bt.R = B{s1,...,8n}
=@{riery1,...,711073,}
=rie®{ra1,..., 20}
=r; e C(my)
where C(my3) is the cover of my. Since by definition of the cover of a map, ry C C(mq) and
since by assumption, both maps have same cover, then 71 C C(m3), and:

@tR =T OC(mg) =T.

Therefore, to each tuple ¢; in my with value [ay, 7], it corresponds a tuple ¢ in m” and

20



a tuple t' in Wm'" (of type {[R1, A1]}) such that '.Ry = t;.Ry = rq.

Besides, by definition of W, t'.A; = t.A; = t;.A; = a1, and there is no other tuple in

H_Jm///

Thus, Wm'" = my.

The same argument holds for my.0

In conclusion, if the database includes only maps with same cover, maps with several
geometric attributes (one for each component map) have redundant information. Keeping
maps in normal form is sufficient for extracting any information about component maps.

6 Conclusion

We studied in this paper how to provide the designer of geographic databases with a
database query language extensible and customizable to its own needs. For this, we took as
an example a toy application on thematic maps and showed by using a complex objects al-
gebra that application dependent operations could be expressed through a general construct
called apply, which applies to each element of a set a user defined specific function.

The basic idea behind this construct is that it replaces a set of objects of type 7 by
a set of objects of type 77 by applying to each object an application dependent (partially)
defined function. The database query language itself is in charge of expressing application
independent queries appropriate for manipulating a large amount of structured data. Pro-
vided the application is data driven and all user needs can be expressed through such a
construct, this approach could be used for other applications such as full text systems, form
management, etc.

The model we took in this paper was that of a complex object algebra [AB88]. A query
language based on this model could be implemented with object oriented database systems
such as Orion ([KT88, KT89]) or Oy ([BBBT88, LRV88, LR89]). The design of database
query languages (see for example [BCD89]) for such systems is still a research issue. Since
one of the advantages of object oriented systems is customization and extensibility, such
query languages should be good candidates for applications such as that investigated in this

paper.

Acknowledgments
We are grateful to S. Abiteboul who read earlier drafts of this paper and suggested many
improvements. The paper also benefits from discussions with C. Delobel and R. Jeansoulin.

21



References

[ABSS]

[AGS7]

[BBS1]

[BBB+88]

[BCD8Y]

[BK86]

[CFS0]

[CISS]

[CK81]

[Dav8s]

[Fra82]

[Fra84]

[GCK*89)

[Gut88]

S. Abiteboul and C. Beeri. On the power of languages for the manipulation of
complex objects. Technical Report 846, INRIA, May 1988.

S. Abiteboul and S. Grumbach. COL: A logic-based language for complex ob-
jects. Technical Report 714, INRIA, Septembre 1987.

R. Barrera and A. Buchmann. Schema definition and query language for a geo-
graphical database system. In Hot Springs, editor, IEEFE Computer Architecture
for Pattern Analysis and Image Database Management, New York, Novembre
1981.

F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, 5. Gamerman, C. Lé-
cluse, P. Pfeffer, P. Richard, and F. Velez. The design and implementation of
05, an object-oriented database system. Technical Report 20, GIP Altair, April
1988.

F. Bancilhon, S. Cluet, and C. Delobel. Query languages for object-oriented
database systems: Analysis and a proposal. Technical report, GIP Altair (to
appear), 1989.

F. Bancilhon and S. Khoshafian. A calculus for complex objects. In proc. ACM
SIGACT-SIGMOD, Symp. on Principles of Database Systems, 1986.

N.S. Chang and K.S. Fu. A relational database system for images. In Chang
and Fu, editors, Pictorial Information Systems. 288-321, Springer Verlag, 1980.

A.F Cardenas and T. Joseph. Picquery: A high level query language for picto-
rial database management. IEEE Transactions on Software Engineering, 14(5):
pages 630-638, May 1988.

S.K. Chang and T.L. Kunii. Pictorial database systems. IEEF Transactlions on
Computer, November 1981.

B. David. Le modele Spatiarel. In Quatriémes Journées Bases de Données
Avancées (BD3), pages 73-93, Bénodet, May 1988.

A. Frank. Map query: Data base query language for retrieval of geometric data
and their graphical representation. Computer Graphics, 16, 1982.

A. U. Frank. Requirements for database systems suitable to manage large spatial
databases. In Fuirst International Symposium on Spatial Dala Handling, pages
38-60, Zurich, 1984.

G. Gardarin, J.P. Cheiney, G. Kiernan, D. Pastre, and H. Stora. Managing
complex objects in an extensible relational dbms. Technical report, INRIA,
March 1989.

R.H. Guting. Geo-relational algebra : A model and query language for ge-
ometric database systems. In Conference on Exlending Database Technology
(EDBT ’88), pages 506-527, Venice, March 1988.

22



[Hul87]

[HY84]

[K+88]

[K+89]

[KV85]

[LM84]

[LR89]

[LRVSS]

[MODS7]

[OMS6]

[Ore86]

[RESSS]

[Sam84]

[SDMOS8T]

[SMSEST]

R. Hull. A survey of theoretical research on typed complex database objects.
In J. Paredaens, editor, Databases, pages 193-256. Academic Press (London),
1987.

R. Hull and C.K. Yap. The Format model: A theory of database organization.
ACM, 31(3), 1984.

W. Kim et al. Integrating an object-oriented programming system with a
database system. In Proc, 2nd Intl. Conf. on Objecl-Oriented Programming
Systems, Languages and Applications, San Diego, Septembre 1988.

W. Kim et al. Features on the ORION object-oriented database system. In
W. Kim and F. Lochovsky, editors, Object-Oriented Concepls, Applications and
Databases. Addison-Wesley, 1989.

G.M. Kuper and M.Y. Vardi. On the expressive power of the logical data model
(extended abstract). In proc. ACM SIGACT-SIGMOD, Int. Conf. on the Man-
agement of Data, 1985.

R.A. Lorie and A. Meier. Using a relational DBMS for geographical databases.
In Geo-Processing, pages 243-257, 1984.

C. Lécluse and P. Richard. Modeling complex structures. In Object Oriented
Database Systems, PODS, Philadelphia, April 1989.

C. Lécluse, P. Richard, and F. Velez. O3, an object-oriented data model. In Con-
ference on Extending Database Technology (EDBT '88), pages 556-563, Venice,
March 1988.

F. Manola, J. Orenstein, and U. Dayal. Geographical information processing
in Probe database system. In International Symposium on Computer Assisted
Cartography, Baltimore, 1987.

J. A. Orenstein and F. A. Manola. Toward a general spatial data model for an
object-oriented data model. In VLDB, 1986.

J. A. Orenstein. Spatial query processing in an object-oriented database system.

In Proc. of the ACM SIGMOD, pages 326-336, 1986.

N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial database
system for PSQL. [EEE Transactions on Software Engineering, 14(5): pages
639-650, May 1988.

H. Samet. The quadtree and related hierarchical data structures. Compuling
Surveys, 16(2), June 1984.

R. Sack-Davis, K.J. McDonell, and B.C. Ooi. GEOQL - a query language for
geographic information system. In Australian and New Zeland Association for
the Advancement of Science Congress, Townsville, Australia, August 1987.

T. R. Smith, S. Menon, J.L. Star, and J.E. Estes. Requirements and principles
for the implementation and construction of large-scale geographic information
systems. International Journal of Geographical Information Systems, 1(1): pages
13-31, 1987.

23



[SRS6]

[SRGS3]

[SWS6]

M. Stonebraker and L. A. Rowe. The design of POSTGRES. In proc. ACM
SIGACT-SIGMOD, pages 340-355, 1986.

M. Stonebraker, B. Rubenstein, and A. Guttman. Application of abstract data
types and abstract indices to cad data bases. In Proc. of the ACM/IEEE Conf.
on Engineering Design Applications, pages 107-113, San Jose, 1983.

H. J. Schek and W. Waterfeld. A database kernel system for geoscientific ap-
plications. In Proc. of the Int. Symposium on Spatial Dala Handling, Seattle,
Washington, 1986.

24



