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Technical Report KDBSLAB-TR-94-04 

Spatial Relations, Minimum Bounding Rectangles,
and Spatial Data Structures

Abstract Despite the attention that spatial relations have attracted in domains such as

Spatial Query Languages, Image and Multimedia Databases, Reasoning and Geographic

Applications, they have not been extensively applied in spatial access methods. This

paper is concerned with the retrieval of topological and direction relations using spatial

data structures based on Minimum Bounding Rectangles. We describe topological and

direction relations between region objects and we study the spatial information that

Minimum Bounding Rectangles convey about the actual objects they enclose. Then we

apply the results in R-trees and their variations, R+-trees and R*-trees, in order to

minimise the number of disk accesses for queries involving topological and direction

relations. We also investigate queries that express complex spatial conditions in the form

of disjunctions and conjunctions, and we discuss possible extensions.
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1. INTRODUCTION

The representation and processing of spatial relations is crucial in geographic applications because very

often in geographic space, relations among spatial entities are as important as the entities themselves.

Depending on the application domain, some spatial relations may be more significant than others:

topological relations have been used to access consistency in Geographical Databases (Egenhofer and

Sharma, 1993), ordinal relations to describe aggregation hierarchies (Kainz et al., 1993), and direction

relations have been incorporated in Spatial Query Languages (Papadias and Sellis, 1994a).

Topological relations describe concepts of neighbourhood, incidence and overlap and stay invariant

under transformations such as scaling and rotation. They are important for numerous practical

applications that involve queries of the form "find all land parcels adjacent to the main park". Our

approach on topological relations is based on the 4-intersection model (Egenhofer and Herring, 1990).

Tests with human subjects have shown evidence that this model, and its extension the 9-intersection

model (Egenhofer, 1991) have potential for defining cognitively meaningful spatial predicates, a fact that

renders them good candidates for commercial systems (Mark and Egenhofer, 1994). In fact, the 4- and 9-

intersection models have been implemented in Geographical Information Systems (GIS); Hadzilacos and

Tryfona (1992) used them to express geographical constraints, and Mark and Xia (1994) to determine

spatial relations in ARC/INFO. In addition there are implementations in commercial systems such as

Intergraph (MGE, 1993) and Oracle (Keighan, 1993).

Direction relations  (north, north_east) deal with order in space. Unlike topological relations, there are

not widely accepted definitions of direction relations. Most people will agree that Germany is north of

Italy, but what about the relation between France and Italy? There are parts of France that are north of all

parts of Italy, but is it enough for stating that France is north of Italy?1 These concepts are directly

applicable to geographic applications where the formalization of spatial relations is crucial for user

interfaces and query optimisation strategies. Furthermore, the importance of direction relations has been

pointed out by several researchers in areas including Spatial Data Structures (Peuquet, 1986),

Geographic and Multimedia Databases (Papadias et al., 1994a, Sistla et al. 1994), Spatial Reasoning

(Glasgow and Papadias, 1992), Cognitive Science (Jackendoff, 1983) and Linguistics (Herskovits, 1986).

This paper shows how direction and topological relations between region objects can be processed in

Spatial Databases. Conventional Database Management Systems are designed to store one-dimensional

data (e.g., integers, records) and, as a result, the underlying data structures are not powerful enough to

efficiently handle boxes, polygons etc. On the other hand, the need to process multi-dimensional data in

applications, such as Cartography, Computer-Aided Design, and Computer Vision has led to the

                                                       
1 A survey and an experimental study regarding the use of direction relations in cognitive spatial reasoning at geographic
scales can be found in (Mark, 1992).
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development of alternative spatial access methods. It is a common strategy in spatial access methods to

store object approximations and use these approximations to index the data space in order to efficiently

retrieve the potential objects that satisfy the result of a query. The paper is concerned with the retrieval of

objects that satisfy certain direction and topological relations using spatial methods based on Minimum

Bounding Rectangle (MBR) approximations. In particular we concentrate on R-trees and their variations.

Section 2 describes topological relations and Section 3 defines direction relations between extended

objects using definitions for points. Section 4 is concerned with MBRs and spatial data structures based

on them. Section 5 describes the retrieval of topological relations and Section 6 the retrieval of directions

relations using MBR-based data structures. Section 7 presents the tests in actual implementations and

compares the results. Section 8 discusses queries that involve both topological and direction information

and Section 9 concludes with comments about future work.

2. TOPOLOGICAL RELATIONS

The representation of topological relations is necessary for several practical applications that involve

neighbourhood, inclusion, overlap and related queries. In particular, in this section we describe

topological relations between region objects without holes as defined by the 4-intersection2 model

(Egenhofer and Herring, 1990). According to this model, each object p is represented in 2D space as a

point set which has an interior (denoted by po) and a boundary (denoted by ∂p). Let xi be a point (for the

rest of the paper points are denoted by a letter followed by a subscript). If we make the distinction

between the boundary and the interior, we can define the topological relation between two objects by

examining object intersections:
¬∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∃xi (xi ∈ ∂p ∧ xi ∈ ∂q)

¬∃xj (xj ∈ po ∧ xj ∈ ∂q) ∃xj (xj ∈ po ∧ xj ∈ ∂q)

¬∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∃xk (xk ∈ ∂p ∧ xk ∈ qo)

¬∃xl (xl ∈ po ∧ xl ∈ qo) ∃xl (xl ∈ po ∧ xl ∈ qo)

The formulae in each line are pairwise disjoint; one is true, while the other is false for any pair of

objects. By taking conjunctions of four formulae, one from each line, we can create 16 pairwise disjoint

topological relations between objects. However not all of these relations are valid due to the constraints

imposed by the properties of the object boundaries and interiors. For instance, for all pairs of objects the

following constraints must always hold:

[∃xl (xl ∈ po ∧ xl ∈ qo)] ⇒

[∃xi (xi ∈ ∂p ∧ xi ∈ ∂q)∨ ∃xj (xj ∈ po ∧ xj ∈ ∂q)∨ ∃xk (xk ∈ ∂p ∧ xk ∈ qo)]

[¬∃xl (xl ∈ po ∧ xl ∈ qo)∧ ¬∃xi (xi ∈ ∂p ∧ xi ∈ ∂q)]⇒

                                                       
2 Since we deal with region objects without holes, the 9 and 4 intersection models are equivalent in the sense that they permit
the same valid binary topological relations.
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 [¬∃xj (xj ∈ po ∧ xj ∈ ∂q)∧ ¬∃xk (xk ∈ ∂p ∧ xk ∈ qo)]

Out of the 16 possible relations that can be defined using the previous conjunctions only the following

eight illustrated in Table 1 are valid. These relations are proved to be pairwise disjoint, and they provide

a complete coverage (Randell et al., 1992). For each of the primitive relations Table 1 includes some

intersection points. The term primary object denotes the object to be located and the term reference

object denotes the object in relation to which the primary object is located. For the following examples

the primary objects are transparent and the reference objects are grey.

disjoint(p,q)

q

p

¬∃xi (xi ∈ ∂p ∧ xi ∈ ∂q)∧¬∃xj (xj∈po ∧ xj∈∂q) ∧ ¬∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ¬∃xl (xl ∈ po ∧ xl ∈ qo)

meet(p,q)

q
p

*
xi

∃xi (xi∈∂p ∧ xi ∈ ∂q) ∧ ¬∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ¬∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ¬∃xl (xl ∈ po ∧ xl ∈ qo)

overlap(p,q)

q p
*

xi
*

jx

*
lx

*
kx

∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∧ ∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ∃xl (xl ∈ po ∧ xl ∈ qo)

covered_by(p,q)

qp

xi

*
*

lx
*

kx

∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∧ ¬∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ∃xl (xl ∈ po ∧ xl ∈ qo)

inside(p,q)

qp
*
*

lx

kx

¬∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∧ ¬∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ∃xl (xl ∈ po ∧ xl ∈ qo)

equal(p,q)

q
p

xi*
*

lx

∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∧ ¬∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ¬∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ∃xl (xl ∈ po ∧ xl ∈ qo)
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covers(p,q)

q

p

xi

*

*

lx

*
jx

∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∧ ¬∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ∃xl (xl ∈ po ∧ xl ∈ qo)

contains(p,q)

q

p
x

*
l

*
jx

¬∃xi (xi ∈ ∂p ∧ xi ∈ ∂q) ∧ ∃xj (xj ∈ po ∧ xj ∈ ∂q) ∧ ¬∃xk (xk ∈ ∂p ∧ xk ∈ qo) ∧ ∃xl (xl ∈ po ∧ xl ∈ qo)

Table 1 Topological relations

The disjunction of all topological relations that involve some non-empty intersection is called

not_disjoint, i.e., not_disjoint ≡ meet ∨ overlap ∨ covered_by ∨ inside ∨ equal ∨ covers ∨ contains. The

subset of topological relations that deal with the concepts of inclusion and containment have been called

ordinal or order relations (Kainz et al. 1993). Based on the above definitions we can define the following

ordinal relations:

− in(p,q) ≡ inside(p,q)∨ covered_by(p,q)

− consists_of(p,q) ≡ contains(p,q)∨ covers(p,q).

Topological (and ordinal) relations are very useful in geographic applications. The query “find all

industrial areas of France adjacent to Italy”, for example, would require a search of industrial areas in

France that meet Italy. In the next section we discuss direction relations, another class of relations that are

important for practical applications.

3. DIRECTION RELATIONS

In order to define direction relations between extended objects we first define relations between points

and apply these definitions using universally and existentially quantified formulae. We assume an

absolute frame of reference and a pair of orthocanonic axes x and y. Our method is projection based, that

is, direction relations are defined using projection lines vertical to the coordinate axes. Another approach

is based on the cone-shaped concept of direction, i.e., direction relations are defined using angular

regions between objects. Extensive studies of the two approaches can be found in (Frank, 1994,

Hernandez, 1994).
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Let pi be a point of object p (p denotes the primary object), qj be a point of object q (q denotes the

reference object), and X and Y be functions that return the x and y coordinate of a point. If we draw

projection lines from a reference point, the plane is divided into nine partitions (Figure 1)3.

 X(q)

Y(q)

y

*

1

4

7

x

2 3

8

6

9

Fig. 1 Plane partitions using one point per object

Thus there are nine possible ways to put a primary point in the plane and therefore nine pairwise

disjoint relations that provide a complete coverage. These relations can be defined as:

north_west(pi,qj) ≡ X(pi)<X(qj) ∧ Y(pi)>Y(qj)

restricted_north(pi,qj) ≡ X(pi)=X(qj) ∧ Y(pi)>Y(qj)

north_east(pi,qj) ≡ X(pi)>X(qj) ∧ Y(pi)>Y(qj)

restricted_west(pi,qj) ≡ X(pi)<X(qj) ∧ Y(pi)=Y(qj)

same_position(pi,qj) ≡ X(pi)=X(qj) ∧ Y(pi)=Y(qj)

restricted_east(pi,qj) ≡ X(pi)>X(qj) ∧ Y(pi)=Y(qj)

south_west(pi,qj) ≡ X(pi)<X(qj) ∧ Y(pi)<Y(qj)

restricted_south(pi,qj) ≡ X(pi)=X(qj) ∧ Y(pi)<Y(qj)

south_east(pi,qj) ≡ X(pi)>X(qj) ∧ Y(pi)<Y(qj)

The above relations correspond to the highest accuracy that we can achieve when reasoning in terms

of points using the concept of projections, in the sense that they cannot be represented as disjunctions of

other relations. Exactly one of the previous relations holds true between any pair of points. The relations

are transitive and same_position is also symmetric. The rest form four pairs of converse relations (e.g.,

north_east(pi,qj) ⇔ south_west(qj, pi)). Additional direction relations can be defined using disjunctions of

the nine relations:

north(pi,qj) ≡ north_west(pi,qj) ∨ restricted_north(pi,qj) ∨ north_east(pi,qj)

east(pi,qj) ≡ north_east(pi,qj) ∨ restricted_east(pi,qj) ∨ south_east(pi,qj)

south(pi,qj) ≡ south_west(pi,qj) ∨ restricted_south(pi,qj) ∨ south_east(pi,qj)

west(pi,qj) ≡ north_west(pi,qj) ∨ restricted_west(pi,qj) ∨ south_west(pi,qj)

same_level(pi,qj) ≡ restricted_west(pi,qj) ∨ same_position(pi,qj) ∨ restricted_east(pi,qj)

same_width(pi,qj) ≡ restricted_north(pi,qj) ∨ same_position(pi,qj) ∨ restricted_south(pi,qj).

                                                       
3 In general, if k is the number of points used to represent the reference object, then the plane is divided into (2k+1)2

partitions; k2 of the partitions are points, 2k(k+1) are open line segments and (k+1)2 are open regions. The  numbers refer to
the case that none of the k points has a common co-ordinate with some other point.
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Using the above definitions between points we define spatial relations between objects. The relation

strong_north between objects p and q denotes that all points of p are north of all points of q:

strong_north ≡  ∀pi ∀qj  north(pi,qj). Figure 2a illustrates a configuration that corresponds to the relation

strong_north. As in the case of strong_north, all the relations between objects are defined using

universally and existentially quantified formulae representing relations between points. This is different

from (Papadias and Sellis, 1993; Papadias et al., 1994b) where direction relations are defined using

representative points. The relation weak_north can be defined as: weak_north(p,q) ≡ ∃pi∀qj north(pi,qj) ∧

∀pi∃qj north(pi,qj) ∧ ∃pi∃qj south(pi,qj). As Figure 2b illustrates, object p is weak_north of object q if:

− there exist some points of p which are north of all points of q (since ∃pi∀qj north(pi,qj)) and

− for each point pi there exist points qj such that north(pi,qj) (since ∀pi∃qj north(pi,qj)) and

− there exist some points of p which are south of some points of q (since ∃pi∃qj south(pi,qj)).

q

p

q

p

a b

Fig. 2 Strong_north and weak_north relation

The relation strong_bounded_north is defined as: strong_bounded_north(p,q) ≡ ∀pi∀qj north(pi, qj) ∧

∀pi∃qj north_east(pi, qj) ∧ ∀pi ∃qj north_west(pi, ql). According to Figure 3a, all points of object p must

be in the region bounded by the horizontal line that passes from q’s northmost point and by the vertical

lines that also bound q. In a similar manner we can define weak_bounded_north as,

weak_bounded_north(p,q) ≡ ∃pi ∀qj north(pi, qj) ∧ ∃pi ∃qj south(pi, qj) ∧ ∀pi ∃qj north_east(pi, qj) ∧ ∀pi∃

qj north_west(pi, qj). As in the case of  strong_bounded_north, object p is bounded by the vertical lines

that bound q, but p is also weak_north q (Figure 3.b).

q

p

q

p

a b

Fig. 3 Strong_bounded_north and weak_bounded_north relations

Strong_north_east is a variation of the strong_north relation which can be defined as

strong_north_east(p,q) ≡ ∀pi ∀qj  north_east(pi, qj), i.e., all points of p must be north_east of all points of

q. Similarly we can define weak_north_east relation as: weak_north_east(p,q) ≡ ∃pi∀qj north_east(pi,qj) ∧
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∃pi∃qjsouth(pi,qj) ∧ ∀pi∃qjnorth_east(pi,qj). Figure 4 illustrates strong_north_east and weak_north_east

relations.

q

p

q

p

a b

Fig. 4 Strong_north_east and weak_north_east relations

The relation just_north is defined as: just_north(p,q) ≡ ∀pi ∀qj (north(pi,qj) ∨ same_level(pi,qj)) ∧ ∃pi

∃qj same_level(pi,qj) ∧∃pi ∃qj north(pi,qj). As Figure 5a illustrates, according to this relation there must be

some point of p at the same_level with the northmost point of q, and all the other points of p must be

north of all points of q. We define the relation north between objects as: north(p,q) ≡ ∃pi ∀qj north(pi,qj) 

∧ ∀pi ∃qj north(pi,qj), that is, there exist points of p that are north of all points of q, and for each point of

p there exist point(s) of q south of it (Figure 5b). It can be seen that north≡strong_north ∨ weak_north∨

just_north.

q

p

q

p

a b

Fig. 5 Just_north and north relations

All direction relations between objects that we have defined refer to the direction north. The relations

are not necessarily pairwise disjoint. In particular:

strong_north_east(p,q) ⇒ strong_north(p,q), strong_bounded_north(p,q) ⇒ strong_north(p,q),

weak_north_east(p,q) ⇒ weak_north(p,q), weak_bounded_north(p,q) ⇒ weak_north(p,q),

strong_north(p,q) ⇒ north(p,q), weak_north(p,q) ⇒ north(p,q), just_north(p,q) ⇒ north(p,q)

The definition of pairwise disjoint relations is not a difficult task, but it is beyond the scope of this

paper that aims to show how direction relations of different resolution between extended objects can be

defined and retrieved in spatial data structures. Furthermore since the above relations are concerned with

direction north only, they do not provide a complete coverage. Other directions can be formed in a

similar manner. Such relations are important because they allow the expression of queries in various

levels of qualitative resolution. As a special case consider the example with the direction relations of the

introduction and the map in Figure 6. According to the above definitions, France is weak_north, while

Germany is strong_north of Italy. Denmark is strong_bounded_north and Romania is weak_north_east

of Italy. All these variations of north may be very important for application domains where one concept
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of “north” is not sufficient to express all configurations. Numerous additional relations between region,

line and point data can be defined and used in queries depending on the application needs. If we follow

the same terminology for the other directions, we can say that UK is strong_north_west and Spain is

strong_bounded_west of Italy

Fig. 6 A geographic example involving direction relations

Most of the work on direction relations has concentrated on point objects (Freksa, 1992; Frank, 1992).

According to this approach, each object is abstracted as one point, which may be the center of mass, the

center of symmetry etc. Our work extends previous approaches to direction relations by dealing with

extended objects instead of point objects. Peuquet and Ci-Xiang (1987) also designed an algorithm for

the determination of direction relations between arbitrary polygons represented by minimum bounding

rectangles. Unlike our approach, their method is based on the cone-shaped concept of direction and

involves only four direction relations (north, east, west and south).

4. MINIMUM BOUNDING RECTANGLES

Usually, spatial access methods instead of the actual objects, store approximations that need only a few

points for their representation. Such approximations are used to efficiently retrieve candidates that could

satisfy a query. Depending on the application domain there are several options in choosing object

approximations. Brinkhoff et al. (1993) compare the use of rotated minimum bounding rectangles,

convex hulls and minimum bounding n-corner convexes in spatial access methods. In this paper we

examine methods based on the traditional approximation of Minimum Bounding Rectangles. MBRs have

been used extensively to approximate objects in Spatial Data Structures and Spatial Reasoning because
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they need only two points for their representation; in particular, each object q is represented as an ordered

pair (q'f,q's) of points that correspond to the lower left and the upper right point of the MBR q' that covers

q (q'f  and q's are called the edge points - q'f stands for the first and q's for the second point of the MBR).

While MBRs demonstrate some disadvantages when approximating non convex or diagonal objects, they

are the most commonly used approximations in spatial applications. In the next subsection we investigate

the possible spatial relations between MBRs.

4.1 Spatial Relations between MBRs

When we use two points for the representation of the reference (region) object, the plane is divided into

25 partitions. Four partitions are points, 12 partitions are line segments and 9 partitions are open regions.

The character * in Figure 7a denotes the edge points of the reference MBR and the numbers correspond

to partitions. Therefore there are 25 ways to locate a primary point in the plane. If the primary object is

also represented by a pair of points ordered on the x and y axis (i.e., it is the MBR of a region object) the

number of possible relations between the two MBRs is 169. Figure 7b illustrates how the placement of

the first point of the primary object in a partition, constrains the number of possible partitions for the

second point. If for instance p'f is in partition 8 of Figure 7a, there are only three valid partitions for p's,

namely 3, 4 and 5. The sum of all numbers in Figure 7b is 169, that is, there are 169 unique placements

for the edge points and therefore 169 possible relations between MBRs (this number is the square of

possible relations between time intervals introduced in Allen 1983).

*Y(q's

*

1 2 3 4 5
6 7 8 10

11 12 13 15

16

14

18 19 20

21 22 23 24 25

Y(q'f

X(q'sX(q'f

)

)

) )

5 3 3 1 1
5 3 3 1

15 9 9 3

15

3

9 3 3

25 15 15 5 5

1

9

a b

Fig. 7 Plane partitions using two points per object

Figure 8 illustrates the possible configurations between MBRs. Each configuration corresponds to a

unique placement of points p'f and p's with respect to q'. R3-9, for instance, denotes that p'f is in partition

13 and p's in partition 3.
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R i_1 R i_2 R i_3 R i_4 R i_5 R i_6 R i_7 R i_8 R i_9 R i_10 R i_11 R i_12 R i_13

R 1_j

R 2_j

R 3_j

R 4_j

R 5_j

R 6_j

R 7_j

R 8_j

R 9_j

R 10_j

R 11_j

R 12_j

R 13_j

Fig. 8 Possible relations between MBRs

Figure 9 illustrates the corresponding topological relation for the 169 configurations of Figure 8. For

instance, all the configurations of the first row (R1_j where j can take any value from 1 to 13) correspond

to the disjoint relation, and the total number of configurations in which the MBRs are disjoint is 48. On

the other hand, only relation R5_5 corresponds to the topological relation contains.

Disjoint 48
Meet 40
Overlap 50

Inside 1
Contains 1

CoveredBy 14
Covers 14

Equal 1

TOTAL 169

1 2 3 4 5 76 1098 11 12 13
1

2
3

4
5

7
6

10

9
8

11

12
13

Fig. 9 Topological relations between MBRs

The topological relation between MBRs yields useful information about the topological relation

between actual objects. If it is known that the MBRs are disjoint, it can be concluded that the objects they
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enclose are also disjoint. Furthermore, depending on the relative positions of the edge points, several

conclusions can be drawn about the direction relationships between the actual objects, as for instance:

− north(p'f,q'f) ⇒∀pi ∃qj north(pi,qj),

− north(p'f,q's) ⇒∀pi ∀qj north(pi,qj),

− north(p's,q'f) ⇒∃pi ∃qj north(pi,qj) and

− north(p's,q's) ⇒∃pi ∀qj north(pi,qj).

For example, north(p'f,q's) implies that all points of object p are north of all points of object q. This

relation between p and q was call called strong_north in Section 3. In Figure 8, strong_north is mapped

onto relations R1-j where j can take any value from 1 to 13 because these relations correspond to the only

configurations in which north(p'f,q's). Therefore, the result of the query “find all objects strong_north of

object q” consists of all objects whose MBRs satisfy the relation R1-j. In sections 5 and 6 we discuss in

detail the topological and direction information that MBRs convey about the actual objects they enclose

and how this information can be used for query optimisation techniques in MBR-based data structures.

4. 2 Spatial Data Structures based on MBRs

The most promising group of spatial data structures based on MBRs includes R-trees (Guttman, 1984)

and their variations. The R-tree data structure is a height-balanced tree, which consists of intermediate

and leaf nodes (R-trees are direct extensions of B-trees in k-dimensions). The MBRs of the actual data

objects are assumed to be stored in the leaf nodes of the tree. Intermediate nodes are built by grouping

rectangles at the lower level. An intermediate node is associated with some rectangle which encloses all

rectangles that correspond to lower level nodes. Each pair of nodes may satisfy any of the 169

configurations of Figure 8. Figure 10 shows how the map of Figure 6 is represented by MBRs and stored

in an R-tree. We assume a branching factor of 4, i.e., each intermediate node contains at most four

entries. At the lower level MBRs of countries (denoted by two letters) are grouped into five intermediate

nodes A, B, C, D and E. At the next level, the five nodes are grouped into two larger nodes X and Y.

Figure 10b illustrates the corresponding R-tree.

GR
IT

SP

PO

FR

IR

UK

DE

GE

NL

BE

PL

CH

RO

BU

AL

YU

AU

CZ

HU

A

B

C

D

E

X

Y A B E

PO SP FR BE IR UK NL DE GE CH AU

X Y

IT

D C

GR YU AL BU RO HU CZ PL

a b

Fig. 10 Some MBRs grouped into intermediate rectangles and the corresponding R-tree
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The fact that R-trees permit overlap among node entries sometimes leads to unsuccessful hits on the

tree structure. The R+-tree (Sellis et al., 1987) and the R*-tree (Beckmann et al., 1990) methods have

been proposed to address the problem of performance degradation caused by the overlapping regions or

excessive dead-space respectively. To avoid this problem, R+-tree achieves zero overlap among

intermediate node entries by allowing partitions to split nodes. The trade-off is that more space is

required because of the duplicate entries and thus the height of the tree may be greater than the original

R-tree. On the other hand, the R*-tree permits overlap among nodes, but tries to minimise it by

organising rectangles into nodes using a more complex algorithm than the one of the original R-tree.

Figure 11 illustrates how each method would organise a set of rectangles into intermediate nodes. The

original R-tree would create two intermediate nodes A and B. Node A contains MBRs 1,2,3 and 6 (the

grey MBRs) and node B contains 7, 4 and 5 (Figure 11a). The R+-tree algorithm splits rectangles that fall

on some partition line (rectangles 2 and 7) achieving zero overlap between A and B. This results in

duplicate entries that may increase the number of intermediate nodes (if we assume a branching factor of

4 we have an extra node C) (Figure 11b). The R*-tree algorithm groups rectangles in a different way in

order to achieve smaller overlap and coverage area of the intermediate nodes compared to the original R-

tree algorithm (Figure 11c).

1

2

7

6 4

3

5

A B

1

2

7

6 4

3

5

A

B

7

2

C

1

2

7

6 4

3

5

A B

c b c

Fig. 11 Some rectangles and the corresponding grouping in the R-tree variants

So far, R trees and their variations have been used for queries involving only the relations disjoint and

not_disjoint. If these are the only relations of interest, then when the MBRs of two objects are disjoint we

can conclude that the objects that they represent are also disjoint. If the MBRs however share common

points, no conclusion can be drawn about the spatial relation between the objects (they can be disjoint or

not_disjoint). For this reason, spatial queries involve the following two step strategy:

1. Filter step: The tree is used to rapidly eliminate objects that could not possibly satisfy the query. The

result of this step is a set of candidates which includes all the results and possibly some false hits.

2. Refinement step: Each candidate is examined (by using computational geometry techniques). False

hits are detected and eliminated.

Brinkhoff et al. (1993b) extended the above strategy to include a second filter step with finer

approximations than MBR (e.g. convex hulls) in order to exclude some false hits from the set of

candidates. The present work uses the original two-step strategy to explore a larger, and more detailed set

of direction and topological relations. Such an investigation is important because spatial queries
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frequently require the kind of qualitative resolution distinguished by the topological and direction

relations of sections 2 and 3.

5. IMPLEMENTATION OF TOPOLOGICAL RELATIONS

Since the MBRs are only approximations of the actual objects, the topological relation between MBRs

does not necessarily coincide with the topological relation between the objects. In order to answer the

query "find all objects p equal to object q" we need to retrieve all MBRs that are equal with q', because

only they may enclose objects that satisfy the query. According to Figure 9 these MBRs satisfy the

relation R7-7 with respect to q'. On the other hand, the retrieved MBRs may enclose objects that satisfy

the relations equal, overlap, covered_by, covers or meet with respect to q (see Figure 12). A refinement

step is needed when dealing with topological relations, if the MBRs of the retrieved objects are not

disjoint.

q
p

q
p

qp
q

p
q

p

Fig. 12 Possible relations for objects when the MBRs are equal

The relations contains and inside also involve the retrieval of MBRs that satisfy unique

configurations. In particular, the objects that contain q can only be in MBRs that contain q' (MBRs that

satisfy the relation R5-5 with respect to q'), while the objects inside q, can only be in MBRs that are inside

q' (MBRs that satisfy the relation R9-9 with respect to q'). As in the case of equal, a refinement step is

needed because:

− contains(p',q') ⇒ disjoint(p,q)∨meet(p,q)∨overlap(p,q)∨contains(p,q)∨covers(p,q) and

− inside(p',q') ⇒ disjoint(p,q)∨meet(p,q)∨overlap(p,q)∨inside(p,q) ∨covered_by(p,q)

The rest of the relations involve the retrieval of more than one MBR configurations. In case of covers,

all MBRs that satisfy the relations Ri-j where i and j in {4,5,7,8} with respect to q' should be retrieved

(MBRs that satisfy the relations covers, contains, equal with respect to q'). As Figure 13 illustrates, these

MBRs may enclose objects that cover the reference object. Similarly the retrieval of covered_by involves

all MBRs that satisfy the relations Ri-j where i,j in {6,7,9,10} with respect to q' (MBRs that satisfy the

relations covered_by, inside, equal). The remaining relations involve the retrieval of a large number of

MBRs. In the case of disjoint, for instance, all the MBRs may enclose objects that are disjoint with the

reference object.
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R i_4 R i_5 R i_7 R i_8

R 4_j

R 5_j

R 7_j

R 8_j

Fig. 13 Configurations of MBRs that yield the relation covers between actual objects

We followed the same procedure for the relations meet and overlap. Table 2 shows the conclusions

that can be drawn if we use the concept of projections to study topological relations. The first column of

Table 2 contains the topological relation for the actual objects and the second column a configuration that

satisfies the relation. The third column describes the corresponding relation(s) between MBRs and the

fourth column illustrates the subset of the 169 configurations that satisfy this relation (the grey

configurations are to be retrieved for the query “retrieve all objects that satisfy the relation of the first

column”). The table refers to contiguous or non-contiguous region objects. If we assume contiguity we

can restrict the output MBRs for some relations (Papadias et al., 1994c).

Topological relation
between actual objects

p and q

Illustration Leaf nodes p' to be retrieved Illustration of the corresponding
projections

equal(p,q)
q

p

equal(p',q') 1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

contains(p,q)

q

p

contains(p',q') 1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13
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inside(p,q)

qp

inside(p',q') 1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

covers(p,q)

q

p covers(p',q') ∨ contains(p',q') ∨
equal(p',q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

covered_by(p,q)

qp

covered_by(p',q') ∨ inside(p',q')
∨ equal(p',q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

disjoint(p,q)

q

p disjoint(p',q') ∨ meet(p',q') ∨
overlap(p',q') ∨ covered_by(p',q') 

∨ inside(p',q') ∨ equal(p',q') ∨
covers(p',q') ∨ contains(p',q')

1 2 3 4 5 76 1098 11 12 13

1
2

3

4

5

7

6

10
9

8

11

12
13

meet(p,q)

q
p

meet(p',q') ∨  overlap(p',q') ∨
covered_by(p',q') ∨ inside(p',q') ∨

equal(p',q') ∨ covers(p',q') ∨
contains(p',q')

1 2 3 4 5 76 1098 11 12 13

1
2

3

4

5

7

6

10
9

8

11

12
13

overlap(p,q)
q p

overlap(p',q') ∨ covered_by(p',q') 
∨ inside(p',q') ∨ equal(p',q') ∨
covers(p',q') ∨ contains(p',q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

Table 2 MBRs to be retrieved for topological relations
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The above mapping from topological relations between actual objects to relations between MBRs

refers to leaf nodes. In order to retrieve topological relations using R-trees one needs to define more

general relations that will be used for propagation in the intermediate nodes of the tree structure. For

instance, the intermediate nodes P that could enclose MBRs p' that meet the MBR q' of the reference

object q, should satisfy the more general constraint meet(P,q') ∨ overlap(P,q') ∨ covers(P,q') ∨

contains(P,q'). Figure 14 illustrates examples of such configurations.

P

p'

q'

P

p'

q'

P

p'

q'

P

p'

q'

a b c d

Fig. 14 Intermediate nodes that may contain MBRs that meet the MBR of the reference object

In our geographic example, if we want to find the countries that meet Switzerland, we can directly

exclude all countries in intermediate node Y because they are disjoint with the MBR CH of Switzerland.

Similarly sub-node B is excluded while nodes A and E are selected for propagation. The output MBRs of

the search are IT, AU, GE and FR because they overlap with CH and therefore the actual objects may

meet according to Table 2. The grey MBRs in Figure 15a correspond to potential candidates for the

query, while the grey nodes of Figure 15b are the ones that satisfy the search conditions.
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Fig. 15 An example search for topological queries

Following this strategy, the search space is pruned by excluding the intermediate nodes P that do not

satisfy the previous constraint. Table 3 presents the relations that should be satisfied between an

intermediate node P and the MBR q' of the reference object, so that the node will be selected for

propagation.
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Relation between
MBRs p' and q'

Relation between intermediate node P (that may enclose MBRs  p')
and reference MBR q'

equal(p',q') equal(P,q') ∨ covers(P,q') ∨ contains(P,q')

contains(p',q') contains(P,q')

inside(p',q') overlap(P,q') ∨ covered_by(P,q') ∨ inside(P,q') ∨ equal(P,q') ∨ covers(P,q') ∨ contains(P,q')

covers(p',q') covers(P,q') ∨ contains(P,q')

covered_by(p',q') overlap(P,q') ∨ covered_by(P,q') ∨ equal(P,q') ∨ covers(P,q') ∨ contains(P,q')

disjoint(p',q') disjoint(P,q') ∨ meet(P,q') ∨ overlap(P,q') ∨ covers(P,q') ∨ contains(P,q')

meet(p',q') meet(P,q') ∨ overlap(P,q') ∨ covers(P,q') ∨ contains(P,q')

overlap(p',q') overlap(P,q') ∨ covers(P,q') ∨ contains(P,q')

Table 3 Topological relations for the intermediate nodes

The same relation between intermediate nodes and the reference MBR exists for all the levels of the

tree structure. For instance, the intermediate nodes that could enclose other intermediate nodes P that

satisfy the general constraint meet(P,q') ∨ overlap(P,q') ∨ covers(P,q') ∨ contains (P,q') should also

satisfy the same constraint. This conclusion can be easily extracted from the above table and is applicable

to all the topological relations of Table 3. Notice that the first column of Table 3 contains the relations

between MBRs and not between actual objects. By combining Tables 2 and 3 we calculate the

intermediate nodes to be retrieved given the relation between the actual objects (see Table 4).

Topological relation
between actual objects p

and q

Intermediate nodes P to
be searched

Illustration of the corresponding projections

equal(p,q) equal(P,q') ∨ covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

contains(p,q) contains(P,q') 1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

inside(p,q) overlap(P,q') ∨
covered_by(P,q') ∨

inside(P,q') ∨ equal(P,q') ∨
covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13
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covers(p,q) equal(P,q') ∨ covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

covered_by(p,q) overlap(P,q') ∨
covered_by(P,q') ∨

inside(P,q') ∨ equal(P,q') ∨
covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

disjoint(p,q) disjoint(P,q') ∨ meet(P,q') ∨
overlap(P,q') ∨

covered_by(P,q') ∨
inside(P,q') ∨ equal(P,q') ∨

covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

meet(p,q) meet(P,q') ∨ overlap(P,q') ∨
covered_by(P,q') ∨

inside(P,q') ∨ equal(P,q') ∨
covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13

1

2

3

4

5

7

6

10

9

8

11

12

13

overlap(p,q) overlap(P,q') ∨
covered_by(P,q') ∨

inside(P,q') ∨ equal(P,q') ∨
covers(P,q') ∨
contains(P,q')

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

Table 4 General relations for the intermediate nodes

The ordinal relations defined in Section 2 can also be processed by the above method. Consider the

query "find all land parcels in a given area". The land parcels of the result should be inside or should be

covered_by the area, because the interpretation of in is inside ∨ covered_by. The set of the MBRs to be

retrieved in this case is the union of the MBRs to be retrieved by each of the relations that belong to the

disjunction. Furthermore, the MBRs of the result are the same ones that would be retrieved if the relation

of interest were covered_by. This is because the MBRs to be retrieved for inside constitute a subset of the
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MBRs for covered_by (see Table 2). Similarly the MBRs to be retrieved for consists_of are the ones that

are retrieved for cover. Therefore, the retrieval times for the ordinal relations in and consists_of are the

same as covered_by and covers respectively.

Clementini et al. (1994) studied the use of MBR approximations in query processing involving

topological relations. Furthermore, they defined a minimal subset of the nine intersections that can

optimally determine the relation between the actual objects taking in account the frequency of the

relations. Their findings can be used during the retrieval step in order to minimise the cost for the

computation of intersections between potential candidates.

6. IMPLEMENTATION OF DIRECTION RELATIONS

As in the case of topological directions, for directions we need to define a mapping function that maps

relations between actual objects onto relations between MBRs. In section 4, we mentioned, for example,

that the relation strong_north is mapped onto the 13 configurations of the first row of Figure 8. Unlike

strong_north, which is mapped onto a set of MBR configurations, other direction relations are mapped

onto unique relations. Weak_bounded_north, for instance, is mapped onto relation R3-9, that is, objects

weak_bounded_north of a reference object q can only be in MBRs that satisfy the relation R3-9 with

respect to q'.

Table 5 illustrates the mappings from direction relations between actual objects to MBR relations. The

first column contains the eight direction relations of Section 3 and the second column illustrates a

configuration of objects that satisfies the relation. The third column describes the corresponding relations

between MBRs using relations between the edge points. The last column illustrates the MBRs of the

third column graphically.

Relation between
actual objects p and q

Illustration Leaf nodes p' to be retrieved Illustration of the corresponding
projections

strong_north(p,q)

q

p north(p'f,q's)
1 2 3 4 5 76 1098 11 12 13

1
2
3
4
5

7
6

10
9
8

11
12
13

weak_north(p,q)

q

p north(p's,q's) ∧ north(p'f,q'f) ∧
south(p'f,q's)

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13
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strong_bounded_north
(p,q)

q

p north(p'f,q's) ∧
north_east(p'f,q'f) ∧
north_west(p's,q's)

1 2 3 4 5 76 1098 11 12 13

1

2

3

4

5

7

6

10

9

8

11

12

13

weak_bounded_north
(p,q)

q

p

south(p'f,q's) ∧
north_east(p'f,q'f) ∧
north_west(p's, q's)

1 2 3 4 5 76 1098 11 12 13

1

2

3

4

5

7

6

10

9

8

11

12

13

strong_north_east(p,q)

q

p north_east(p'f,q's)
1 2 3 4 5 76 1098 11 12 13

1

2

3

4
5

7

6

10

9

8

11
12

13

weak_north_east(p,q)

q

p

north_east(p's,q's)∧
north_east(p'f,q'f) ∧

south(p'f,q's)

1 2 3 4 5 76 1098 11 12 13
1

2
3

4
5

7
6

10

9
8

11

12
13

just_north(p,q)

q

p same_level(p'f,q's)
1 2 3 4 5 76 1098 11 12 13

1
2
3
4
5

7
6

10
9
8

11
12
13

north(p,q)

q

p north(p'f,q'f) ∧ north(p's,q's)
1 2 3 4 5 76 1098 11 12 13

1
2
3
4
5

7
6

10
9
8

11
12
13

Table 5 MBRs to be retrieved for direction relations

Similar to topological relations, to retrieve direction relations using R-trees one needs to define more

general relations that will be used for propagation in the intermediate nodes of the tree structure. For
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instance, to find all countries p  strong_north_east of Switzerland we need to retrieve all the MBRs p'

within the leaf nodes that satisfy the constraint north_east(p'f,CHs), that is, the MBRs in the grey area of

Figure 16a. However, the intermediate nodes P that could contain such MBRs should satisfy the

constraint north_east(Ps, CHs). In the R-tree of Figure 16b, intermediate nodes X and Y may both contain

candidate MBRs and are selected for propagation. In node Y, only intermediate node C satisfies the

constraint north_east(Cs,CHs) and is searched, while the remaining nodes are directly excluded (C

contains the only objects that satisfy the query, namely CZ and PL). Similarly, the searched sub-nodes of

X are B and E.
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Fig. 16 An example search for direction queries

Table 6 describes the direction constraint for the intermediate nodes and the corresponding

configurations to be searched for each direction relation between actual objects.

Relation between
actual objects p and q

Intermediate nodes P to be
searched

Illustration of the corresponding
projections

strong_north(p,q) north(Ps,q's)
1 2 3 4 5 76 1098 11 12 13

1
2
3
4
5

7
6

10
9
8

11
12
13

weak_north(p,q) north(Ps,q's)∧ south(Pf,q's)
1 2 3 4 5 76 1098 11 12 13

1
2
3
4
5

7
6

10
9
8

11
12
13
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strong_bounded_north
(p,q)

north(Ps,q's) ∧ west(Pf,q's) ∧
east(Ps,q'f)

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

weak_bounded_north
(p,q)

north(Ps,q's) ∧ south(Pf,q's) ∧
west(Pf,q's) ∧

east(Ps,q'f)

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

strong_north_east(p,q) north(Ps,q's) ∧
east(Ps,q's)

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

weak_north_east(p,q) north(Ps,q's) ∧ south(Pf,q's) ∧
 east(Ps,q's)

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

just_north(p,q) (north(Ps, q's) ∧ ((south(Pf, q's) ∨
same_level(Pf, q's) )

1 2 3 4 5 76 1098 11 12 13
1
2
3
4
5

7
6

10
9
8

11
12
13

north(p,q) north(Ps,q's)
1 2 3 4 5 76 1098 11 12 13

1
2
3
4
5

7
6

10
9
8

11
12
13

Table 6 Intermediate nodes to be retrieved for direction relations
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Queries that involve direction relations may need a refinement step because the relations between

MBRs are not always adequate to express the direction relation between the actual objects. Figure 17a

illustrates a configuration of objects whose MBRs satisfy the relation R3_9, but the objects do not satisfy

the relation weak_bounded_north because formula ∀pi ∃qj north_east(pi,qj) is not true. A refinement step

is required to eliminate the false hits in this case. The refinement step is also needed queries involving

weak_north_east. The result of this query consists of all MBRs in the configurations R3_11, R3_12, and

R3_13. The refinement step detects the false hits for the MBRs that satisfy the relation R3_13, because it is

not always the case that ∀pi ∃qj north_east(pi,qj) is true (Figure 17b). The rest of the MBRs do not require

a refinement step, i.e., all retrieved MBRs correspond to objects that satisfy the query.

q

p p
q

a b

Fig. 17 Refinement step for direction relations

In sections 5 and 6 we have shown how topological and direction relations between objects are

mapped onto relations between MBRs. In the next section we apply the previous results in R-trees and

their variations and compare the retrieval times.

7. TEST RESULTS

Summarising, the processing of a query of the form "find all objects p that satisfy a given topological or

direction relation with respect to object q" in R-tree-based data structures involves the following steps:

1. Compute the MBRs p' that could enclose objects that satisfy the query. This procedure involves

Table 2 for topological and Table 5 for direction relations.

2. Starting from the top node, exclude the intermediate nodes P which could not enclose MBRs that

satisfy the relations of the second step and recursively search the remaining nodes. This procedure

involves Table 4 for topological and Table 6 for direction relations.

3. Follow a refinement step: a) for all MBRs except those in configuration Ri_j where i or j in {1,13}

when dealing with topological relations, b) MBRs in configurations R3_9 and R3_13 when dealing

with the direction relations weak_bounded_north and weak_north_east respectively.

In order to experimentally quantify the performance of the above algorithm, we created tree structures

by inserting 10000 MBRs randomly generated. The node capacity (branching factor) is 50 entries per

node. We tested three data files:

- the first file contains small MBRs: the size of each rectangle is at most 0,02% of the global area

- the second file contains medium MBRs: the size of each rectangle is at most 0,1% of the global area
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- the third file contains large MBRs: the size of each rectangle is at most 0,5% of the global area.

The search procedure used a search file for each data file containing 100 rectangles, also randomly

generated, with similar size properties as the data rectangles. We used the previous data files for retrieval

of topological and direction relations in R, R+ and R* trees and we recorded the number of disk accesses

(the standard measure of efficiency in data structures). In the implementation of R-trees we selected the

quadratic-split algorithm and we set the minimum node capacity to m=40%; in the implementation of

R*-trees we set m=40% while in the implementation of R+-trees the "minimum number of rectangle

splits" was selected to be the cost function. These settings seem to be the most efficient ones for each

method (Beckmann et al., 1990; Sellis et al., 1987). In the rest of the section we present the results for

topological and direction relations.

7.1 Topological Relations

We will start by the number of hits per search, that is, the number of retrieved MBRs for each relation.

The number of hits per search is inversely proportional to the selectivity of the relation and it is related to

the number of disk access. Usually the least selective relations require the greatest number of disk

accesses. Table 7 illustrates the number of hits per search for topological relations.
data number of hits per search
size disjoint meet overlap covered_by inside equal covers contains

small 10000 3,32 2,76 1,06 0,03 1,00 1,07 0,02
medium 10000 11,70 10,37 1,30 0,21 1,00 1,26 0,17

large 10000 56,89 53,56 2,75 1,47 1,00 2,52 1,25

Table 7 Retrieved MBRs per topological relation for each data file

Disjoint is the least selective relation since it involves the larger number of output MBRs. Notice that

the sum of retrieved MBRs in each row is larger than the total number of MBRs in the database because

the same MBR may be retrieved for more than one topological relations between two objects; the

refinement process that filters out the inappropriate MBRs is beyond the scope of this paper. Table 8

illustrates the number of disk accesses per search for topological relations in R- trees and their variations.

data data disk accesses per search
structure size disjoint

(d)
meet
(m)

overlap
(o)

covered_by
(cb)

inside
(i)

equal
(e)

covers
(cv)

contains
(cn)

R-trees small 296 4,13 4,04 4,04 4,04 3,58 3,58 3,42
medium 297 5,35 5,26 5,26 5,26 3,92 3,92 3,75

large 298 9,16 8,99 8,99 8,99 4,31 4,31 4,13

R+-trees small 638 3,39 3,28 3,28 3,28 2,81 2,81 2,75
medium 1176 4,47 4,19 4,19 4,19 2,39 2,39 2,28

large 5373 21,39 19,13 19,13 19,13 2,33 2,33 2,25
R*-trees small 304 3,65 3,57 3,57 3,57 3,13 3,13 2,91

medium 296 4,70 4,60 4,60 4,60 3,53 3,53 3,32
large 293 8,52 8,24 8,24 8,24 3,87 3,87 3,63

Table 8 Results of tests on topological relations
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With the exception of disjoint, the improvement of the retrieval using R-trees compared to serial

retrieval is immense; especially for small size MBRs the improvement is almost two orders of

magnitude4. The difference drops as the MBRs become larger. The increase in the size, increases the

density and, therefore, the possibility that the reference object is not disjoint with other MBRs or

intermediate nodes. The retrieval of disjoint is, as expected, worse than serial retrieval because this

relation requires the retrieval of all the nodes of the tree structure. Clearly, a "real" system would do an

exhaustive search of all the MBRs for disjoint instead of using the tree structure.

According to Table 8, topological relations can be grouped in three categories with respect to the cost

of retrieval. The first group contains disjoint which is the most expensive relation and should be

processed by serial search. The second group consists of meet, overlap, inside and covered_by; they all

require similar retrieval times. The third group consists of the three relations (equal, covers, contains)

which are the least expensive to process. The cost difference between the second and the third group

increases as the size of the MBRs becomes larger. Some of these results can be understood if we observe

the retrieved configurations for each relation. For instance in Section 5, we mentioned that the MBRs to

be retrieved for contains are a subset of the MBRs for covers. Figure 18 illustrates the subset relations

with respect to the output MBRs. According to Figure 18 disjoint is expected to be more expensive than

meet since it involves the retrieval of all the MBRs for meet and some more. Meet is slightly more

expensive than overlap (although they belong to the same group) and so on. Figure 18 also illustrates the

three groups with respect to the cost of retrieval.

disjoint

meet

equal

overlap

covers covered_by

contain inside

group 3

group 2

group 1

Fig. 18 Subset relations according to the output MBRs

Notice that the number of disk accesses depends more on the intermediate nodes to be searched, than

the MBR configurations to be retrieved. The relation inside is more expensive than covers, although it

retrieves only one output MBR configuration (relation R9-9 with respect to q'). This is due to the large

number of intermediate nodes that could contain MBRs that satisfy the relation R9-9. Relations that

                                                       
4The number of disk accesses per search using serial retrieval is equal to 200 for all relations (10000 entries / 50 page
capacity).
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involve the search of the same intermediate nodes, such as inside, overlap and covered_by, have similar

or identical disk accesses, despite the fact that the leaf MBRs are different (the same observation can be

made for direction relations).

The comparison of the various R-tree-based structures follows, in general, the conclusions drawn in

the literature for disjoint and not_disjoint relations, i.e., the variations R+-trees and R*-trees outperform

the original R-trees. Figure 19 (a-c) illustrates a graphical representation of the performance of each

method, for small, medium and large data size respectively.
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Fig. 19 Performance comparison of R-tree variants on topological relations

According to Figures 19a-b, R+-trees perform better than R*-trees. However this advantage is lost if

the duplicate entries generate one extra level in the tree structure, as happened for the large data size of

our tests (figure 19c). In such case the performance of R+-trees is inferior for the most expensive relations

but remains competent for the least expensive ones. Furthermore, when the data density becomes high it

is possible that all of the entries in a full node coincide on the same point of the plane. In such cases R+

trees do not work (Greene, 1989). This happened for some data sets involving large MBRs during our

tests. The irregular behaviour of R+-trees is due to the lack of overlap between nodes, which results to the

quick exclusion of the majority of the intermediate nodes when one of the least expensive relations is

retrieved. On the other hand, for the expensive relations there is no significant gain and the performance

is worse compared to the other structures because of the great number of nodes in the tree.

7.2 Direction Relations

We used the previous data files for retrieval of direction relations in R, R+- and R*-trees. Table 9

illustrates the number of hits per search. In general, the selectivity of direction relations that we have

defined is less than the selectivity of topological relations (and as a consequence the retrieval times are

worse due to enhanced retrieval). North is the least selective direction relation because it retrieves almost

half the MBRs in the files. On the other hand, weak_bounded_north is the most selective relation. The

remaining relations have a wide range of selectivity so that they are representative of other direction

relations as well.
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data number of hits per search
size sn wn sbn wbn sne wne jn n

small 4936,55 38,98 8,12 0,13 2669,62 20,95 10,22 4985,75
medium 4647,52 100,07 8,12 0,34 2260,36 50,64 9,97 4578,19

large 4646,17 228,10 61,87 2,78 2383,6 128,64 10,18 4884,45

Table 9 Retrieved MBRs per direction relation for each data file

Table 10 illustrates the results. According to Table 10, R+-trees have the worst performance for most

queries. Especially for the least selective relations, their performance is worse than serial retrieval. This

happens because of the redundant nodes that have to be searched for large query windows. Furthermore

the nature of direction queries does not take advantage of the fact that intermediate nodes in R+- trees do

not overlap. The performance degrades as the MBRs become larger because the increase in density

increases the possibility that two nodes are not disjoint and therefore the number of duplicate nodes. On

the other hand, R and R* -trees perform significantly better (with R* slightly outperforming R trees).

data data disk accesses per search
structure size sn wn sbn wbn sne wne jn n
R-trees small 163,08 25,69 16,50 3,81 96,29 15,01 26,36 163,08

medium 155,20 27,73 19,09 4,71 86,72 16,56 28,31 155,20
large 159,33 38,28 26,87 7,48 95,65 24,47 38,84 159,33

R+-trees small 328,94 35,93 18,27 3,19 187,94 21,61 37,27 328,94
medium 577,39 46,13 33,63 3,52 296,29 24,83 48,13 577,39

large 2512,93 107,62 150,35 7,38 1394,39 61,30 118,41 2512,93
R*-trees small 162,47 21,72 14,70 3,35 94,80 13,24 22,36 162,47

medium 151,83 26,54 16,15 4,24 83,21 15,16 27,21 151,83
large 159,37 33,66 25,86 6,44 94,41 21,04 34,46 159,37

Table 10 Results of tests on direction relations

In case of directions as well, we can define groups of relations with respect to the cost of retrieval.

North, strong_north and strong_north_east are the most expensive to process but still the number of disk

accesses for such queries in R and R* trees is 50% - 80% compared to serial retrieval. Weak_north,

weak_north_east, just_north and strong_bounded_north belong to the second group and require about

10% of the accesses for serial retrieval. The third group consists of the relation weak_bounded_north

which requires about 2% of accesses. Furthermore, the notion of subsets in MBR retrieval that we

illustrated in Figure 18 for topological relations exists for direction relations also. Figure 20 illustrates the

three groups and the subset relations with respect to retrieved MBRs.
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Fig. 20 Subset relations according to the output MBRs

Figure 21 illustrates the results graphically using a logarithmic scale. Even for the least selective

relations, the number of disk accesses in R and R* trees is significantly better than serial retrieval. This

fact renders R and R* trees suitable data structures for the retrieval of direction relations in addition to

topological relations. Furthermore, unlike topological relations where the refinement step is the rule, the

only direction relations that require a refinement step (a computationally expensive process) are

weak_north_east and weak_bounded_north.
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Fig. 21 Performance comparison of R-tree variants on direction relations

Summarising, we can argue that R* trees is the best data structure to process topological and direction

relations since they exhibit a stable behaviour and their performance is consistently better than R-trees.

Despite the fact that R+ trees are not suitable for direction relations, they can be used for the retrieval of

topological relations in applications involving low density of MBRs because the have the best

performance in such cases. However, as the size of MBRs becomes larger with respect to the embedding

space, the duplicate nodes that are created lead to performance degradation for the most expensive

topological relations.

The previous sections refer to queries involving either topological or direction relations but not both.

In the next section we discuss how queries that involve both topological and direction information can be

processed in R-tree-based data structures.
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8. QUERIES INVOLVING TOPOLOGICAL AND DIRECTION INFORMATION

There are often practical situations that a topological or direction relation alone does not suffice to

describe a situation. Consider for example the query “find all objects that are north and overlap object q”.

Object p in Figure 22a should be retrieved because it satisfies both sub-conditions of the query. On the

other hand, object p of Figure 22b, does not belong to the result because it is not north of q. Similarly

object p of Figure 22 c is north but does not overlap q.

q

p
q p

q

p

a b c

Fig. 22 Query involving direction and topological information

Queries that involve conjunctions of topological and direction relations are easy to process given the

tables for the individual relations. The only difference is that the MBRs to be retrieved belong to the

intersection of the MBRs to be retrieved for each relation. Figure 23a illustrates the MBRs for the

relation overlap (see also Table 2), and Figure 23b illustrates the MBRs for the relation north (see also

Table 5). Figure 23c illustrates the MBRs to be retrieved for overlap and north.
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Fig. 23 MBRs to be retrieved for query involving overlap and north

Similarly, the intermediate nodes to be searched should also belong to the intersection of the

intermediate nodes for each relation. Thus, queries that involve conjunctions of topological and direction

relations are cheaper to process. Furthermore, for some conjunctions an empty result can be returned

without processing the query. For example, the output of the query “find all objects that are strong_north

and overlap object q” is empty because strong_north(p,q) ⇒ ¬ overlap(p,q). Although we treated them

separately, depending on the definitions of the relations, topological information can be extracted from

direction relations and vice-versa. Table 11, illustrates the topological relations that are consistent with

each direction relation.
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strong_north⇒disjoint

weak_north⇒disjoint∨overlap∨meet

strong_bounded_north⇒disjoint

weak_bounded_north⇒disjoint∨overlap∨meet

strong_north_east⇒disjoint

weak_north_east⇒disjoint∨overlap∨meet

just_north⇒disjoint∨meet

north ⇒disjoint∨overlap∨meet

Table 11 Topological information that can be extracted from direction relations

Queries containing conjunctions of topological and direction relations that are not consistent have an

empty result. In case of disjunctions of direction and topological relations (e.g., “find all objects that are

north or overlap object q”) the result consists of the union of MBRs that would be returned for each sub-

condition (Figure 24). The intermediate nodes to searched should also belong to the union of the

intermediate nodes for each relation.
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Fig. 24 MBRs to be retrieved for query involving overlap or north

Summarising, the processing of complex queries that involve conjunctions and disjunctions of

direction and topological relations is straightforward, given the MBRs to be retrieved for each sub-

condition. Furthermore, information about the sets of consistent relations can be used to perform

semantic query optimisation.

9. CONCLUDING REMARKS

The paper shows how topological and direction relations can be retrieved from spatial data structures

based on MBRs. First we described topological and direction relations between region objects and me

mapped these relations onto relations between MBRs. Then we used these mappings to retrieve objects

that satisfy topological and direction constraints in R, R+ and R* trees. We found that R* is the MBR-

based data structure with the best overall performance. Finally, we demonstrated how complex queries

involving conjunctions and disjunctions of topological and direction relations can be processed.
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Our approach on topological relations is based to the 4-intersection model. This model is the prevalent

model for topological relations in the literature and has been used in a wide range of applications such as

Spatial Reasoning (Sharma et al., 1994) and consistency checking in Geographic Databases (Egenhofer

and Sharma, 1993). Furthermore, experimental studies have shown that it has the potential for defining

cognitively meaningful spatial predicates, a fact that renders it attractive for user interfaces.

We also defined a set of direction relations between extended objects, because the previous sets of

direction relations that have been proposed either refer to point objects (Frank, 1994, Hernandez 1994) or

they do not provide adequate qualitative resolution to distinguish between situations that may be

important for practical applications (Peuquet and Ci-Xiang, 1987). As an example we used the

geographic map of Europe and relations such as strong_north(Germany, Italy) and weak_north(France,

Italy). The set of direction relations that we defined was just an initial attempt towards the definition of

direction relations between extended objects. We do not argue that it has a cognitive motivation but

similar sets that match more the user needs and expectations can be defined accordingly.

In this paper we have concentrated on region objects. In order to model linear and point data we need

further extensions because the topological relations that can be defined, as well as the number of possible

projection relations between MBRs, depend on the type of objects. Egenhofer (1993), for instance,

defined 33 relations between lines based on the 9-intersection model, while Papadias and Sellis (1994b)

have shown that the number of different projections between a region reference object and a line primary

object is 221. The ideas of the paper can be extended to include linear and point data, objects with holes

etc.
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