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Abstract. Various relation-based systems, concerned with the qualitative representation and
processing of spatial knowledge, have been developed in numerous application domains. In this
paper we identify the common concepts underlying qualitative spatial knowledge representation,
we compare the representational properties of the different systems and we outline the
computational tasks involved in relation-based spatial information processing. The paper also
describes symbolic spatial indexes, relation-based structures which combine several ideas in
spatial knowledge representation. A symbolic spatial index is an array that preserves only a set of
spatial relations among distinct objects in an image, called the modelling space; the index array
discards information, such as shape and size of objects, and irrelevant spatial relations. The
construction of a symbolic spatial index from an input image can be thought of as a
transformation that keeps only a set of representative points needed for the definition of the
relations of the modelling space. By keeping the relative arrangements of the representative
points in symbolic spatial indexes and discarding all other points, we maintain enough
information to answer queries regarding the spatial relations of the modelling space without the
need to access the initial image or an object database. Symbolic spatial indexes can be used to
solve problems involving route planning, composition of spatial relations and update operations.

Key Words. Spatial Data Models and Query Languages, Representation of Direction and
Topological Relations, Qualitative Spatial Information Processing.

1.   Introduction

This paper is concerned with the representation and processing of spatial knowledge. The term spatial

knowledge refers to configurations among distinct spatial entities, i.e., spatial representations preserve location

in space without incorporating information such as shape, size, texture or colour of objects (for a discussion

about spatial representations see Glasgow and Papadias, 1992). As an example of the use of spatial knowledge

representations in everyday life, consider subway maps (e.g., the London Underground map). These maps do

not display the shapes and sizes of the stations or quantitative distances between the stations, but they usually

contain only line and point data and preserve spatial relations such as north (one station is north of another

station) and intersects (one line intersects another line).

In particular, the paper concentrates on qualitative spatial representations. Qualitative knowledge

representation does not require an intermediate domain in which scale is defined, but comparisons are

performed directly in the represented domain; in the domain of spatial knowledge, object locations are

compared through spatial relations (Freksa, 1992). Spatial relations have been classified (Pullar and

Egenhofer, 1988) in several types, including direction relations that describe order in space (e.g., north,
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north_east), topological relations that describe neighbourhood and incidence (e.g., inside, overlap), ordinal

relations that describe inclusion (ordinal relations are a subset of topological relations), and distance relations

(e.g., near, far). The previous types of spatial relations have been studied independently or in association with

each other. Egenhofer and Herring (1990), for instance, provide a mathematical framework for the definition of

topological relations, while Papadias and Sellis (1993) define direction relations using representative points.

Kainz et al., (1993) model ordinal relations using partially ordered sets and Frank (1992) proposes a method

for qualitative reasoning that combines direction with distance relations.

 There are several reasons for following a qualitative approach to spatial knowledge representation:

− the precision of quantitative representations is not always desirable

− the input and the output of spatial processes is often qualitative rather than quantitative

− qualitative knowledge is usually cheaper.

In Computer Vision research, semantic networks and graph representations have been used to represent

spatial relations among image components. Levine (1978) developed a semantic network where the nodes

denote objects and the arcs encode spatial relations such as left, above, or behind. In Artificial Intelligence

several representational formalisms, usually based on logic (e.g., Randell et al., 1992), have been developed to

represent and reason with spatial relations. The qualitative representation and processing of spatial knowledge

has been proposed for Image Databases and Geographic Information Systems (Sistla et al., 1994), (Papadias

and Sellis, 1992). Other possible applications include Route Planning (Holmes and Jungert, 1992), Image

Similarity Retrieval (Lee et al., 1992) and Spatial Pattern Matching (Glasgow et al., 1992), matching that

depends on the spatial relations among distinct objects, and not on geometric properties.

We will use the term relation-based representations for qualitative representational systems that deal with

spatial relations, but exclude object characteristics or quantitative metric information. In this paper we look at

existing work on qualitative spatial knowledge representation and we describe symbolic spatial indexes, a new

relation-based representation. Section 2 outlines several systems concerned with the representation of spatial

relations and links the various approaches under one framework of study. Section 3 introduces symbolic spatial

indexes and Section 4 describes how they can be used to capture direction relations in different levels of

resolution. Section 5 enhances the expressive power of symbolic spatial indexes by incorporating topological

relations. Section 6 is concerned with qualitative information processing using symbolic spatial indexes and

Section 7 concludes with comments and a discussion about future work.

2.   An Overview of Qualitative Spatial Knowledge Representation

Several relation-based systems have been proposed for the representation of spatial relations in various

scientific areas. Depending on the particular viewpoint, the goals have been:

− explanatory and predictive power, in the case of computational models of Vision and Imagery

− expressive power and inferential adequacy, in the case of Artificial Intelligence representation schemes

− efficient manipulation of large amounts of geographic and geometric data, in the case of Spatial Databases.
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In the following section we identify the concepts underlying qualitative spatial knowledge representation, we

survey previous relation-based systems and we link the different perspectives under one framework.

2.1 Properties of Relation-Based Representations

The image representations that we assume are 2D projections of 3D objects as, for example, the image of Figure

1. Each object in the image occupies a set of pixels and has an interior, a boundary and a complement with

respect to the embedding space. Furthermore, we assume a pair of viewer-independent orthogonal axes x and y.

Figure 1. Original image
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The image conveys information about the objects' characteristics (such as shape, size and colour) as well as

spatial knowledge about the location of objects in space. Relation-based representations of the image discard

object characteristics and irrelevant spatial relations and preserve only a set of spatial relations which is called

the modelli ng space M. Buisson (1989) argues that the spaces of interest in spatial reasoning are topological

spaces which include only concepts of connectedness and continuity, vector spaces which deal with vectorial

dimensions and directions, metric spaces which deal with the concept of distance and Euclidean spaces which

admit notions of scalar products, orthogonalit y, angle and norm. In this paper we will deal with the relation-

based representation of modelli ng spaces consisting of binary direction and topological relations among rigid

objects.

Let SM be the relation-based representation which preserves the spatial relations of M that exist in an image

s. Each spatial relation r ∈ M between two object representations p and q in s is mapped onto a relation R

between two symbolic object representations P and Q in SM. In the rest of the paper we will use small l etters to

denote objects in the original images and capital letters to denote symbolic object representations in relation-

based structures. We will adopt the notation s � M r(p, q) to denote that image s implies the spatial relation r (r 

∈ M) between objects p and q. Two images s and t are said to be equivalent with respect to a modelling space

M (s ≡M t ) iff they imply the same subset of M for every pair of objects, that is : s � M r(p, q) ⇔ t � M r(p, q). The

image in Figure 2a is equivalent to the image of Figure 1 with respect to direction relations in 2D space, such

as north, east etc., while the image in Figure 2b is equivalent to the image of Figure 1 with respect to

topological relations such as meet, disjoint, overlap. Image equivalence depends on the resolution of the

assumed modelling space (see section 4). Depending on their definitions, direction and topological relations

may be related; topological properties, for instance, may be inferred from direction relations.



4

Figure 2. Images equivalent to the original image

a. With respect to direction relations b. With respect to topological relations
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According to Hernàndez (1993), the relation-based representation of spatial knowledge (Hernàndez uses the

term relative representation based on comparative relations) avoids the falsifying effects of exact geometric

representations by not committing to all aspects of the situation being presented; in this sense a relation-based

representation is underdetermined since it may correspond to many situations. Using our terminology we can

say that each relation-based representation does not correspond to a single image, but to a class of equivalent

images with respect to a modelli ng space, that is, relation-based representation systems are ambiguous1. This

feature is of great importance in cases such as scene matching where equivalent scenes should have the same

representations. If we do not use relation-based representations, then for determining equivalence2 between two

visual scenes we would have to search for a transformation chain that would transform one scene into the other.

The combinatorial search for transformation chains connecting the two scenes can be avoided by computing the

corresponding relation-based representations and comparing them for identity. Notice that in order to have this

feature, the representation system must be unique; only one output relation-based representation should be

generated from an input image representation. In this case we have:

s ≡M t ⇔ SM = TM.

We do not claim that relation-based representation systems are adequate for all applications involving

spatial knowledge. For instance, they can not be used in problems that involve visualisation or quantitative

reasoning. Nevertheless, there exist several potential application domains where relation-based representations

could be used independently (e.g., qualitative reasoning) or in conjunction with other representation systems

(e.g., Spatial Databases). In the rest of this section we will describe various representational systems which

have been developed for different computational tasks and we will provide a framework to facilit ate the study of

qualitative spatial knowledge representation.

2.2 Previous Relation-Based Systems

Most of the work in Artificial Intelli gence concerned with qualitative spatial reasoning has focused on logic-

based representations. Such representational systems permit the description of real-world knowledge into

predicates and rules of inference. Randell et al. (1992) developed a theory for topological reasoning in 2D space

expressed in a many-sorted logic. Sistla et al. (1994) proposed a set of rules for inference of direction and

ordinal relations in 3D images and proved soundness and completeness. A variety of approaches to qualitative

                                               
1An extensive discussion about ambiguity and uniqueness of representations for rigid objects can be found in (Requicha,
1980).
2In order to determine equivalence between two images, or spatial entiti es in general, we assume that there is a pre-defined
modelling space of binary relations which are the only relations of interest between any pair of objects.



5

spatial reasoning has been based on Allen's (1983) temporal reasoning approach; extensions of Allen's interval

algebra to higher-dimension spaces can be found in (Güsgen, 1989) and (Mukerjee and Joe, 1990). Related

research has been carried out in the area of spatial constraint networks. A spatial constraint network is a graph-

based description of a scene, where the nodes represent objects and the arcs correspond to disjunctions of

possible spatial relations between them. Inserting a new relation between two objects in the network affects not

only the two objects, but the insertion might yield additional constraints between other objects (constraint

propagation). Studies of constraint propagation and consistency checking in networks of topological relations

can be found in (Smith and Park, 1992) and (Egenhofer and Sharma, 1993). Hernàndez, (1993) studied

constraint networks of direction and topological relations.

Egenhofer and Herring (1990) have developed a system which deals with a modelli ng space consisting of

the binary topological relations disjoint, meet, equal, overlap, contains (and the converse relation inside) and

covers (and the converse covered_by). In their notation, each object P is represented in 2D space as a point set

which has an interior (Po) and a boundary (∂P). The topological relation between any two objects (point sets) P

and Q is described by the four intersections of P's boundary and interior with the boundary and the interior of

Q. Egenhofer (1991) extended the system by introducing the 9-intersection matrices which also include objects'

exteriors. The matrix In, ill ustrated in Figure 3, represents the four intersections between the two point sets P

and Q. For instance, if the intersection of the boundaries of P and Q is non-empty, the element In(1,1) is ~∅,

otherwise it is ∅. The following four matrices of Figure 3 show how the formalism represents spatial

knowledge about Figure 1. The information preserved in the matrices is that a covered_by b, b overlaps c, b

meets d, b disjoint e. Notice that all equivalent images with respect to the assumed modelli ng space (such as the

images in Figures 1 and 2b) generate the same set of matrices. The formalism uses an inference mechanism to

infer the spatial relation between two objects when their spatial relation with a third object is known (the

composition relation). From a covered_by b and b disjoint e, it can be inferred that a disjoint e (if multiple

relations can be inferred, a disjunction of the possible relations is generated).

Figure 3. Intersection matrices
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Chang et al. (1987) developed the two-dimensional string (2D string) representation for encoding symbolic

images, images where distinct objects are denoted by different symbols. A 2D string is a pair of one

dimensional strings (u, v) where u represents the symbolic projections of the objects on the x axis, and v

represents the projections on the y axis. The modelling space for 2D strings includes direction relations in 2D

space. Although topological relations are not explicitly represented, topological information can sometimes be

extracted from 2D strings. Several variations, such as the 2D-H strings and the 2D-G strings (Chang et al.,

1989), have been introduced to extend the expressive power of the original 2D strings. Figure 4 illustrates the

construction of a 2D-G string through a cutting function that detects and records differences in object
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projections on the x and y axes. Figure 4a illustrates the instances where the construction process has detected a

change in object projections. On the x axes, for example, there are projections of objects a and b in the

beginning; after the end of object a there is only object b, then starts object c and so on. Figure 4b contains the

strings u and v that represent the order of object projections (es denotes empty space).

Figure 4. The construction of a 2D-G string

a. Detection of differences in object projections b. Corresponding 2D-G string

�
�

�

�

�

���	��
��
��
�����
����������������
���	��� �"!#$����%&�"!#���%&�'#	%&�

A hierarchical variation of symbolic images, called symbolic arrays, was used as the spatial working

memory representation in the knowledge representation scheme for Computational Imagery (Papadias and

Glasgow, 1991). Each array represents spatial relations (symbolic arrays have been used primarily for direction

relations) among the distinct parts of a complex spatial entity. A part may be decomposed in an array of simpler

parts at the immediately lower level (aggregation hierarchies). For instance, if we assume that the regions of

Figure 1 consist of sub-regions, as illustrated in Figure 5a, then we can use the array structure of Figure 5b to

represent the ordinal relations between regions and sub-regions and the direction relations between the sub-

regions of each region such as the  fact that A is in region B, while it is south of sub-region B1. Direction

relations between parts that exist in different regions (e.g., the relation west between A1 and E1) are not

explicitly represented but they can sometimes be retrieved using appropriate inference mechanisms (Papadias et

al., 1994a). Symbolic arrays were implemented in a functional language, called NIAL, based on a formal theory

of nested arrays. Several functions which operate on symbolic arrays have been developed. These functions can

be used to create symbolic arrays from other representations that store spatial knowledge (such as a frame

database of complex objects), to modify symbolic arrays (e.g., rotate an array or move an object within an array)

or to extract information found in the array (Glasgow and Papadias, 1992).

Figure 5. Symbolic array example

a. Sub-regions of the original objects b. Corresponding symbolic array
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Depending on the modelling space which is to be preserved for a specific application domain, several of the

previous systems could be used. Although the different systems can represent the same information about a
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given domain (they can be made informationally equivalent 3), they are not computationally equivalent since

the efficiency of the retrieval mechanisms is not the same. Identical tasks may involve different algorithmic

solutions and consequently have different complexities in distinct representational systems. Consider the goal

of finding the objects that exist west of a given object.

1. In a representation system based on first order logic this goal involves considering stored predicates plus

recursive calls to rules of the form: west(P, Q) ∧ west(Q, R) ⇒ west(P, R).

2. In a 2D string representational system the processing goal becomes a problem of string subsequence

matching. In a symbolic array the problem becomes one of searching array elements.

Furthermore, there is a basic difference between the inference mechanisms involved in logic and in the

other spatial representation schemes. Inference in logic involves a proof procedure (e.g., resolution) built into

the concept of logic. However there can be spatial knowledge representation systems which make inferences

without the use of explicit rules of deduction but simply by a constraint satisfaction mechanism built into the

processes that construct and access them. Lindsay (1988) used the following example: consider a simple case

consisting of a discrete grid, each cell of which could be occupied by a single object labelled by a name. Now

consider the case where object b is one grid point to the right of a, c is directly above b, and d is one grid point

to the left of c. From this information we may conclude that d is directly above a. This inference could be

supported by a logic-based system with appropriate rules of deduction; such a system would be deductive.

Alternatively, this inference could be supported by a system of construction and retrieval processes that placed

object names on the described grid and read off relations by scanning the grid; such a system would be non-

deductive. The non-deductive system requires no separate computational inference-making stage; the operation

of the construction process entails the making of inferences and is similar to the well known techniques of

query modification and materialisation of views in relational database management systems (Ullman, 1988).

2.3 Discussion About Qualitative Spatial Knowledge Representation

The representational systems of the previous subsection are relation-based because they use spatial relations

among symbolically represented objects rather than absolute coordinates. We can increase the amount of spatial

knowledge that we can represent by increasing the size and the complexity of the representations. In any case

the preserved spatial knowledge will be a subset of the knowledge found in the initial image (as, for example,

the one in Figure 1) in the sense that spatial relations can also be retrieved from the image using appropriate

retrieval processes that operate on pixels. What we gain by using relation-based representations is a reduction

of storage size and an increase of computational efficiency in spatial knowledge retrieval since irrelevant

information is discarded. The extraction of spatial relations from relation-based structures involves symbolic,

and not numerical, computation and avoids the usual problems of geometric representations such as finite

resolution and geometric consistency (although some of these problems may arise during the construction of

relation-based structures from input images).

                                               
3A discussion about informational and computational equivalence of spatial representations can be found in (Larkin and
Simon, 1987).
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 Let M be the modelling space, s the set of input image representations and S the set of the relation-based

representation structures; then a spatial relation-based representation system can be defined as a function: (s,M) 

→ S. In procedural terms, the function which maps an input image representation s (s ∈ s) to an output

relation-based structure SM (SM ∈ S) which preserves the spatial relations of M, is achieved through a

construction process that :

1. scans the input image, detecting the relation r (r ∈ M) between each pair of pixel object representations p

and q,

2. maps r onto a relation R between the corresponding symbolic object representations in the output relation-

based structure.

The construction process can be defined procedurally as:
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 In the case of logic-based representations the previous construction process would add a predicate of the

form R(P,Q) in the li st of predicates representing the image s when the spatial relation r between objects p and

q is detected in s. For Egenhofer's system the construction process will add an intersection matrix representing

the topological relation between P and Q. In the cases of 2D strings and symbolic arrays though, information is

not just added but the position of the new item of information in the output representation is determined by a

constraint satisfaction mechanism built i nto the construction process. Thus, according to Lindsay's (1988)

definitions, 2D strings and symbolic arrays are non-deductive representations while logic-based representations

and intersection matrices are deductive.

The systems of subsection 2.2 follow different approaches to the specification of construction processes.

Chang et al. (1989) have used symbolic projections to generate 2D strings from raster input images. In Figure 4

we ill ustrated a projection-based method, called the cutting function, which creates 2D-G string representations

from 2D input images. For symbolic arrays the construction process is domain dependent; in Molecular Scene

Analysis applications (Glasgow et al., 1992), a construction process creates symbolic arrays representing

proteins from crystallographic data. On the other hand, logic-based systems do not usually include a

construction process as a part of the system but they take an initial set of relation predicates describing aspects

of an image as given and perform some reasoning task (e.g., find the deductive closure of the relations in the

system). The meaning of spatial predicates is encoded in the set of axioms that constitute the theory of logic-

based systems.

We assume that the construction process has the abilit y to detect all the binary relations of the modelli ng

space between distinct objects in the input image and map them onto relations among symbolic object

representations independently of the implementation. We will use the notation SM �  R(P, Q) to denote that the

relation R between object representations P and Q is retrieved through the representation SM. A relation-based



9

representation is complete iff whenever a relation r (r ∈ M) between object representations p and q holds in an

image s, then the corresponding relation R between P and Q can be retrieved through SM, that is, s 
�

M r(p, q) ⇒

SM �  R(P, Q). According to the previous definition, the representational systems of subsection 2.2, except for

symbolic arrays, are complete, because no information is lost due to the structure of the relation-based

representations.

Hierarchical spatial representations, such as symbolic arrays, are in general non-complete since we may

loose information about the relations of the assumed modelling space. For instance, using the symbolic arrays

of Figure 5b we cannot answer whether A is east of C or A is west of C. The hierarchical representation of

space reduces storage requirements in applications where spatial knowledge is organised in hierarchies that

correlate in certain ways. On the other hand, it results in information loss regarding the relations between

objects that exist in different arrays although some of these relations can be retrieved. An extensive discussion

about efficiency and information loss in geographic applications of symbolic arrays can be found in (Papadias et

al., 1994a).

In addition to the representational properties of the system, the processing tasks also determine the choice of

the representation system when various options are available. Graph-based representations have been used in

pattern matching because graph matching is an area which has been extensively studied and several efficient

algorithms have been developed. Logic-based representations are used in qualitative spatial reasoning because

they provide a natural and flexible way to represent spatial knowledge, usually well understood semantics and

inference rules in terms of which proof procedures can be defined. The ordered structure of information and the

compactness of non-deductive representations, such as 2D string and symbolic arrays, facilitates the retrieval of

spatial relations in applications involving large image databases and GIS. In the rest of the paper we apply the

concepts presented in this section for the development of another relation-based representation, called symbolic

spatial index.

3.   Symbolic Spatial Indexes

Symbolic spatial indexes were motivated by previous work on symbolic images and arrays. Consider, for

example, the symbolic image in Figure 6. Although it is obvious that the symbolic image preserves some spatial

relations about the image of Figure 1, several questions arise regarding the symbolic image, such as:

− Which spatial relations are preserved?

− Why this and not another symbolic image was generated from the input image?

− How can we incorporate more detailed direction and topological information in the symbolic image?

− How can we use symbolic images to infer information not explicitly stored (e.g., image overlay)?

Figure 6. A symbolic image
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Symbolic spatial indexes were developed as an attempt to answer the above questions. In the rest of the

paper we will discuss the representational properties of symbolic spatial indexes and we will show how they
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relate to the systems of the previous section. In addition, we will demonstrate construction processes that can be

used to construct indexes from input image representations, we will describe alternative ways to represent

direction and topological information at different levels of resolution and we will show how spatial indexes can

be used in qualitative spatial information processing.

In order to generate a spatial index array from an input image, we assume a construction process that

detects a set of special points in the image, called representative points. Every spatial relation in the modelling

space can be defined using only the representative points. There are two kinds of representative points in the

context of this paper; direction representative points which are used for the definition of direction relations and

topological (intersection) representative points which are used for the definition of topological relations. Figure

7 illustrates several spatial relations whose formal definitions using representative points will be given later in

the paper. The first line denotes the direction relation between objects p and q while the second line denotes the

topological relation between the two objects.

Figure 7. Some direction and topological relations
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Similar to symbolic images, spatial indexes are arrays of cells that store symbolic object representations.

The construction of a symbolic spatial index from an input image can be thought of as a transformation that

keeps only the representative points needed for the definition of the relations of the modelling space and

discards all the other points of the image. By filling the array cells with representative points we maintain

adequate expressive power to answer queries regarding the spatial relations of the modelling space without the

need to access the initial image or an object database.

We use subscripts to denote the individual cells; Sij denotes the cell at row i and column j. Sij and Skl refer

to the same cell iff i=k and j=l and S11 is the lower left cell of the array. Each cell of an index can be empty or

it can be occupied by one (or more) symbol(s) denoting one (or more) representative point(s). We will start with

indexes which represent each object using one representative point and we will gradually increase the number

of points (symbols) per object. Direction representative points are indicated by a capital letter corresponding to

the object to which the point belongs, and a subscript that corresponds to the points function4. For example, Pc

denotes the center of object p. PQ denotes a topological representative point that belongs to the intersection of

objects p and q. The predicate S(sym, i, j) denotes that the cell Sij contains the symbol sym; S(Pc,i,j) denotes

that Sij contains Pc, while S(PQ,i,j) denotes that Sij contains the symbol PQ.

Where conventional indexes are used in database systems to facilitate information retrieval with respect to

some attribute values, symbolic spatial indexes can be used to facilitate retrieval with respect to relations in

space. Consider a database of cities where we would like to answer questions involving the relative positions of

cities. In a spatial index-based implementation each index corresponds to one map (see Figure 8) and each city

                                               
4The subscripts are not necessary for the definition of spatial relations and sometimes we omit them in the illustrations.



11

symbol exists in all the indexes that represent maps in which the city participates. With this scheme we can

efficiently retrieve the cities that satisfy spatial conditions in one or more maps.

Figure 8. A possible implementation of symbolic spatial indexes
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Consider, for example, the query "is there a city with population more than 1 million north_east of city B in

map S". Using the name index we locate city symbol B in the spatial index S and then we select the symbols

denoting cities north_east of B (cities C and D). Using the pointers from these symbols to the object database

we retrieve the additional information concerning the query (population of the cities). Furthermore, we can

answer more complicated queries such as "retrieve all cities that in map S exist north_east of some city that is

south_east of city G in map W". Details about how we can express such queries in symbolic spatial indexes will

be given in Section 6. In the next two sections we will demonstrate how the construction process detects

representative points and generates symbolic spatial indexes that preserve the spatial relations of the modelling

space.

4.   Representation of Direction Relations in Spatial Indexes

For the representation system of this section we assume that the modelling spaces consist of direction relations

such as north, east, north_east, same_level etc. Notice that the meaning of these relations is not obvious. Most

people will agree that England is north of Portugal, but what about the relation between Spain and Portugal?

There are parts of Spain that are directly north of parts of Portugal, but is it enough for stating that Spain is

north of Portugal?5 These concepts are directly applicable to Geographic Applications where the formalization

of spatial relations is crucial for user interfaces and query optimisation strategies. In addition, the importance of

direction relations has been pointed out by several researchers in areas including Spatial Data Structures

(Peuquet, 1986), Spatial Reasoning (Dutta, 1989), Cognitive Science (Jackendoff, 1983) and Linguistics

(Herskovits, 1986). In the rest of the section we will specify the meaning of the direction relations using

representative points and we will show how we can map direction relations onto relations among representative

points stored in symbolic spatial indexes. We will use two sets of definitions for direction relations: the first one

defines the direction relation between two objects by using one representative point per object while the second

set of definitions uses two representative points per object.

                                               
5A survey and an experimental study regarding the use of direction relations in cognitive spatial reasoning at geographic
scales can be found in (Mark, 1992).
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4.1 Representation of Direction Relations Using One Point per Object

Most of the work on direction relations has concentrated on point objects. According to this approach, each

object is abstracted as one point, which may be the center of mass, the center of symmetry etc. As an example

consider cartographic generalisation and geometric abstraction (Bruegger and Muller, 1992). At some high

level of resolution (state level) cities are represented as regions, while at a lower level (country or continent

level) cities are denoted by points. The symbol * in Figure 9a denotes the centers of the objects in the initial

image and the projection lines correspond to the instances at which the construction process has detected a

representative point (a center). All the rows and columns that do not contain a representative point are deleted

from the input image and the result is moved to the spatial index SMD1 (Figure 9b). Using this construction

process, the order of the representative points on the x and y axes is preserved in the output index but metric

and topological information is lost.

Figure 9. Generation of symbolic spatial index SMD1

a. Detection of representative points b. Symbolic spatial index SMD1
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MD1 denotes the set of primitive direction relations for point objects that we can define using the previous

construction process. Primitive relations have the following properties:

− they are mutually exclusive

− they provide a complete coverage

− they correspond to the highest resolution given a set of representative points.

A discussion about primitive direction relations can be found in subsection 4.3. We define the mapping

function that maps direction relations among objects in the initial image to relations among the object centers

in SMD1 as follows:

p north_west q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i>k ∧ j<l]

p restricted_north q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i>k ∧ j=l]

p north_east q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i>k ∧ j>l]

p restricted_west q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i=k ∧ j<l]

p same_position q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i=k ∧ j=l]

p restricted_east q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i=k ∧ j>l]

p south_west q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i<k ∧ j<l]

p restricted_south q ≡ ∃ i,j,κ,l [S(P,i,j)∧S(Q,k,l)∧ i<k ∧ j=l]

p south_east q ≡ ∃ i,j,k,l [S(P,i,j)∧S(Q,k,l)∧ i<k ∧ j>l]

Exactly one of the previous relations holds true between any pair of point objects. The primitive relations

are transitive and same_position is also symmetric. The rest form four pairs of converse relations (e.g., p

north_east q ⇔ q south_west p). Additional direction relations can be defined using disjunctions of the
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primitive relations. For instance, we can define the relation: p same_level q ≡ p restricted_east q ∨ p

restricted_west q ∨ p same_position q.

Similar to symbolic arrays, spatial indexes that preserve direction relations can capture aggregation

hierarchies. In contrast to symbolic arrays where the concept of inclusion is embedded in the implementation

language, symbolic spatial indexes can represent ordinal relations by permitting objects that appear as parts of

regions in an index to be names of other indexes. For instance, the arrays of Figure 10 could be used to

represent the direction and inclusion relations of Figure 5a. In such applications spatial indexes, in addition to

direction relations, preserve the relation in: p in q ≡ ∃ i,j Q(P,i,j) and its converse relation contains: p contains

q ≡ q in p. Object p is in q, if symbol P exists in the array Q representing object q.

Figure 10. Representation of ordinal relations
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The advantage in defining spatial relations using representative points stored in arrays is that information

retrieval reduces to straightforward procedures that search parts of the arrays for representative points.

Modelling space MD1 is adequate for point abstractions of objects but consider that we want the ability to

answer queries of the form "are there parts of c which are restricted_south of some parts of b?". The "centers

approach" is not sufficient for such queries and we need abstractions that preserve two or more representative

points for each object.

4.2 Representation of Direction Relations Using Two Points per Object

Depending on the application domain there are several options for choosing multiple points for the definition of

direction relations. In this subsection we describe a second set of definitions which uses the lower left point (Pf)

and the upper right point (Ps) of the minimum bounding rectangle that covers p. Figure 11a contains the edge

points of the bounding rectangles and Figure 11b illustrates the corresponding spatial index SMD2.

Figure 11. Generation of symbolic spatial index SMD2

a. Detection of representative points b. Symbolic spatial index SMD2
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Although the image of Figure 2a will generate the spatial index of image 9b using the centers as

representative points, it will not generate the index of Figure 11b using two representative points per object. It

can been seen that image equivalence depends on the choice of representative points. When we use two points

instead of one we can represent more detailed spatial knowledge. For instance, we can define several

refinements of the north relation:

p strong_north q ≡ ∀ i,j,k,l [(S(P,i,j) ∧ S(Q,k,l))⇒ i>k]
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p strong_bounded_north q ≡ ∀ i,j ∀ k,l [(S(P,i,j)∧S(Q,k,l)) ⇒ i>k] ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l) ∧ j>l)] 

∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l) ∧ j<l)]

p strong_northeast q ≡ ∀ i,j ∀ k,l [(S(P,i,j)∧S(Q,k,l)) ⇒ i>k ∧ j>l]

p just_north q ≡ ∀ k,l [S(Q,k,l) ⇒ ∃ i,j (S(P,i,j) ∧ i>k)] ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l) ∧

i>k)] ∧ ∃ i,j ∃ k,l [S(P,i,j)∧S(Q,k,l) ∧ i=k]

p weak_north q ≡ ∀ k,l [S(Q,k,l) ⇒ ∃ i,j (S(P,i,j) ∧ i>k)] ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l) ∧

i>k)] ∧ ∃ i,j ∃ k,l [S(P,i,j)∧S(Q,k,l) ∧ i<k]

p weak_bounded_north q ≡ ∀ k,l [S(Q,k,l) ⇒ ∃ i,j (S(P,i,j) ∧ i>k)] ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l) ∧

i>k)] ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l) ∧ j>l)]  ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l

(S(Q,k,l) ∧ j<l)] ∧ ∃ i,j ∃ k,l [S(P,i,j) ∧ S(Q,k,l) ∧ i<k]

p weak_ northeast q ≡ ∀ k,l [S(Q,k,l) ⇒ ∃ i,j (S(P,i,j) ∧ i>k ∧ j>l)] ∧ ∀ i,j [S(P,i,j) ⇒ ∃ k,l (S(Q,k,l)

∧ i>k∧ j>l)] ∧ ∃ i,j ∃ k,l [(S(P,i,j) ∧ S(Q,k,l) ∧ i<k]

p north_south q ≡ ∀ k,l [S(Q,k,l) ⇒ ∃ i,j (S(P,i,j) ∧ i>k)] ∧ ∀ k,l [S(Q,k,l) ⇒ ∃ i,j (S(P,i,j) ∧

i<k)]

These relations are illustrated in Figure 12 while an implementation using R-trees can be found in

(Papadias et al., 1994b). According to the previous definitions Spain is north_south of Portugal while England

is strong_north of Portugal. Similar refinements may be necessary for many applications and cannot be

achieved if we use one point per object. Notice that the previous relations do not provide a complete coverage

and they are not necessarily mutually exclusive (a discussion about the primitive relations of MD2 can be found

in the following subsection). Although few out of the possible primitive relations of MD2 are given specific

names they are preserved in SMD2 and they can be retrieved using a proper query language.

Figure 12. Refinements of the north relation
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By projecting the contents of a symbolic spatial index on the x and y axes we can generate pairs of 1-D

encodings. Figure 13a illustrates the strings xs and ys representing array SMD2; xs contains the symbolic

projections on the x axis and ys on the y axis. If we remove the subscripts from the object symbols and eliminate

the identical substrings we will generate the strings of Figure 13b. Although these strings resemble the 2D-G

string of Figure 4b, they are not identical due to the differences of the construction process that creates the

symbolic spatial index and the cutting function that creates the 2D-G strings. The correspondence of spatial

indexes and 2D strings depends on the choice of the representative points.
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Figure 13. One dimensional encodings of SMD2

a. Strings representing SMD2 b. Elimination of subscripts
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If m is the number of objects and k is the number of points per object then the maximum size of the index

array is (km)2, when there is exactly one symbol in each row and each column. On the other hand, the size of

each of the 1D encodings that can be used to represent the array is km; thus 1D representations are more

efficient for information storage. Chang and his colleagues (1987) developed algorithms for the generation of

2D strings from symbolic images and for the reconstruction of images from their 2D string representations.

Similar algorithms can be applied to produce one dimensional encodings of symbolic spatial indexes and vice-

versa.

4.3 Discussion About the Representation of Direction Relations Using Representative Points

The term primary object denotes the object to be located and the term reference object refers to the object in

relation to which the primary object is located. When one point is used for the representation of the reference

object the plane is divided into nine partitions. The symbol * in Figure 14a denotes the representative point of

the reference object, and X and Y are functions that return the x and y coordinates of a point. The numbers

correspond to the possible positions of the representative point of the primary object with respect to the

reference object; i.e., the primitive relations of MD1 (Figure 14b). Figure 14c illustrates how direction relations

among points on the plane are mapped onto relations among point symbols in a symbolic spatial index. The

symbol Qc in Figure 14c denotes the reference point symbol and the numbers refer to the direction relation

depending on the position of the primary point symbol in the index array. The relation between two point

symbols does not change if we add or remove from the index array lines and columns that do not contain the

point symbols.

Figure 14. Direction relations using one point per object

a. Plane partitions b. Primitive relations c. Positions in the index
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When we use two points for the representation of the reference object, the plane is divided into 25

partitions; thus there are 25 possible ways to place a point of the primary object in the plane. The symbol * in

Figure 15a denotes the direction representative points of the reference object and the numbers correspond to the

partitions of the plane. In general, if k is the number of points used to represent the reference object, then the

plane is divided into (2k+1)2 partitions; k2 of the partitions are points, 2k(k+1) are open line segments and

(k+1)2 are open regions. The previous numbers refer to the case when the points do not have any common x or

y coordinates.
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Figure 15. Plane partitions using two points
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For one-dimensional space the number of partitions is 2k+1; k of the partitions are points and k+1 are line

segments. When we have two points for the reference object, for instance, the number of partitions is 5. If the

primary object P is also represented by two points Pf and Ps ordered on the x axis (X(Pf)< X(Ps)) then the

number of primitive relations between the two objects in 1D space is 13. These 13 relations correspond to the

relations between time intervals introduced in (Allen, 1983) and applied for 1D spatial reasoning in (Freksa,

1991) and (Pullar and Egenhofer, 1988). In two-dimensional space and for the case of region objects the

constraint for the first and the second points of the bounding rectangle is: X(Pf) < X(Ps) ∧ Y(Pf) < Y(Ps) and

the number of possible relations is 169 (the square of the number of relations in 1D space). The 169 relations

constitute the primitive relations of MD2 in case of region objects since they are mutually exclusive, they

provide a complete coverage and they correspond to the higher resolution using two points per object. An

illustration of these relations for minimum bounding rectangles and a classification with respect to topological

information can be found in (Lee et al., 1992).

If we relax the constraint for the representative points of the primary object to: X(Pf) ≤ X(Ps) ∧ Y(Pf) ≤

Y(Ps) ∧ ¬ (X(Pf) = X(Ps) ∧ Y(Pf) = Y(Ps)), i.e., we also allow line primary objects (potentially parallel to the

coordinate axes), then the number of permitted relations are 221. Figure 16 illustrates how the placement of the

first point in one partition constrains the possible partitions for the second. If for instance, we place Pf in

partition 4, then the only acceptable partitions for Ps are 4 and 5 (on the other hand, if p were a region the only

permitted position for Ps would be partition 5). The sum of all numbers is 221, i.e., the set of primitive

direction relations between a region reference object and a line primary object. If we relax the constraint to:

X(Pf) ≤ X(Ps) ∧ Y(Pf) ≤ Y(Ps) allowing X(Pf) = X(Ps) ∧ Y(Pf) = Y(Ps) (the primary object can be a region, a

line, or a point) the number of primitive relations is 225, since there are four more relations for the four point

partitions. Similarly we can calculate the number of primitive direction relations between any combination of

region, line and point objects.

Figure 16. Primitive relations between a region and a line object
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The previous numbers refer to primitive relations. The relations strong_north, weak_north, just_north,

weak_northeast and north_south are not primitive because they constrain each point to a number of possible
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partitions. For example, object p is weak_north of object q if Pf is in one of the partitions 11-15 and Ps is in the

partitions 1-5 with respect to q. The rest of the relations are primitive because they constrain each point to

exactly one partition; for instance, according to weak_bounded_north, Pf must be in partition 13 and Ps must

be in partition 3 with respect to q. Relations of lower resolution can be defined by allowing points to be in

various partitions, i.e., using disjunctions of more "restrictive" relations. For instance, we can define the

relation north as: p north q ≡ p strong_north q ∨ p weak_north q ∨ p just_north q. Strong_north and

weak_north can be further decomposed to disjunctions of other relations until we reach primitive relations. In

case of strong_north the definition consists of 13 primitive relations (two of which are strong_northeast and

strong_bounded_north). Out of the large number of possible direction relations only a few may be needed for

an application domain. For example, it is improbable that a geographic extension of SQL would include 169

different expressions for primitive directions between region objects. Although we have defined a few of these

relations a number of additional ones can be defined and used in practical applications.

Our work extends previous approaches to direction relations (Dutta, 1989), (Freksa, 1992) etc. by dealing

with extended objects instead of point objects. Peuquet and Ci-Xiang (1987) designed an algorithm for the

determination of direction relations between arbitrary polygons represented by minimum bounding rectangles.

Their method involves only four direction relations (north, east, west and south) and is based on the cone-

shaped concept of direction, i.e., direction relations are defined using angular regions between the reference

and the destination object (primary object). Our method is based on the concept of projections. An extensive

study of the two approaches for point objects can be found in (Frank, 1994).

5.  Incorporation of Topological Relations in Spatial Indexes

Although for the objects of Figure 1 when there are intersecting minimum bounding rectangles the actual

objects also intersect, this is not always true for any pair of objects (this is a well known fact in spatial data

structures where in case of intersecting bounding rectangles there is a refinement step to retrieve the relation

between the actual objects, Papadias et al., 1994b). As a consequence, indexes that preserve direction relations

are inadequate for several practical applications that also involve neighbourhood, inclusion, overlap or other

topological queries. In this section we will show how we can incorporate topological relations in symbolic

spatial indexes containing direction information.

5.1 Representation of Topological Relations Using One Symbol per Object

The notion of resolution in the representation of direction relations can be extended for topological relations;

but instead of the number of points per object, in case of topological relations it is the type of symbols per object

that determines the number of represented relations. For instance, we can use different symbols in order to

distinguish a point that belongs to the boundary from a point that belongs to the interior of an object. We will

start with the representation of topological relations using one symbol per object. According to this approach

the primitive relations that we represent are p ∩ q = ∅ which corresponds to the disjoint relation, and p ∩ q ≠

∅ which corresponds to all the other topological relations of Figure 7.
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Unlike direction relations where we can assume the existence of unique representative points ("centers" or

"edge" points), uniqueness is not trivial for symbolic spatial indexes preserving topological relations. Multiple

options arise in cases where two or more points satisfy the conditions to be (intersection) representative points

for a topological relation between two objects. For instance, any point of object a can be chosen as a

representative point for the intersection with object b. In order to achieve uniqueness when there exist two or

more symbolic spatial indexes corresponding to the same equivalence class, the construction process is

responsible for creating the "correct" index by choosing one point in a deterministic way.

The construction process that creates the index SMD2T1, incorporating both direction and topological

information about s, starts by detecting the direction representative points. The first intersection points that are

incorporated in SMD2T1 are the ones that coincide with direction representative points. Intersection points AB

coincide with points Af and As, while intersection points BC, BD and CD coincide with Bs. Such points do not

increase the size of the output index. Then the process detects object intersections that exist on the sides of the

bounding rectangles. We follow this approach because intersections on the sides of the rectangles generate at

most one extra row or column in the output index, whereas an arbitrary intersection may produce an extra row

and an extra column. Finally the construction process finds intersections for the pairs of objects that do not

intersect on a direction representative point or on their bounding rectangles.

In general, the process chooses the intersection points in a deterministic way so that uniqueness is preserved

and the output index remains as small as possible (for a detailed description of the algorithm see Papadias,

1994). Figure 17 illustrates the generation of symbolic spatial index SMD2T1. The symbol * in Figure 17a denotes

the instances where the construction process has detected an intersection (the direction representative points are

not included because they are illustrated in Figure 11a). Figure 17b illustrates the generated index SMD2T1 (the

order of symbols in topological representative points is not important, AB is the same as BA).

Figure 17. Generation of symbolic spatial index SMD2T1

a. Detection of representative points b. Symbolic spatial index SMD2T1
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Using SMD2T1, in addition to the direction relations of MD2 we can define the topological relations:

p disjoint q ≡ ¬∃ i,j S(PQ,i,j)

p not_disjoint q ≡ ∃ i,j S(PQ,i,j)

Notice that SMD2T1 �  R(P,Q) does not necessarily imply that SMD2 �  R(P,Q) or SMT1 �  R(P,Q). SMD2T1 cannot

be represented using SMD2 and a set of intersection predicates since it also contains the relative positions of

intersections with respect to the direction representative points. This property allows the definition of relations

that belong to MD2T1 but not to MT1 or MD2. Such relations are:

p north_touches q ≡ ∃ i,j[S(PQ,i,j)∧ ∀ k,l (S(P,k,l) ⇒ k ≥ i)]

p east_touches q ≡ ∃ i,j [S(PQ,i,j)∧ ∀ k,l (S(P,k,l) ⇒ l ≥ j)]
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p south_touches q ≡ ∃ i,j[S(PQ,i,j)∧ ∀ k,l (S(P,k,l) ⇒ i ≥ k)]

p west_touches q ≡ ∃ i,j [S(PQ,i,j)∧ ∀ k,l (S(P,k,l) ⇒ j ≥ l)]

Objects a and c north_touch object b in Figure 1 because there exists an intersection point in the southmost

part of their boundary6. The previous construction process records the relative positions of the intersections

with respect to the bounding rectangles and permits the definition of relations such as north_touches. If such

relations are not needed for an application domain then a simpler construction process that marks just one

intersection for each pair of objects can be implemented.

 Although we assumed two distinct modelling subspaces MD2 and MT1, we do not argue that direction

relations are independent from topological relations. In the case that the objects are the same as their minimum

bounding rectangles, the direction relation conveys also the topological relation between the objects. In the case

of arbitrary objects, when none of the points of the primary object is in the bounding rectangle of the reference

object then we also have the topological relation disjoint between the objects. Furthermore, it is not permitted to

have certain direction relations in conjunction with some topological relations among the same objects. For

example, according to the previous definitions it is not possible to have p strong_north q and p touch q in the

same array. A discussion about the topological information that bounding rectangles convey about the actual

objects that they enclose can be found in (Clementini et al., 1994).

5.2 Discussion about the Representation of Topological Relations Using Representative Points

As in the case of direction relations, the topological resolution of symbolic spatial indexes can be increased or

decreased to match the representation and processing goals of a given application domain. If we make the

distinction between the boundary of an object p, denoted by ∂p, and the interior denoted by po, then we can

define the topological relation between two objects using the following intersections (illustrated as intersection

matrices in Figure 3):

∂p ∩ ∂q = ∅, ∂p ∩ ∂q = ¬∅

po ∩ ∂q = ∅, po ∩ ∂q = ¬∅

∂p ∩ qo = ∅, ∂p ∩ qo = ¬∅

po ∩ qo = ∅, po ∩ qo = ¬∅.

The relations in each line are mutually exclusive; one is true, while the other is false for any pair of objects.

By combining the intersections between boundaries and interiors we can create 16 mutually exclusive

topological relations between objects. However not all of these relations are valid due to the constraints imposed

by the properties of the object boundaries and interiors. For instance, for all pairs of objects the following

constraints must always hold:

(po ∩ qo= ¬∅ ) ⇒ (∂p ∩ ∂q = ¬∅ ∨ ∂p ∩ qo = ¬∅ ∨ po ∩ ∂q = ¬∅)

(po ∩ qo = ∅ ∧ ∂p ∩ ∂q = ∅) ⇒ (po ∩ ∂q = ∅ ∧ ∂p ∩ qo = ∅).

                                               
6The relations that combine direction and topological information should not be confused with conjunctions of direction and
topological relations. For instance, p north_touches q ≠ p north q ∧ p not_disjoint q. Object a north_touches b but it is not
the case that a north b.
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Out of the 16 possible relations that can be defined using the previous intersections only the following eight

defined in (Egenhofer and Herring, 1990) are valid. These are the primitive relations7 of MT2 (some of these

relations are illustrated in Figure 7):

p disjoint q ≡ (∂p∩∂q=∅) ∧ (po∩∂q=∅) ∧ (∂p∩ qo=∅) ∧ (po∩qo=∅)

p meet q ≡ (∂p∩∂q≠∅) ∧ (po∩∂q=∅) ∧ (∂p∩ qo=∅) ∧ (po∩qo=∅)

p equal q ≡ (∂p∩∂q≠∅) ∧ (po∩∂q=∅) ∧ (∂p∩qo=∅) ∧ (po∩qo≠∅)

p contains q ≡ (∂p∩∂q=∅) ∧ (po∩∂q≠∅) ∧ (∂p∩ qo=∅) ∧ (po∩qo≠∅)

p inside q ≡ (∂p∩∂q=∅) ∧ (po∩∂q=∅) ∧ (∂p∩ qo≠∅) ∧ (po∩qo≠∅)

p covers q ≡ (∂p∩∂q≠∅) ∧ (po∩∂q≠∅) ∧ (∂p∩ qo=∅) ∧ (po∩qo≠∅)

p covered_by q ≡ (∂p∩∂q≠∅) ∧ (po∩∂q=∅) ∧ (∂p∩ qo≠∅) ∧ (po∩qo≠∅)

p overlap q ≡ (∂p∩∂q≠∅) ∧ (po∩∂q≠∅) ∧ (∂p∩ qo≠∅) ∧ (po∩qo≠∅)

The construction process that generates a symbolic spatial index preserving the relations of MT2 must detect

four kinds of intersections for each pair of objects; ∂p∩∂q, po∩∂q, ∂p∩ qo and po∩qo. For each non-empty

one, the corresponding symbol is marked; i.e. if ∂p∩∂q is found non-empty, the symbol ∂P∂Q is marked in the

output index. In order to transform the previous definitions of topological relations to definitions using

representative point symbols stored in a symbolic spatial index, we have to replace each equation of the form: p 

∩ q ≠ ∅ with a formula of the form: ∃ i,j S(PQ,i,j) and each equation of the form p ∩ q = ∅ with a formula of

the form ¬∃ i,j S(PQ,i,j). Thus, the definitions of the topological relations between objects represented by two

symbols per object (the boundary and the interior) are transformed to:

p disjoint q ≡ ¬ ∃ i,j S(∂P∂Q,i,j) ∧ ¬∃ i,j S(Po∂Q,i,j) ∧¬∃ i,j S(∂PQo,i,j) ∧ ¬∃ i,j S(PoQo,i,j)

p meet q ≡ ∃ i,j [S(∂P∂Q,i,j)] ∧ ¬∃ i,j S(Po∂Q,i,j) ∧¬∃ i,j S(∂PQo,i,j) ∧ ¬∃ i,j S(PoQo,i,j)

p equal q ≡ ∃ i,j [S(∂P∂Q,i,j)] ∧ ¬∃ i,j S(Po∂Q,i,j) ∧¬∃ i,j S(∂PQo,i,j) ∧ ∃ i,j S(PoQo,i,j)

p contains q ≡ ¬∃ i,j [S(∂P∂Q,i,j)] ∧ ∃ i,j S(Po∂Q,i,j) ∧¬∃ i,j S(∂PQo,i,j) ∧ ∃ i,j S(PoQo,i,j)

p inside q ≡ ¬∃ i,j [S(∂P∂Q,i,j)] ∧ ¬∃ i,j S(Po∂Q,i,j) ∧∃ i,j S(∂PQo,i,j) ∧ ∃ i,j S(PoQo,i,j)

p covers q ≡ ∃ i,j [S(∂P∂Q,i,j)] ∧ ∃ i,j S(Po∂Q,i,j) ∧¬∃ i,j S(∂PQo,i,j) ∧ ∃ i,j S(PoQo,i,j)

p covered_by q ≡ ∃ i,j [S(∂P∂Q,i,j)] ∧ ¬∃ i,j S(Po∂Q,i,j) ∧∃ i,j S(∂PQo,i,j) ∧ ∃ i,j S(PoQo,i,j)

p overlaps q ≡ ∃ i,j [S(∂P∂Q,i,j)] ∧ ∃ i,j S(Po∂Q,i,j) ∧∃ i,j S(∂PQo,i,j) ∧ ∃ i,j S(PoQo,i,j)

For an example of an array that preserves the previous topological relations using two symbols per object

see (Papadias and Sellis, 1993). Notice that while the number of points per object needed for the direction

relations is independent of the relations of the object with the other objects (one or two points for the first and

second cases of the previous section), the number of points per object for the topological relations depends on

the configuration. The maximum number of points needed to represent binary topological relations among m

objects using the previous definitions is 4C(m,2) = 2m(m-1) when all the pairs of objects overlap (C(m,2)

denotes the number of possible selections of 2 out of m objects). Since for every pair of overlapping objects we

need four intersections, the total number of points is four times the number of possible selections of two out of

m objects.

                                               
7Randell et al. (1992) presented an interval logic for topological reasoning that includes the same set of primitive
topological relations. Related work can also be found in Vieu (1993).



21

If we need more refined topological information additional symbols per object could be used. Egenhofer

(1991), defines topological relations by using definitions that involve the interiors, the boundaries and the

exteriors of objects. If we want a further extension of the expressive power to include the dimensions of the

intersections we could add symbols to distinguish line from point data etc.

6.   Qualitative Information Processing Using Spatial Indexes

While previous sections were concerned with knowledge representation issues, Section 6 describes how

symbolic spatial indexes can facilitate qualitative information processing. In particular we will show how

spatial indexes can deal with the problems of information retrieval (subsection 6.1), composition of spatial

relations (subsection 6.2), route planning (subsection 6.3) and the problem of update operations (subsection

6.4). Since each of these problems itself requires extensive analysis, in this paper we will briefly deal with them

without providing the reader with details in the algorithmic level.

6.1 Information Retrieval

Consider the task of finding all objects that exist strong_north of object B in index SMD2T1. Using a Pictorial

SQL (e.g., Roussopoulos et al., 1988) we could express the query in the following form:
�����������
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������� ��!#"��$%�&�'�%�$��"�)(+*-,/.10

An SQL-like format though, is restrictive since not all of the relations of the modelling space are given specific

names. In this subsection we will describe how we can retrieve information stored in symbolic spatial indexes

using a pictorial Query-By-Example (PQBE) language. In comparison to verbal (spatial) query languages,

PQBE provides a more intuitive and easy to use interface because of its close correspondence with the structure

of 2D space. Unlike verbal languages it does not presume knowledge of keywords for spatial relations on behalf

of the user, nor familiarity with database languages but complex spatial conditions are expressed in a

straightforward manner. Similar to the original QBE, PQBE generalises from the example given by the user in

order to compute the answer to the query. In this case, instead of having skeleton tables showing the relation

scheme, we have skeleton arrays corresponding to symbolic spatial indexes. Domain variables denoting objects

and images are preceded by the character "_", while constants appear without qualification. The character D

before a variable causes its value to be displayed. For the following examples we will use the index arrays SMD1

and WMD1 illustrated in Figure 18 (these indexes are also illustrated in Figure 8). We assume that the indexes

represent maps of cities.

Figure 18. Spatial indexes representing maps of cities

a. Index SMD1 b. Index WMD1

2
3

4
5 6

7
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The query in the skeleton array of Figure 19a will retrieve all cities P (primary object variable) where P is

north_east with respect to city B (reference object constant) in map S. The query results in a search of the

subpart of the array illustrated in Figure 19b. The output (the set of cities that satisfy the spatial conditions), is

illustrated in Figure 19c.

Figure 19. Query involving primary object retrieval

a. Skeleton array b. Sub-array to be searched c. Results
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{C,D}

Similarly, the query in the skeleton array of Figure 20a will retrieve all cities P such that P is north_east of

some city Q (reference object variable) in map S. The result of this query (B, C, D) is a superset of the previous

result, because cities north_east of B are also included. We can also have queries with more than one primary,

or reference, objects. The query in the skeleton array of Figure 20b, will retrieve all cities north_east of B and

north_west of some city Q, where Q is north_east of B in S. The result (city C) is a subset of the cities that are

retrieved through the query of Figure 19a because the primary objects in this case must satisfy more specialised

spatial conditions (all binary constraints among the domain variables and the constants that appear in a

skeleton array must be taken into account when processing the query). Unlike the previous queries which refer

to map constants, the query in the skeleton array of Figure 20c will retrieve all cities north_east of B in some

map I (map variable). This query, in addition to cities C and D, will also retrieve city J because it is north_east

of B in map W.

Figure 20. Additional queries involving primary object retrieval

a. Reference object variable b. Multiple reference objects c. Image variable
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We can use multiple skeleton arrays to express union, intersection and join. The query in Figure 21a, will

retrieve all cities north_east of B in map S or in map W. PQBE also allows map retrieval. The query in Figure

21b, for instance, will retrieve all maps in which city C is north_east of B (map S). The previous queries

retrieve spatial knowledge explicitly stored in one or more symbolic spatial indexes. PQBE also allows the

retrieval of spatial knowledge regarding cities that exist in different maps. This information is not explicitly

stored but it can be inferred using appropriate rules of inference encoded in a composition table (composition of

spatial relations using symbolic spatial indexes is discussed in the next subsection). The only difference is that

in queries involving composition, the skeleton arrays do not correspond to particular indexes and therefore

skeleton arrays do not have superscripts denoting specific maps. For instance, the result of the query of Figure

21c is the set of all cities in the database that are north_east of city F. This query, unlike the previous ones,

retrieves not only the cities that are north_east of F in some map (B and J are north_east of F in map W), but

also the cities that exist in different maps and satisfy the spatial condition according to the composition table.
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Cities C and D are also north_east of F because they are north_east of B in map S and B is north_east of F in

map W (transitivity).

Figure 21. Additional features of PQBE

a. Union b. Image retrieval c. Inference
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Chang and Fu (1980) developed Query-by-Pictorial Example (QPE), a relational query language for

manipulating spatial and conventional relations in image databases. QPE allows the expression of spatial

queries by pointing on the display screen using special input devices. Despite the name similarity the concept of

QPE is rather different from PQBE. Chang et al. (1987, 1988) proposed a pictorial language aimed at the

retrieval of object configurations which is similar to PQBE. PQBE extends Chang's pictorial language by

including variable and constant reference objects, negation, union, intersection, join and a large set of

additional features (for detail s see Papadias and Selli s, 1994). Further extensions, such as incorporation of

topological relations, can be developed to enhance the expressive power of Pictorial Query-by-Example.

6.2 Composition of Spatial Relations - Image Overlay

The problem of composition can be defined as "if the spatial relation between P and O, and between O and Q is

known what are the possible relations between P and Q?". Frank (1994) presented composition tables for

direction relations based on the concepts of projections and cone-shaped directions. Freksa (1992) also studied

composition of direction relations in 2D space and Egenhofer (1991) composition of topological relations.

Frank uses the notion of Euclidean approximate to deal with uncertainty, while in Freksa's and Egenhofer's

systems when various cases are possible the systems generate a disjunction of the potential primiti ve relations.

In this subsection we will show how symbolic spatial indexes can deal with composition of spatial relations.

Consider that we want to perform an image overlay using the symbolic spatial indexes of Figure 18, i.e., we

would li ke to generate an index that preserves information existing in SMD1 and in WMD1. The two indexes have

an object (B in this case) in common. Let S the set of representation structures (symbolic spatial indexes

preserving MD1) and O the set of symbolic object representations. We can define a composition operator com:

SxSxOxOxO →S, that takes as input the two indexes to be composed, the common object with respect to which

the composition is made, and two other objects each belonging to one array, whose composition relation is to be

found. The operator creates one or more output arrays which contain only the three objects preserving their

relative positions. For instance, com(SMD1,WMD1, B, D, F) will generate the array of Figure 22.

Figure 22. Spatial index com(SMD1, WMD1, B, D, F)
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In order to compute the composition relation, the operator uses the following composition table. Table 1

illustrates the composition relation between objects P and Q when their relation with a third object O is known
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(instead of the full name of the relation we use abbreviations e.g., NW instead of north_west). For instance, the

array of Figure 22 is generated using the facts that D is north_east B in index SMD1, B is north_east F in index

WMD1 and the entry (3,3) of the composition table.

Table. 1 Composition Table

1 2 3 4 5 6 7 8 9

NW(O,Q) RN(O,Q) NE(O,Q) RW(O,Q) SP(Y,Z) RE(O,Q) SW(O,Q) RS(O,Q) SE(O,Q)

1 NW(P,O) NW NW NW∨RN∨NE NW NW NW∨RN∨NE NW∨RW∨SW NW∨RW∨SW T

2 RN(P,O) NW RN NE NW RN NE NW∨RW∨SW RN∨SP∨RS NE∨RE∨SE

3 NE(P,O) NW∨RN∨NE NE NE NW∨RN∨ NE NE NE T NE∨RE∨SE NE∨RE∨SE

4 RW(P,O) NW NW NW∨RN∨ NE RW RW RW∨SP∨RE SW SW SW∨RS∨SE

5 SP(P,O) NW RN NE RW SP RE SW RS SE

6 RE(P,O) NW∨RN∨NE NE NE RW∨SP∨RE RE RE SW∨RS∨SE SE SE

7 SW(P,O) NW∨RW∨SW NW∨RW∨SW T SW SW SW∨RS∨SE SW SW SW∨RS∨SE

8 RS(P,O) NW∨RW∨SW RN∨SP∨RS NE∨RE∨SE SW RS SE SW RS SE

9 SE(P,O) T NE∨RE∨SE NE∨RE∨SE SW∨RS∨SE SE SE SW∨RS∨SE SE SE

In several cases there may be multiple possible outputs for image overlay. In such cases the operator, such

as the ones in Freksa's and Egenhofer's systems, will generate a li st of output arrays corresponding to the

possible relations. For instance, com(SMD1, WMD1, B, D, G) will generate the arrays of Figure 23.

Figure 23. Spatial indexes corresponding to com(SMD1, WMD1, B, D, G)
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The composition relations are generated using the facts that D is north_east of B in index SMD1, B is

south_east of G in index WMD1 and the entry (3,9) of the composition table. The arrays correspond to the three

possible relations between D and G (NE∨RE∨SE) when their relative positions with respect to B are known.

Notice that symbolic spatial indexes do not preserve metric information; otherwise only one relation could be

generated as the result of composition. There is also the possibility that the composition does not produce any

information about the possible relation between two objects. For instance, com(SMD1, WMD1, B, D, J) will

generate nine arrays that correspond to the primitive relations of MD1 between D and J when it is also known

that B is south-west of both D and J; composition does not rule out any possible positions (the entries of the

composition table that denote disjunction of nine primitive relations contain the symbol T).

The previous composition table has been extended to capture ordinal relations for applications such as the

one in Figure 10 (Papadias et al., 1994a). The same composition operator can handle symbolic spatial indexes

preserving modelling spaces of direction relations using two, or more, representative points per object but the

number of possible outputs grows exponentially with the number of points used to represent the objects. The

problem of composing both direction and topological relations though (e.g., arrays preserving MD2T1), is more

complicated and requires analysis beyond the scope of the paper.



25

6.3 Route Planning

Route planning has been extensively studied in areas of Artificial Intelligence, such as motion planning and

robot navigation. Previous systems designed to deal with this problem, include TOUR (Kuipers, 1978) and

SPAM (McDermott and Davis, 1984). Holmes and Jungert (1992) have demonstrated how symbolic projections

can be applied to knowledge-based route planning in digitised maps. In this subsection we will show how

symbolic spatial indexes can be used to define routes connecting two objects.

Consider the map of Figure 24a, in which the regions represent cities and the lines correspond to highways

that connect them. Figure 24b illustrates the corresponding symbolic spatial index TMD2T1 .

Figure 24. Map of cities and highways

a. Initial map t b. Spatial index TMD2T1
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A direct connection between cities Ck and Cl corresponds to a highway that intersects with both cities and

can be defined as: Ck d_connects Cl ≡ ∃ Hm ∃ i,j,g,f [S(CkHm,i,j) ∧ S(HmCl,g,f)]. H1 directly connects cities

C1 and C3 since S(C1H1,2,2) ∧ S(H1C3,6,5).

We will use the notation Hm reaches Hn to denote that highway Hn can be reached from Hm using highway

intersections (for all the examples we assume bi-directional highways). The relation reaches can be defined as:

Hm reaches Hn ≡ ∃ i,j [S(HmHn)] ∨ ∃ Hk [Hm reaches Hk ∧ Hk reaches Hn]. H1 reaches H3 since

S(H1H3,4,4).

An indirect connection is achieved through a highway that intersects with the first city, and a second

highway which reaches the first one (directly or indirectly) and passes from the second city. Indirect connection

through highways can be defined as: Ck i_connects Cl ≡ ∃Hm ∃Hn ∃i,j,g,f [S(CkHm,i,j) ∧ Hm reaches Hn ∧

S(HnCl,g,f) ]. C1 and C4 are indirectly connected through H1 and H3 since S(C1H1,2,2)∧ H1 reaches H3 ∧

S(H3C4,3,6).

Additional types of connections, such as the connection of two cities through an intermediate city, can be

defined to express situations involving routes from a city to another. In procedural terms the previous

definitions reduce to a search for topological representative points involving lines. Direction information can be

used in choosing a line which is in the direction of the destination, when several choices are available.

Furthermore, composition can be used in route finding when the start and the destination cities exist in

different symbolic spatial indexes (provided that a common object belongs to the route).
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6.4 Update Operations

Spatial knowledge representation systems deal with a dynamic environment in which a change in a single item

of knowledge may have widespread effects. In logic-based systems, the assertion of a new fact may invalidate

previous inferences. The problem of updating a system's representation of the state of the world to reflect the

effects of actions is known as the frame problem.

Extensions of PQBE can be used to handle update operations in symbolic spatial indexes. Object deletion

from an index can be treated in a way similar to object retrieval. The character R before a variable causes the

contents of the variable to be removed from the index array. The query in the skeleton array of Figure 25a will

cause all the objects P such that P is restricted_east of A to be removed from SMD1 . After all the symbols

denoting objects that satisfy the previous conditions (object E) are deleted, the empty rows and columns are

removed, and the resulting array is illustrated in Figure 25b.

Figure 25. Object removal using PQBE

a. Skeleton array b. New index
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Object insertion can also be handled by PQBE provided that the position of the object to be added is

precisely specified. Otherwise the insertion of an object using conditions expressed in PQBE may result in

several output arrays corresponding to the possible positions of the new object. Another way to insert an object

in a symbolic spatial index is by explicitly specifying the cells where each point of the object is to be added.

Furthermore, object movements within the array can be handled by removing the object from its old positions

and inserting it in the new ones.

Related to update operations are the problems of spatial knowledge assimilation and error correction

(Davis, 1986). The goal of assimilation is, given an accurate representation of spatial knowledge and an

accurate fact, to augment the representation in order to include the new fact. The goal of error correction is,

given a spatial knowledge representation which is not quite accurate and a new fact which is more precise, to

improve the representation. Both of these problems could be treated by operators similar to the composition

operator that take two symbolic spatial indexes as arguments (one representing the initial state and one

representing the new fact) and generate one or more output indexes that describe the new state.

7.  Conclusion

This paper deals with the qualitative representation of spatial knowledge and in particular with the

representation of binary direction and topological relations in 2D space. Various relation-based systems

concerned with the representation of spatial relations have been developed in several areas with different

processing tasks. Graph representations and logic-based formalisms have been used in qualitative spatial

reasoning. Intersection matrices describe binary topological relations for a set of objects and compute the
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composition relations among them. 2D strings represent images by one-dimensional encodings, and symbolic

arrays preserve the spatial structure of complex entities in aggregation hierarchies.

The paper describes a new relation-based structure, called a symbolic spatial index, which applies several

different ideas in qualitative spatial knowledge representation. The set of spatial relations that is explicitly

represented in a symbolic spatial index, its modelling space, is determined by the choice of representative

points. In this paper we have dealt with modelling spaces consisting of direction relations using one and two

points per object, and topological relations using one symbol per object. Further extensions are possible for

applications that require higher direction and topological resolution.

Table 2 summarises the properties of several relation-based systems. The first two columns refer to the

representation systems and the type of spatial relations that they have been used to represent. Column 3

describes construction processes that have been developed to generate relation-based representations from other

forms of spatial knowledge. All the systems are ambiguous (column 4), while some of them are unique (column

5) according to the definitions in subsection 2.1. For the rest of the systems uniqueness cannot be determined

due to the lack of a definition for the construction process. Column 6 classifies the systems into deductive and

non-deductive according to the discussion in subsections 2.2 and 2.3. Column 7 refers to completeness of

representations with respect to the assumed modelling space.

Table 2. Properties of spatial relation-based representation systems

Representation
System

Modelling
Space

Construction Process Ambiguous Unique Deductive Complete

Logic-based direction and/or topological No Yes - Yes Yes

Intersection matrices topological No Yes - Yes Yes

2D-G strings direction (and topological) symbolic projection Yes Yes No Yes

Symbolic arrays direction and ordinal application dependent Yes - No No

Spatial Indexes direction (and topological) modelling space dependent Yes Yes No Yes

Spatial information processing using relation-based representations involves symbolic and not numerical

computation and avoids the usual problems of geometric representations. Although relation-based systems

cannot be applied in all domains involving spatial knowledge, we believe that there is a wide scope of potential

applications ranging from Qualitative Reasoning and Spatial Databases to Robot Navigation and

Computational Vision and Imagery. In this paper we have shown how symbolic spatial indexes can be used to

handle information retrieval, image overlay, route planning and update operations, although additional tasks

(such as image similarity retrieval) are not excluded.

Topics that emerged during this work and can be considered for further investigation include

− the combinatorial study of the number of direction and topological relations that we can represent as a

function of the number and the properties of the representative points used for each object

− the integration of direction and topological reasoning within one framework

− the notion of image equivalence with respect to a modelling space, ambiguity, uniqueness and

completeness of spatial relation-based representations
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− comparative studies of the previous representational systems with respect to storage requirements,

computational efficiency, expressive power and inferential adequacy.
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