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ABSTRACT

Spatial reasoning is an important area of geographic
information systems (GIS) and spatial databases research.
This paper deals with reasoning about direction relations
(east, northeast) in spatial hierarchies. We assume a
database that stores the direction relations between objects
in the same geographic region and propose algorithms for
the inference of relations between objects in different
regions. We present two types of inference: the first one
uses the relations of ancestor regions in the hierarchy,
while the second one is based on compositions of spatial
relations and path consistency. For both types we provide
inference rules, ill ustrate examples, and study the
computational complexity. Although we use a specific set
of relations for demonstration purposes, the algorithms are
applicable to any set of direction relations provided with
appropriate inference rules.

1. INTRODUCTION

The hierarchical representation of space has a strong
psychological motivation (Hirtle and Jonides, 1985) and
numerous computational advantages that have been
exploited in a number of areas including data structures
(Guttman, 1984; Samet, 1989) and wayfinding (Car and
Frank, 1994). This paper studies hierarchical reasoning
about direction relations in spatial databases that cannot
resort to coordinate-based representations. Such situations
are typicall y found in narratives, trip reports, and
scientists' field notes. We assume that there only exists
relative information about the objects within a region and
inclusion relations (i.e., the hierarchical structure). The
goal is to infer the direction relations between objects
located in different regions and to detect potential
inconsistencies.

As an example consider that you have the information
that location X1 is east of X2 in the map of region A1, and

that X2 is east of X3 in the map of (neighbouring) region

A2. In addition you learn that X3 belongs also to region

A3, which is northeast of A1. The above data contain an

inconsistency about the relation between X1 and X3: from

their relation with X2, we can infer through transiti vity

that east(X1,X3); using the relation of their ancestor

regions (northeast(A3,A1)) we can also infer that

northeast(X3,X1) which contradicts the previous inference.

Such inconsistencies may occur by combining spatial
knowledge from different sources and alternative
representations li ke images, topographic surveys or verbal
descriptions (for an extended discussion see Frank, 1992).
Spatial inference mechanisms are essential for expli cating
relations and enforcing consistency.

The rest of the paper is organized as follows: Section 2
defines direction relations between points and regions, and
describes spatial databases preserving directions. Section 3
discusses the retrieval of expli cit relations and outlines a
framework for the computation of the cost. Section 4
presents an algorithm for the inference of the relation
between points using the relations of their ancestor
regions. Section 5 describes a complementary form of
inference that uses chains of common points and achieves
path consistency for the whole database. Section 6
concludes with comments.

2. DIRECTION RELATIONS AND SPATIAL DATABASES

Various types of direction relations have been used to
match different needs that range from cogniti ve modelli ng
(Herskovits, 1986) to image similarity retrieval (Lee et al.,
1992) and from navigation (Holmes and Jungert, 1992) to
user interfaces (Roussopoulos et al., 1988; Papadias and
Selli s, 1995). Although in this paper we use a set of
projection-based definitions, the proposed methods are
applicable to other types of directions (for a discussion on
alternative types see Frank, 1992; Hernandez, 1994).



According to the projection-based model, the relation
between two points is determined by the position of the
primary object with respect to the projection lines from the
reference object to the coordinate axes (Freksa, 1992;
Papadias and Sellis, 1994; Nabil et al. 1995). In this way,
nine mutually exclusive relations can be defined between
points:
NorthWest: NW(P1,P2)≡(X(P1)<X(P2))∧(Y(P1)>Y(P1)),

RestrictedNorth: RN(P1,P2)≡(X(P1)=X(P2))∧(Y(P1)>Y(P1)),

NorthEast: NE(P1,P2) ≡ (X(P1) >X(P2)) ∧ (Y(P1)>Y(P1)),

RestrictedWest: RW(P1,P2)≡(X(P1)<X(P2))∧(Y(P1)=Y(P1)),

SamePosition:SP(P1,P2)≡(X(P1)=X(P2))∧(Y(P1)=Y(P1)),

and the converse relations: RE(P1,P2) ≡ RW(P2,P1),

SW(P1,P2) ≡ NE(P2,P1), RS(P1,P2) ≡ RN(P2,P1),

SE(P1,P2) ≡ NW(P2,P1).

U denotes the universal relation (the disjunction of all
primitive relations) and ∅ the empty relation (the relation
that arises during inconsistencies). The above relations
form a relation algebra and can be used for relation-based
reasoning. They constitute the set of high resolution
relations; we also define a set of low resolution relations
using disjunctions: N = NW∨RN∨NE, E = NE∨RE∨SE,
S=SW∨RS∨SE, W = NW∨RW∨SW, SL = RW∨SP∨RE
(SameLevel), and SH = RN∨SP∨RS (SamewidtH). The
projection-based definitions are applied for regions in an
analogous way. There are 13 mutually exclusive relations
between intervals in 1D space (Allen, 1983). If we extend
to 2D space we get the 169 primitive relations between
regions of Figure 1.
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Figure 1 Projection relations in 2D space

A number of relation-based systems that store only the
above type of relations and discard other forms of spatial
information (such as shape, distance and topological
relations) have been proposed. Chang et al. (1987)
designed 2D strings for iconic indexing in image
databases. A 2D string is a pair of one-dimensional strings
that represent the symbolic projections of the objects on
the x and y axis. Glasgow and Papadias (1992) developed
symbolic arrays, which are nested array structures that
preserve direction relations among the distinct parts of
complex spatial entities at different levels. Most previous
work, however, has focused on the representation and
processing of explicit relations and the proposed systems
do not include mechanisms for inference and inconsistency
checking.

Let DB be a spatial database of maps (or more
generally, spatial representations) each corresponding to a
distinct region. For every map there is a relation-based
representation (2D string, symbolic array, a relational
table, or a set of binary predicates) that stores the relations
between all pairs of objects in the region. The objects in
the map can be either points or regions, but not both (the
regions that contain points are called leaf regions). Each
pair of objects in a map is related by a primitive direction
relation explicitly represented.

We use the notation A
�
 R(X1,X2) to express that

objects X1 and X2 are related by relation R in the map of

region A. The hierarchy is represented by pointers to next-
level areas (IN relation). DB 

�
 IN(Xi,Aj) denotes that

object (point or region) Xi is a part of (therefore, totally

contained in) the next level region Aj. IN* is the transitive

closure of IN: DB 
�
 IN*(Xi,Aj) ≡ DB 

�
 IN(Xi,Aj) ∨ ∃ Ak

[DB 
�
 IN*(Xi,Ak) ∧ DB 

�
 IN*(Ak,Aj)]. IN* needs not be

explicitly represented, but can be computed by a recursive
function that traverses the hierarchy bottom-up and marks
all the ancestors of an object in the hierarchy. For
demonstration, we use the example of Figure 2a; Figure 2b
illustrates the hierarchy and the relations explicitly
represented.

R, R1, R2 ... denote relation variables between points,

and r, r1, r2 ... between regions. The general problem is to

retrieve the (explicit or implicit) relation between any pair
of points Pi and Pj in the database: DB 

�
 R(Pi,Pj). There

are three cases regarding the direction relations between
points: explicit retrieval, inference through regions, and
inference through points. In the next sections we discuss
algorithms that extract the relation between all pairs of
points and detect inconsistencies. For each case we provide
rules of inference, describe examples, and obtain formulas
for the cost.
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Figure 2 Example of  hierarchical relation-based structure

3. EXPLICIT RETRIEVAL

According to explicit retrieval, the relation between points
Pi and Pj is R if there is a leaf region A in which the two

points are related by R: ∃A(A
�
 R(Pi,Pj))⇒ DB 

�
 R(Pi,Pj).

Inconsistencies in this case arise when Pi and Pj exist

together in multiple maps and their relations in these maps
are different (an inconsistency of this form would be: A1

�

NW(P1,P2) and A2
�
 NE(P1,P2)). The following algorithm

performs explicit retrieval by retrieving all leaf regions
and examining the relations between all pairs of points in
them. An initialization process assigns U to the relation
between each pair of distinct points (SP for identical
points). All the algorithms assume that information in
each region is node (A

�
SP(Pi,Pi)) and arc consistent  (A

�

R(Pi,Pj) ⇔ A
�
converse(R(Pj,Pi))) and work only on the

pairs (Pi,Pj) for which i<j.

Explicit_retrieval
for each (leaf) region A

k

 retrieve A
k
;

 for each P
i
 such that DB �  IN(P

i
,A

k
)

   for each P
j
 such that DB �  IN(P

j
,A

k
) and i<j

get the relation R’ : A
k
 �  R’(P

i
,P

j
);

R(P
i
,P

j
)= R(P

i
,P

j
) ∩R’;

if R= ∅ then return INCONSISTENCY;
else R(P

j
,P

i
)=converse(R(P

i
,P

j
));

  end-for
 end-for
end-for

In order to obtain formulas for the cost of the
algorithms we make the following simplifications
(although such simplifications may not apply for real
applications, they provide a good measure for the expected
cost in most cases). Each region contains k objects (points
or other regions). Each object belongs to m regions in the
upper hierarchy level, except for the region at the top (0
level) that does not belong to any region, and the objects at
level 1 that belong only to the top-level region. It is always
the case that  k/m>1 and in regular applications k/m>>1.
N is the total number of points in the database and h is the
height of the hierarchical structure. We assume that there
is a buffer that stores the N(N-1)/2 relations between all
pairs of points.

The cost is a function of the number of map retrievals
because such operations require access to secondary
storage (i.e., retrieval of the disk pages that contain the
map). This is common practice in database literature
where indexing methods are compared on the number of
accessed pages from the disk (Guttman 1984; Papadias et
al., in press). In the case of explicit retrieval we have to
retrieve all leaf regions. Due to the fact that leaf regions
store all points and their copies1, their number is mN/k,
resulting in the same number of map retrievals. Unlike
explicit retrieval, which is straightforward, the other two
cases require inference mechanisms that potentially search
large parts of the database.

4. SPATIAL INFERENCE THROUGH REGIONS

In inference through regions, the relation between Pi and

Pj is inferred from the relations between their ancestor

regions. The notation r � R means that when the relation r
holds between two regions, then the relation R holds
between all pairs of points in the regions. For instance, if
two regions are related by projection relation P1-1, the

relation between any two points, each belonging to one
region, is NW (P1-1 �  NW). Inference through regions can

be described as: [∃Ak ∃Al (DB
�
 IN*(Pi,Ak) ∧ DB 

�

IN*(Pj,Al) ∧ DB 
�
 r(Ak,Al)) ∧ (r �  R)] ⇒ DB 

�
 R(Pi,Pj).

Inconsistencies in this case arise when the relation
between Pi and Pj in some map is inconsistent with the

relation between some of their ancestors regions. As an
example consider: A

�
 RN(P1,P2), DB

�
 IN*(P1,A1), DB

�

IN*(P2,A2), and DB
�
 P1-1(A1,A2).

When the projections of two regions are disjoint on
both axes (projections P1-1, P1-13, P13-13, and P13-1 in

Figure 1), then high resolution information can be inferred
for both south-north and west-east directions. However,
not all projections allow such inferences about the

                                               
1Since an object appears m times in the next hierarchical level,
we say that it has one original representation and m-1 copies.



relations between points. When the projections are disjoint
on only one axis, low resolution relations about this axis
can be derived, but information on the other axis is lost.
Figure 3 summarizes the relations that can be derived
about points given the projection relation between regions.
The entries with U correspond to overlapping projections
on both axes (in this case no conclusion can be drawn
about the relations between points).

Initiall y the relation between any pair of points is given
by explicit retrieval. Inference through regions retrieves
one by one all non-leaf regions A and gets the relation r:
A

�
 r(Ak,Al) for all pairs of regions IN A. Let R' be the

relation implied by r: r→R' (according to the rules of
Figure 3). If R' ≠ U, the relation between all pairs of points
Pi such that DB

�
IN*(Pi,Ak), and Pj such that DB

�

IN*(Pj,Al) is updated to R(Pi,Pj)=R(Pi,Pj)∩R'.

Inference_through_regions
for each non-leaf region A
 retrieve A;
 for each region A

k
 such that DB � IN(A

k
,A)

  for each A
l
 such that DB � IN(A

l
,A) and k<l

    get the relation r : A �  r(A
k
,A

l
);

    lookup R’: r �  R’;

    if R’ ≠ U then
     for each point P

i
 such that DB � IN*(P

i
,A

k
)

      for each point P
j
 such that DB � IN*(P

j
,A

l
)

        R(P
i
,P

j
)=R(P

i
,P

j
) ∩R’  ;

if R(P
i
,P

j
)= ∅ then return INCONSISTENCY

             else R(P
j
,P

i
)=converse(R(P

i
,P

j
));

      end-for
     end-for
    end-for
  end-for
end-for

For demonstration of the algorithm we use the example
of Figure 2. Figure 4a ill ustrates the explicit relations
between all pairs of points in the form of a constraint

network. First A6 is retrieved and the relation between A2

and A3 is found to be P3-2. Since P3-2→W∨SH, the

relation between P2 (which belongs to A2) and P4 (which

belongs to A3) is refined to U∩(W∨SH) = W∨SH (Figure

4b). The relation between P3 and the other points of A2

and A3 remains unchanged, because NW ∩ (W∨SH) =

NW and RW ∩ (W∨SH) = RW (for (P2,P3) and (P3,P4)

respectively). Then A7 is retrieved and the relation NW

between P4 and P5 is inferred, because the ancestor regions

of the two points (A4 and A5) are related by P1-1 and, P1-1

→ NW (Figure 4c). After the retrieval of A8 (the last non-

leaf region) the network takes its final form of Figure 4d.
From A8

�
 P1-3(A1,A7) and P1-3→N, the relation North is

inferred between all points of A1 and the ones IN* A7,

resulting in N(P1,P4), N(P1,P5), N(P2,P5), and

NW(P2,P4)∨ RN(P2,P4) (the last relation is obtained by

N∩(W∨SH)). The relations P3-11(A1,A6) and P9-11(A6,A7)

do not allow any inferences, because P3-11 → U and P9-11

→ U.
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Figure 4 Illustration of the algorithm

P 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NW NW∨RN N N N N N N N N N NE∨RN NE

2 NW∨RW NW∨RN∨RW∨SP N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL N∨SL NE∨RN∨RE∨SP NE∨RE

3 W W∨SH U U U U U U U U U E∨SH E

4 W W∨SH U U U U U U U U U E∨SH E

5 W W∨SH U U U U U U U U U E∨SH E

6 W W∨SH U U U U U U U U U E∨SH E

7 W W∨SH U U U U U U U U U E∨SH E

8 W W∨SH U U U U U U U U U E∨SH E

9 W W∨SH U U U U U U U U U E∨SH E

10 W W∨SH U U U U U U U U U E∨SH E

11 W W∨SH U U U U U U U U U E∨SH E

12 SW∨RW SW∨RS∨RW∨SP S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL S∨SL SE∨RS∨RE∨SP SE∨RE

13 SW SW∨RS S S S S S S S S S SE∨RS SE

Figure 3 Direction relation between points implied by the relation of ancestor regions (r→R)



In order to measure the cost of inference through
regions we need to calculate the number of non-leaf
regions, because all these regions are retrieved. There is
only one node at level 0, k nodes at level 1, and k2 at level
2. Out of these k2 nodes, k2/m correspond to objects and
the rest to copies. Level 3 contains k nodes for each
original node of the previous level resulting in a total of
k3/m nodes, out of which only k3/m2 are original and
represented at level 4. Similarly, at level h-1 there are kh-1/
mh-2 nodes that correspond to actual leaf regions. Since the
number of leaf regions is mN/k, we obtain a formula for h
(Equation 1):

k

m

m N

k
h

N

m

h

h k m

−

− =
⋅

⇒ = 





1

2 log ( )( / ) (1)

The number of non-leaf regions (and therefore the
number of map retrievals) is the sum of original regions
from level 0 to level h-2. Substituting the height of
equation 1 we get an approximation for the cost of
inference through regions:

1 1
1

2
2+ ≅

−
−−

=

−

∑
i

i
i

h k

m
m

N k

k k m( )
(2)

Because the algorithm generates the permitted
relations for all pairs of points, it needs to be performed
only once and its results can be stored for future use. The
above algorithm produces fast and high resolution
relations in many situations; however, for overlapping
projections with multiple common points (as in Figure 2)
further refinements are possible by using the common
points.

5. SPATIAL INFERENCE THROUGH POINTS

Inference using common points can be formulated as a
path consistency problem in a network of binary direction
constraints. Each constraint in the network is a disjunction
of primitive relations and represents the permitted

relations between a pair of points after explicit retrieval
and inference through regions have taken place (e.g.,
Figure 4d). According to this form of inference, the
relation between Pi and Pj, which belong to different maps,

is derived through a chain of common points by
composition of spatial relations: [∃P (DB

�
 Rk(Pi,P) ∧ DB

�
 Rl(P, Pj)) ∧ (Rk∗Rl = R)] ⇒ DB 

�
 R(Pi,Pj). The

composition constraint Rk*Rl is computed by forming the

cross products of the primitive relations that comprise Rk

and Rl, composing each resulting ordered pair by looking

up the results in the composition table and taking the
union of the resulting sets. Inconsistencies arise when
different relations are inferred by different chains of
points, or when the inferred relation contradicts the results
of explicit retrieval or inference through regions (e.g., A1

�

NW(P1,P), A2
�
 NW(P,P2) and A3

�
 RS(P1,P2)).

Figure 5 describes the rules that are applied in order to
produce the possible direction relations between Pi and Pj

when their relation with respect to a third point P is
known. A very important point has to do with the type of
constraints that appear in the network. If any disjunction
of primitive relations is allowable, then the detection of all
inconsistencies is NP-Complete even for point networks
(Van Beek and Cohen, 1990) and path consistency (which
is polynomial) does not suffice. However, in the problem
that we study here, we start with a set of 33 relations (U,
∅, 9 primitive, 6 low-resolution, and 16 relations of the
form NW∨RN that may appear during inference through
regions - Figure 3), which is closed under composition and
intersection (see Sharma 1996). Path consistency suffices
for this case and exponential algorithms are not needed to
enforce satisfiability (for more details see Papadias and
Egenhofer, 1996).

 A number of path consistency algorithms have been
proposed (Allen, 1983; Mackworth and Freuder, 1985).
The following one is a variation modified for the current

NW(P,Pj) RN(P,Pj) NE(P,Pj) RW(P,Pj) SP(P,Pj) RE(P,Pj) SW(P,Pj) RS(P,Pj) SE(P,Pj) U(P,Pj)

NW(Pi,P) NW NW N NW NW N W W U U

RN(Pi,P) NW RN NE NW RN NE W SH E U

NE(Pi,P) N NE NE N NE NE U E E U

RW(Pi,P) NW NW N RW RW SL SW SW S U

SP(Pi,P) NW RN NE RW SP RE SW RS SE U

RE(Pi,P) N NE NE SL RE RE S SE SE U

SW(Pi,P) W W U SW SW S SW SW S U

RS(Pi,P) W SH E SW RS SE SW RS SE U

SE(Pi,P) U E E S SE SE S SE SE U

U(Pi,P) U U U U U U U U U U

Figure 5 Composition table for high-resolution relations



problem. All pairs of points whose relation is not U are
inserted into a queue. Then every pair is popped from the
queue and the corresponding relation is used to refine the
relation between the popped points and all the other points
that co-exist with them in some region. The pairs of points
whose relation is refined are pushed in the queue for
propagation of the update through the network.

Inference_through_points

for each point P
i

 for each point P
j
 such that i<j

  if R(P
i
,P

j
)≠U then push-queue(P

i
,P

j
);

 end-for
end-for

while not-empty-queue
 pop(P

i
,P

j
);

 for each region A
l
 such that DB

�
 IN(P

i
,A

l
)

  retrieve A
l
;

  for each P
k
 such that DB

�
IN(P

k
,A

l
) and k≠i≠j

   R
t
(P

k
,P

j
)=R(P

k
,P

j
) ∩ (R(P

k
,P

i
)*R(P

i
,P

j
));

   if R
t
=∅ then return INCONSISTENCY;

    else if R
t
(P

k
,P

j
)⊂ R(P

k
,P

j
) then

      R(P
k
,P

j
)= R

t
(P

k
,P

j
);

      R(P
j
,P

k
)=converse(R(P

k
,P

j
));

      if not in-queue(P
k
,P

j
) then push(P

k
,P

j
);

  end-for
 end-for
for each region A

m
 such that DB

�
 IN(P

j
,A

m
)

 retrieve A
m
;

 for each P
k
 such that DB

�
 IN(P

k
,A

m
) and k≠i≠j

  R
t
(P

i
,P

k
)=R(P

i
,P

k
) ∩ (R(P

i
,P

j
)* R(P

j
,P

k
));

  if R
t
=∅ then return INCONSISTENCY;

    else if R
t
(P

i
,P

k
)⊂ R(P

i
,P

k
) then

       R(P
i
,P

k
)= R

t
(P

i
,P

k
);

       R(P
k
,P

i
)=converse(R(P

i
,P

k
));

       if not in-queue(P
i
,P

k
) then push(P

i
,P

k
);

  end-for
 end-for
end-while

For demonstration of the algorithm, we use the
configuration of Figure 2. Figure 6a illustrates the network
and the queue after explicit retrieval and inference through
regions have been applied. First the pair  (P1,P2) is popped

and all the regions that contain these points are retrieved.
P3 co-exists with P2 in region A2 and its relation with P1 is

updated according to: R(P1,P3) = R(P1,P3) ∩ (R(P1,P2) *

R(P2,P3)) = U∩(NW*NW) = NW. Because the new

relation is a refinement of the previous one (NW⊂U), the
pair (P1,P3) is pushed into the queue for propagation. The

new network and the state of the queue at this phase are
shown in Figure 6b. Then the pair (P1,P4) is popped from

the queue, the regions A1, A3, and A4 are retrieved, and

the relations between the points (P2,P4), and (P1,P3) are

updated. However, the network does not change at this
stage because, R(P2,P4) = R(P2,P4) ∩ (R(P2,P1)*R(P1,P4))

= (NW∨RN) ∩ (SE*N) = NW∨RN, and R(P1,P3) =

R(P1,P3) ∩ (R(P1,P4)*R(P4,P3)) = NW∩(N*RE) = NW.

Similarly the pair  (P1,P5) does not alter the network,

while the pair (P2,P3) produces: R(P2,P4) = NW. The

remaining pairs update the network in the same fashion;
the final state after the termination of the algorithm is
illustrated in Figure 6c.
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Figure 6 Illustration of the algorithm

In order to find the cost of inference through points we
start with the observation that only 32 different constraints
may appear in the network (and ∅ in which case the
algorithm terminates with an inconsistency). A constraint
imposed by inference through regions or explicit retrieval
may be refined several times until it reaches its final state
at the end of path consistency. The maximum number of
refinements for any constraint is four (for details see
Papadias and Egenhofer, 1996). For example, a constraint
between two points may initially be U and become N∨SL,
then  NW∨RN∨RW∨SP, then NW∨RN, and finally NW.

There exist N(N-1)/2 distinct pairs of points in the
database and each may be pushed into the queue up to four
times. Each time a pair is popped from the queue, 2m map
retrievals are performed to retrieve the points that are
related with the popped points in some region. Therefore,



inference through points requires 4mN(N-1) map retrievals
in the worst case, which makes it significantly more
expensive than inference through regions.

6. DISCUSSION

In the previous sections we argued that first expli cit
retrieval obtains the relations between pairs of points that
exist in the same region, then inference through regions
generates additional constraints imposed by the relations
between the ancestor regions, and finall y inference
through points takes advantage of common points to
produce further refinements. The order in which explicit
retrieval and inference through regions are performed is
not important. As long as the content of the database
remains unaltered they generate the same result
independently on which operation is performed first. On
the other hand, inference through points has always to be
performed at the end, otherwise it may not produce all
relations.

Unlike topological relations where there is a set  of
widely used relations in both research literature and
commercial products (Egenhofer and Franzosa, 1991;
Medeiros and Cili a, 1995), universall y accepted definitions
do not exist for direction relations. Although we have dealt
with a set of projection-based direction relations often
found in the literature, the methods of the paper are not
relation-specific but can be applied to higher dimensions
and other types of directions (for an example see Papadias
and Egenhofer, 1996). In general, what is needed for the
application of the algorithms is (1) a set of direction
relations for points and one for regions, (2) rules for the
inference of the relation between points given the relation
between ancestor regions and, (3) composition rules.
Notice, however, that depending on the choice of the
relation set, inference through points may become
exponential.

Hierarchical inference mechanisms are necessary to
complement other qualitative spatial reasoning methods
(Mukerjee and Joe, 1991; Sharma et al., 1994; Grigni et
al., 1995; Scarponcini et al., 1995). Even in a single
system, data about the same or overlapping areas but from
different sources are stored separately. This information
may be incomplete or inconsistent, and inference
mechanisms are required to explicate relations and remove
inconsistencies. As interoperabilit y issues are solved,
heterogeneous spatial databases and open GIS will soon
become a realit y. Such systems will store huge amounts of
spatial data in various formats and of variable qualit y.
Users will query the systems requiring fast and accurate
results (and not contradictory answers of the form "A is
north and south of B"). Spatial inference mechanisms will
play an important role for the detection of inconsistencies
in the data and the integration of the different systems.
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