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Abstract

We combine the description logic ALC with the metric logics defined
in [15]. Entities that are conceived of as abstract points in the realm of
ALC are given a spatial extension via an ‘extension relation,’ connecting
abstract points in the domain of an ALC-model to points in a metric
space. Conversely, regions in the metric space are connected via the
converse ‘extension relation’ to certain points in the ALC-model. We
prove the decidability of the satisfiability problem for the resulting hybrid
formalism, give a few examples, and discuss further extensions of the ideas
introduced.

1 Introduction

Motivating example

Everybody knows that only two things can be worse than flat-hunting (in Lon-
don—only one). You visit the n + 1st flat offered by your estate agent and see
that it’s too far from your college, there are no shops around, a telephone is
missing, the neighbors go to the nearest tube station by taxi, and their kids
buzz like bees. But you asked her so many times not to offer flats like this! You
even wrote down your constraints:

(A) The house should not be too far from the college, not more than 5 miles.

(B) The house should be close to shops, say, within 1 mile.

(C) There should be a ‘green zone’ around the house, at least within 2 miles.
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(D) There must be a sports center around, and moreover, all sports centers of the
district should be reachable on foot, i.e., they should be within, say, 3 miles.

(E) Public transport should easily be accessible: whenever you are not more than 8
miles away from home, the nearest bus stop or tube station should be reachable
within 1 mile.

(F) The house should have a telephone.

(G) The neighbors shouldn’t have children.

And answering her question “Are supermarkets shops?” you added

(H) All supermarkets are shops.

Even a computer could have done her job better!

Formalization

Constraints (A)–(H) contain two kinds of knowledge. (F)–(H) can be classified
as conceptual knowledge which is captured by almost any description logic, in
particular, ALC:

(F) house : ∃has.Telephone

(G) house : ∀neighbour.∀child.⊥

(H) Supermarket v Shop

(A)–(E) speak about distances and can be represented in the logic MS of metric
spaces introduced in [15]:

(A) house v E≤5college

(B) house v E≤1Shop

(C) house v E≤2Green zone

(D) house v (E≤3Sports center) u (A>3¬Sports center)

(E) house v A≤8E≤1Public transport

Here, the object names house and college are interpreted as singletons in a metric
space D = 〈D, δ〉,1 set variables Shop, Green zone, etc. as subsets of D, and, for
every non-negative rational number α and every X ⊆ D,

E≤αX = {x ∈ D | ∃y ∈ D : δ(x, y) ≤ α ∧ y ∈ X}

A≤αX = {x ∈ D | ∀y ∈ D : δ(x, y) ≤ α→ y ∈ X}

A>αX = {x ∈ D | ∀y ∈ D : δ(x, y) > α→ y ∈ X}

1I.e., D is a non-empty set and δ is a distance function from D × D into R+ satisfying
three conditions: δ(x, y) = δ(y, x), δ(x, y) = 0 iff x = y, and δ(x, y) + δ(y, z) ≥ δ(x, z).
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Figure 1: Combined model for the metric description logic.

Thus, the problem is to combine these two KR formalisms. Semantically,
the combination can be very simple (see Fig. 1). We just take an ALC-model
I =

〈

∆, ·I
〉

, a metric space D = 〈D, δ〉, i.e., an MS-model, and associate with
some elements in ∆ subsets of D—the spatial ‘regions’ occupied by objects
represented by these elements. In other words, we define a binary relation, say,
; on ∆ × D. Those elements a of ∆ for which {x ∈ D : a ; x} = ∅ can be
called abstract—there is no sense to think of them as occupying space. Elements
that are not abstract can be called localizable.

If C is an ALC-concept, then its spatial extension ς(C) in the combined
model is defined as

ς(C) = {x ∈ D | ∃a ∈ CI a ; x}.

For example, ς(Shop) represents the space occupied by all shops. On the other
hand, given a set term t from MS interpreted as a subset of D, we can define
its conceptual extension ς−(t) by taking

ς
−(t) = {a ∈ ∆ | ∃x ∈ tD a ; x}.

Thus, ς−(t) is the concept containing all those localizable elements that have a
non-empty intersection with ‘region’ t. For instance, the concept ς−E≤1ς(Shop)
comprises all localizable elements from which at least one shop can be reached
within 1 mile.
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Using the constructors ς and ς− connecting ALC- and MS-models, we can
represent constraints (A)–(H) as the concept Good house defined by the following
knowledge base:

Good house = House uWell located u ∃has.Telephone u ∀neighbor.∀child.⊥

Well located = ς
−
(

E≤5ς(college) u E≤1ς(Shop) u E≤2ς(Green zone)u

E≤3ς(Sports center) u A>3ς(¬Sports center)u

A≤8E≤1ς(Public transport)
)

Supermarket v Shop

We now give rigorous definitions of the syntax and semantics of the combined
language we used in the example above.

2 Combining description and metric logics

The definition of the syntax of ALC(MS) is rather straightforward: we simply
join the languages of ALC and MS and bridge them by means of the spatial and
conceptual extension functions ς and ς−.

Syntax

The alphabet of the metric description logic ALC(MS) consists of

• the primitive symbols of ALC, i.e.,

– a list A0, A1, . . . of concept names,

– a list R0, R1, . . . of role names,

– a list c0, c1, . . . of object names,

– the Booleans u, ¬, >, and the existential role restrictions ∃Ri;

• the primitive symbols of MS, i.e.,

– a list X0, X1, . . . of set variables,

– a list n0, n1, . . . of nominals,

– the set term constructors E≤α and E>α, for all α ∈ Q+, and the
Booleans ∩ and ¬;

• the spatial and conceptual extension constructors ς and ς−, respectively.

Concepts and set terms of ALC(MS) are defined inductively as follows:

• all concept names Ai are concepts;
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• all set variables Xi and nominals ni are set terms;

• if C, D are concepts, R a role name, and t a set term, then

C uD, ¬C, ∃R.C, ς
−(t)

are concepts;

• if s, t are set terms, C a concept, c an object name, and α ∈ Q+, then

t ∩ s, ¬t, E≤αt, E>αt, ς(C), ς(c)

are set terms.

Formulas of ALC(MS) are Boolean combinations of atomic formulas of the form

c : C, cRd, C v D, t v s,

where C,D are arbitrary concepts and t, s arbitrary set terms, respectively.

Semantics

As is shown in Fig. 1, each model of the constructed language consists of a
standard ALC-model, a metric space model for MS and a relation between their
domains interpreting the spatial and conceptual extension functions ς and ς−.
Thus, an ALC(MS)-model is a triple of the form M = 〈I,D,;〉, in which

• I =
〈

∆, RI

0, . . . , A
I

0, . . . , c
I

0, . . .
〉

is an ALC-model, where ∆ is a non-empty
set, the object domain of M, RI

i are binary relations on ∆ interpreting the
role names, AI

i
subsets of ∆ interpreting the concept names, and cI

i
are

elements of ∆ interpreting the object names;

• D =
〈

D, δ,XD

0 , . . . , n
D

0 , . . .
〉

is an MS-model, where 〈D, δ〉 is a metric
space, the spatial domain of M, XD

i ⊆ D, and each nD
i is a singleton

subset of D;

• ; is a binary relation on ∆×D.

Let M = 〈I,D,;〉 be an ALC(MS)-model. The extensions CM and tM of a
concept C and a set term t, as well as the truth-relation M � ϕ for an ALC(MS)-
formula ϕ are defined inductively in the following way.

• The extension CM ⊆ ∆ of C:

– AM

i
= AI

i
, Ai a concept name,

– (C0 u C1)
M = CM

0 ∩ CM

1 ;
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– (¬C0)
M = ∆− CM

0 ;

– a ∈ (∃Ri.C0)
M iff there is a b ∈ CM

0 such that aRI
ib;

– a ∈ (ς−(t))M iff there is an x ∈ tM such that a ; x.

• The extension tM ⊆ D of t:

– XM

i
= XD

i
, Xi a set variable;

– nM

i
= nD

i
, ni a nominal;

– (t0 ∩ t1)
M = tM0 ∩ tM1 ;

– (¬t0)
M = D − tM0 ;

– (E≤αt0)
M = {x ∈ D | ∃y ∈ D

(

δ(x, y) ≤ α & y ∈ tM0
)

};

– (E>αt0)
M = {x ∈ D | ∃y ∈ D

(

δ(x, y) > α & y ∈ tM0 }
)

;

– x ∈ (ς(C))M iff there is an a ∈ CM such that a ; x;

– x ∈ (ς(ci))
M iff cI

i
; x.

• The truth-relation M � ϕ:

– M � C v D iff CM ⊆ DM;

– M � t0 v t1 iff tM0 ⊆ tM1 ;

– M � c : C iff cI ∈ CM;

– M � cRd iff cIRIdI;

– M � ψ ∧ χ iff M � ψ and M � χ;

– M � ¬ψ iff not M � ψ.

(Note that the ‘closest relatives’ of the metric logic MS introduced in [15]
are the logics of place [12, 16, 14, 7, 10] metric (or quantitative) temporal logics
[1, 11, 6].)

3 Decidability

As in pure description logic, many reasoning tasks for ALC(MS) can be re-
duced to the satisfiability problem for ALC(MS)-formulas. For each of the two
components of our combined system, the satisfiability problem is known to be
decidable (see [13] and [15]). In [8], further decidability and complexity results
for metric logics can be found, as well as an expressive completeness theorem
relating metric logic to classical first-order logic with two variables, monadic
predicates and atoms of the form δ(x, y) < a, δ(x, y) = a interpreted in metric
spaces.
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We now come to the decidability of the satisfiability problem for ALC(MS).
The proof can be viewed as a combination of the known decidability proofs
for ALC and MS. As the technical details are too involved and lengthy to be
presented here, we confine ourselves only to a brief sketch of the proof and refer
the reader to the full paper [9].

Theorem 1 The satisfiability problem for ALC(MS)-formulas is decidable. Mo-
reover, every satisfiable ALC(MS)-formula ϕ is satisfied in a finite model the
size of which can be computed effectively from the length of ϕ.

Here is a sketch of the proof. Suppose ϕ is satisfied in M = 〈I,D,;〉, where
I =

〈

∆, ·I
〉

and D =
〈

D, d, ·D
〉

. Then we perform the following steps:

(1) Filtrate D through (an analogue of) the filter defined in [15] (page 50)
to obtain a finite model D1 based on equivalence classes D1 = {[x] : x ∈ D}.
Define a binary relation ;1 on ∆×D1 by taking a ;1 [x] iff there exists y ∈ [x]
such that a ; y.

(2) Use the duplication technique of [15] (page 52) to obtain from D1 a new
model D∗ based on D∗ = D1

1 ∪ (D2
1 × {0, 1}), where D1 is a disjoint union of

D1
1 ∪ D

2
1. Define a binary relation ;2 on ∆ × D2 by taking a ;2 x iff either

x ∈ D1
1 and a ;1 x or x = (y, i) and a ;1 y.

(3) Finally, filtrate the ALC-model I (as, say, in [4]) to obtain a finite ALC-
model I∗ based on a set of equivalence classes ∆∗ = {[a] : a ∈ ∆}. Define
M

∗ = 〈I∗,D∗,;∗〉 by taking [a] ;
∗ x iff there exists b ∈ [a] such that b ;2 x.

One can show that this model is as required.

Actually, Theorem 1 can be extended to a general transfer result for combina-
tions of spatial and description logics. As was shown in [3], almost all description
logics can be regarded as abstract description systems (ADS). In fact, both ALC

and MS can be regarded as ADSs, and the definition of ALC(MS) can easily
be generalized to a definition of a combination L1(L2) of two ADSs L1 and L2

in such a way that the following transfer result holds (it can be proved using a
technique similar to that used in [3]):

Theorem 2 Suppose L1 and L2 are ADSs with decidable relativized satisfiability
problems. Then the (relativized) satisfiability problem for L1(L2) is decidable.2

4 Discussion and further research

This note suggests a new way of combining formal conceptual and spatial rea-
soning (cf. e.g. [5]). It outlines only a basic idea; still much is to be done
to convert the constructed metric description logic into a really useful KR&R

2Note that here, in contrast to [3], we do not require the ADSs to be local.
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formalism. Apart from the obvious problems such as developing implementable
algorithms and determining the computational complexity, there are a number
of more fundamental issues:

1. The proposed method of combining description and metric logics with
such a robust algorithmic behavior (see Theorem 2) seems too good for capturing
various subtle interactions between object and spatial knowledge. In fact, the
proof of Theorem 2 shows that such interactions are rather limited. For example,
it is not possible to constrain the interpretation of a role R in such a way
that aRIb iff the spatial extension of a is included in the spatial extension of
b. Obviously, more expressive constructors connecting conceptual and spatial
domains are required to express this and similar constraints.

2. As metric spaces induce in the usual way a topology, it seems natural to
extend the metric description language with the modal logic S4u or the RCC-8

relations, thus bringing together qualitative, semi-qualitative, and conceptual
spatial reasoning.

3. One more idea is to use more than one extension relation to treat space-
granularity; cf. [11].

4. A different approach to combining conceptual and spatial reasoning uses
concrete domains, see [2] and [5]. The combination method proposed here and
that of applying concrete domains allow for rather different formalizations. How-
ever, the precise relation between the two approaches is still unclear.
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