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Abstract

We present mechanisms used to maintain the consistency of a knowledge base
of spatial information based on a qualitative representation of 2-D positions.
These include the propagation heuristics used when inserting new relations as
well as the reason maintenance mechanisms necessary to undo the effects of
propagation when deleting a relation. Both take advantage of the rich structure
of the spatial domain.

1 Introduction

For a representation to be of any use, we have to consider not only its constituents and
how they correspond to what is being represented, but also the mechanisms operating
on them. In this paper we look into the mechanisms that allow us to reason with
qualitative representations of 2-D positions. These mechanisms are determined in
part by the tasks for which qualitative reasoning is used, such as: Inferring knowledge
implicit in the knowledge base; answering queries given partial knowledge and a spe-
cific context; maintaining various types of consistency; acquiring new knowledge; and,
particularly in the case of spatial knowledge, building cognitive maps and visualizing
qualitatively represented spatial situations.

Even though the qualitative approach has been extensively used for modeling
physical phenomena (Bobrow 1984; Weld and de Kleer 1990), it is only recently that
research on qualitative models of space has been undertaken. Allen (1983) introduced
an interval-based temporal logic, in which knowledge about time is maintained qual-
itatively by storing comparative relations between intervals. Freksa (1992a) presents
a generalization of Allen’s temporal reasoning approach based on semi-intervals and
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introduces the notion of “conceptual neighborhood” of qualitative relations. There
have been some prior efforts to extend Allen’s temporal approach to spatial dimen-
sions (Guesgen 1989; Mukerjee and Joe 1990). However, these extensions just use
Cartesian tuples of the one-dimensional relations, loosing the “cognitive plausibility”
that Allen’s approach has in the temporal domain. Our representation of positions
in 2-D space establishes different qualitative relations for the two relevant dimensions
topology and orientation. Related research on topological relations in the context
of Geographic Information Systems has been done by Egenhofer (1989, 1991), Egen-
hofer and Al-Taha (1992), Egenhofer and Sharma (1993), and Smith and Park (1992).
Kuipers and Levitt (1988) describe a series of influential systems for navigation and
mapping in large-scale space. Of particular interest here is the QUALNAV model
(see also Levitt and Lawton 1990), which includes a coordinate-free, topological rep-
resentation of relative spatial location, and integrates metric knowledge of relative
or absolute angles and distances. The symbolic projection schema introduced by
Chang, Shi, and Yan (1987) in the context of pictorial databases represents two di-
mensional spatial arrangements by projecting them into two “2D-strings” along the
vertical and horizontal axes. Various extensions of this model have been proposed
including further operators and a combination with quad-trees (Chang and Li 1988),
local operators to handle overlapping objects (Jungert 1988). Frank (1991) presents
a qualitative algebra for reasoning about cardinal directions, which are easier to ana-
lyze then relative orientations because the frame of reference is fixed in space. Cohn,
Cui, and Randell (1992) summarize a theory of space and time based on a calculus of
individuals founded on “connection” and expressed in the many sorted logic LLAMA.
A basic set of dyadic topological relations is defined using the primitive C(x,y) = ‘x
connects with y’, x and y being regions. Freksa (1992b) and Freksa and Zimmermann
(1992) present an approach to qualitative spatial reasoning based on directional ori-
entation information. They distinguish 15 possible positions and orientations of a
point based on the left/straight/right distinction w.r.t. a vector ab as well as the
front /neutral/back distinction w.r.t. the lines orthogonal to ab on the end points of a
and b. For a general overview of recent literature in the area of spatial reasoning see,
for example, McDermott (1992) and Topaloglou (1991).

In previous work we have explored various aspects of the qualitative representation
of space (Hernandez 1991) including mechanisms used to transform between different
frames of reference (these transformations are necessary to obtain canonical reference
frames, which are a pre-requisite for qualitative inference); methods for the efficient
computation of composition tables for positional relations based on the structure of
the relational domains, and “abstract maps”, which allow the solution of some tasks by
diagrammatical means. In (Hernandez and Zimmermann 1992) we discuss a method
for constraint relaxation that uses the structure of the relational domain to weaken
constraints by including other neighboring relations in their disjunctive definitions,
instead of retracting them as a whole. This approach leads faster to solutions of
meaningfully modified sets of otherwise unsatisfiable constraints.

In the following section we first briefly introduce the representation model and con-
centrate in the later sections on the algorithms required to maintain the consistency
of a qualitative knowledge base of spatial information. These include the propaga-
tion heuristics used when inserting new relations as well as the reason maintenance
mechanisms required to undo the effects of propagation when deleting a relation.



2 Qualitative Representation of Positions in 2-D

We focus on 2-D projections of 3-D scenes. Two factors determine the qualitative
position of objects in 2-D space: the relative orientation of objects to each other and
the extension of the involved objects. Considering these factors independently from
each other results in two classes of spatial relations:

e topological relations (ignore orientation)

e orientation relations (ignore extension, i.e., objects = points)

Our goal is to combine these two classes of relations to provide a model of orientation
that accounts for extended objects. For this purpose we define a small set of spatial
relations from the two relevant dimensions topology and orientation.

Topological® relations describe how the boundaries of the two objects relate. A
complete set of topological relations can be derived from the combinatorial variations
of the point set intersection of boundaries and interiors of the involved objects by
imposing the constraints of physical space on them (Egenhofer and Franzosa 1991).
The resulting set of eight mutually exclusive relations is: disjoint (d), tangent (t),
overlaps (o), contains-at-border (c@b), included-at-border (i0b), contains
(c), included (i), equal (=).

Orientation relations describe where the objects are placed relative to one an-
other. The orientation dimension results from the transfer of distinguished reference
axes from an observer to the reference object. There are various levels of hierar-
chically organized orientation relations of different granularities. The level with the
eight distinctions most commonly used contains the following relations (abbrevia-
tions in parentheses) fronts(fs), backs(bs), lefts(1ls), rights(rs), left-backs(1lbs),
right-backs(rbs), left-fronts(1fs), and right-fronts(rfs).

Relative orientations must be given w.r.t. a reference frame, which can be intrin-
sic (orientation given by some inherent property of the reference object), extrinsic
(orientation imposed by external factors), or deictic (orientation imposed by point of
view). When reasoning about orientations, the reference frame is implicitly assumed
to be the intrinsic orientation of the parent object (i.e., the one containing the ob-
jects involved), unless explicitly stated otherwise. The relative position is given by a
topological /orientation relation pair:
<primary_object, [topological,orientation], ref_object, ref_frame>

2.1 The Structure of the Topological and Orientation Do-
mains

Topological relations have a fork-like neighboring structure, whereas orientations form
a uniform circular neighborhood on each level. As we will show below taking advan-
tage of this structure leads to more efficient propagation algorithms. Since we use
pairs of topological and orientation relations to represent relative positions, it is in-
teresting to look at their combined structure. Figure 1 gives a simplified overview
of level 3 orientations and linearly adjacent topological relations. Figure 2 shows

!Previous work used the term “projection” instead of topological. This has been changed because
of the possible confusion with the use of the word in “2-D projections of 3-D scenes” and in “projective
spatial prepositions” (which are related to what we call orientation relations).



a partial detailed view of two neighboring level 2 orientations and all 8 topological
relations.? Arcs between nodes denote neighboring topological /orientation pairs. In
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Figure 1: Combined structure of topological and orientation relations
(overview)
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Figure 2: Combined structure of topological and orientation relations

(detail)

the simplified visualization the containment and equality topological relations have
been merged in a single node. Figure 2 is intended to be seen as a perspective view of
a side cut of the 3-D visualization of the combined structure. In order not to clutter
the figure unnecessarily, only the two neighboring orientations backs; and right, are
shown, together with all the links connecting neighboring relation pairs. The c, =
and i nodes are in the middle of the structure, because, according to our conventions,
they are not oriented. The oriented nodes (e.g., [1@b,by]) are linked to neighboring

?

?The figures actually omit the links for neighboring relation pairs that result from the simultaneous
change of topological and orientation relations as in [d,f] — [t,rf].
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topological nodes of the same orientation (e.g., [0,bs], [1,bs]), and to equivalent nodes
of same topology in neighboring orientations (e.g., [10b,r5], [1@b,15]).

3 Reasoning with Qualitative Representations

While all spatial reasoning tasks in a qualitative representation can be formulated
as constraint satisfaction problems, the general techniques known in the literature
incur an unnecessary computational overhead.® One reason for this overhead is, that
they try to achieve global consistency among all constraints, whereas many spatial
reasoning tasks require only local consistency. Another reason is, that they ignore the
rich structure of space, which further constraints the set of possible solutions.

A qualitative description of a spatial configuration in form of a set of positional
relations can be represented as a constraint network, where nodes corresponding to
objects are linked by arcs corresponding to the relative positional relations between
two objects. Sets of relations (relsets, for short), corresponding conceptually to dis-
junctions of possible relations between two objects, are ubiquitous in the algorithms
to be described. Disjunctions are a way of expressing uncertainty about the “real”
relation between the objects. Whenever the number of different relations is relatively
small, as is always the case with qualitative representations, a bit-string representation
of sets is the usual choice.

The propagation of constraints in the network is necessary to check the consistency
of the relations among adjacent objects, for example, after insertion of a new relation
or deletion of a previously assumed relation. In the following subsections, we will
describe algorithms for these two tasks that take advantage of the structure of space
described in the previous section.

3.1 Inserting New Relations

Inserting a new relation between two objects* affects not only those two objects but
might yield additional constraints on the relations between other objects in the scene
through constraint propagation. Allen (1983) introduced an algorithm for updating an
interval-based temporal network that is based on constraint propagation. This algo-
rithm effectively computes the closure of the set of temporal assertions after each new
insertion. In what follows, we first describe Allen’s original algorithm and introduce
then several important enhancements based on structural properties of space.

3.1.1 Allen’s Propagation Algorithm

The first step in the process of inserting a new relation R;; between ¢, j is intersecting
the new relset with whatever relset was known before (this is here the universal relset,
in case no relation had been previously inserted, which behaves as “identity” for the
set intersection operation). In case this intersection results in a more constrained

3Comprehensive reviews of the constraint satisfaction literature can be found in, e.g., Mackworth
(1987), Meseguer (1989), Kumar (1992).

*We assume the relation has been transformed to the canonical implicit frame of reference.



relset, the nodes ¢, j are placed in the queue for propagation.®

The computation of the closure is achieved by repeatedly calling a procedure
PROPAGATE as long as there are entries in the queue. PROPAGATE does the main
work by propagating the effects of the new constraint to “comparable” nodes (for
now, assume all nodes in the network to be comparable). This is done by determining
if the new relation between 7 and j can be used to constrain the relation between 1
and other nodes, or between those other nodes and j (Fig. 3). If one of these relations
can indeed be constrained, then it is placed in the queue for further propagation.
Furthermore, contradictions, characterized by an empty resulting relset, are signaled
if found in this process. Contradictions will normally trigger a constraint relaxation

\\/
&S

Figure 3: Propagation algorithm (visualization)

3.1.2 Example

To illustrate the propagation algorithm, we use the following set of initial relations,
which have already been transformed to a canonical frame of reference (with possible
corresponding verbal descriptions to the right):

1. <T, [t,f], F> The table (T) is at the window (F).
2. <s, {[d,f],[t,f1}, T> In front of it there is a chair (S).
3. <w, {[d4,1],[d,r]l}, T> A bookcase (W) is next to it.

Adding Rrp creates the first link in the network (Fig. 4a). Adding Rsy triggers the
computation of Rsp through composition of Rsr/Rrr (Fig. 4b). Adding Rwr leads
to the computation of Ryp, and, if we allow inverting links, to Rws = Rwr/Rrs
(Fig. 4c). Note, that the resulting relations in this last case are rather unspecific,
because we do not know if the bookcase (W) is left or right of the table (T). Now
suppose such information becomes indirectly available through a statement such as
“The bookcase (W) is to the right of the chair (S).”, i.e., Rws = [d,r]. The in-
tersection with the previously computed relset [{d,t},{1,1b,b,rb,r}] results again in
[d,r]. The propagation algorithm computes new values for Ryr = Rws/Rsr and
Rwr = Rws/Rsr both equal to [{d,t},{r,rf,£}]. The intersection with previously
computed relsets leads finally to Rwr = [d,r] and Rwr = [{d,t},{r,rf,f}] (Fig. 4d).

5Note that, because the new link is obtained by intersection with the old one, it suffices to test if
the new one is different from the old one, which might be cheaper.
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3.1.3 Exploiting the Structure of Space

Reference Objects. The predicate “comparable” is one place in Allen’s algorithm
that allows us to introduce modifications. Allen himself uses it to control propagation
by introducing “reference intervals” to cluster sets of fully connected intervals, and
defining comparable to be true only if the intervals share a reference interval, or
one is the reference interval of the other. Similarly, we can limit the propagation by
assigning parent objects (i.e., those resulting from hierarchical decomposition through
containment) or functional clusters (for example, “dining-table-group” consisting of
table, chairs, etc.) as “reference objects”. However, we do not require full connectivity
of objects with a common reference object. In most cases, it suffices if all objects are
related to at least the central object in the group (e.g., the table in the dining-table-

group).

Degrees of Coarseness. The next modification of the algorithm is not so straight-
forward. We want to take into account the fact that the information content of
positional relations is not homogeneous. By information content we mean how much
a relation constrains the relative position of objects. For example, a level 3 orientation
is more constraining than a level 1 orientation, and t is more constraining than d.
The specificity of a positional relation is, strictly speaking, a function of the relative
size of the corresponding acceptance area.® However, establishing those areas is more
involved than what is actually needed to differentiate among the relevant specificity
classes. Thus, we use the “degree of coarseness” (doc), a number derived from the
number of options left open by a relation (and confirmed by the “coarsening” factor
of the resulting compositions), as a converse approximate measure. Small doc-values
correspond to more constraining relations, while large doc-values correspond to less
constraining relations.

characteristics rel doc
topological = 1
sme&shgpe ¢, i 4
restriction

i@b, c@b | 2

oriented boundary contact t 3

) 4

d 8

Table 1: Degree of coarseness of topological relations (in the context
of positional information)

Table 1 shows the degree of coarseness of topological relations in the context of
positional information together with the factors contributing to the corresponding
docs. = has the lowest doc, because it constrains the relative position of two objects

6The area in which a particular orientation is accepted as a valid description of the relative
position of two objects is called “acceptance area”.



to an unique value; ¢ and i are not oriented but constrain the position of one of the
objects to be within the boundaries of the other; t and o demand boundary contact
between the objects, thus restricting their positions, whereas d has the highest doc
and is useful only when used together with an orientation;” finally i@b and c@b are
quite specific because they are oriented, demand boundary contact and have the size
and shape restriction of the containment relations.

characteristics rel doc
orientation corners | 1f3, rf3, 1bs, rbg | 1
level 3
sides 13, rs, f3, b3 3
level 2 12, Iy, fg, b2 4
level 1 11, I 8
f1, by 8

Table 2: Degree of coarseness of the most common orientation rela-
tions (in the context of positional information)

Table 2 lists the degree of coarseness of the most common orientation relations. It
corresponds roughly to the number of basic sectors covered by each of the relations.
For the case of extended objects, a further distinction between more specific corner
orientations and less specific side orientations can be made, as shown here for the
third level. The doc of a topological/orientation pair is the sum of the docs of its
components. The doc of a relset is the sum of the docs of the set members.

To ADD RZ']'
begin
if doc(R;;) > maxdoc
then exit;
01d « N(i,j);
N(i,j) < Combine(N(i,j),Ri;);
If N(i,j) =0
then Signal contradiction;
if N(i,j) # 01d
then add <i,j,doc(N(i,j))> to Agenda;
Nodes < Nodes U {i,j};
end;

Figure 5: Adding a new relation

The doc-values are used to control propagation in the following way: While adding
a new relation (Fig. 5), its doc is compared against a pre-defined constant maxdoc,
above which a relation is considered too unspecific to be worth adding. The value of

“The unspecificity of d should not be overrated: In most applications, the distance between objects
is bounded by the extension of the parent object.



maxdoc is application dependent. Setting it to half the sum of the docs of all possible
relations at the granularity levels allowed has proven to be a useful heuristic. If the
doc of the relset is below or equal to maxdoc, then it is inserted by combining it with
the previously known relset. COMBINE can be assumed for now to be equivalent to
set intersection (it will be modified below). If the new combined relation is different
from the previously known, it is placed on the agenda for further propagation. An
agenda is a data structure to keep track of what to do next based on some sort order.
It is usually implemented as an ordered list of queues. In this case, we use the doc of
the relation to be propagated as entry key, allowing us to propagate first more specific
relations, i.e., those with lower docs. Relations with equal docs are processed in a
first-in-first-out manner.

To CoMPUTEEFFECTS
While Agenda is not empty do
begin
Get next «i,j,d> from Agenda;
If d < maxdoc
then Propagate(i,j);
end;

Figure 6: Computing the effects of a new added relation

The effects of new relations added to the network can be computed by calling
CoMPUTEEFFECTS (Fig. 6), which fetches the first entry from the agenda, double
checks its doc to be below the limit (this is necessary because PROPAGATE also adds
to the agenda, and could also be used for dynamic control through changing limits),
and calls PROPAGATE.

PROPAGATE (Fig. 7) is essentially the same as in the original algorithm, except
for COMBINE and the use of an agenda instead of a queue. Note, that the propagation
algorithm assumes all relations, including semantically similar relations at different
levels of granularity (e.g., by and bs), to be mutually exclusive. Knowing about
the hierarchical structure of the relational domains used, allows us to extend the
algorithm to succeed in cases where the original algorithm would fail, and signal a
contradiction. For example, the intersection of a set containing only [t,1;] and a set
containing only [t,13] shouldn’t be “empty”, signaling a contradiction, but rather lead
to preferring [t,13]. This can be done by looking at the range representation of 1,
and 13, instead of viewing them as unrelated relations. Furthermore, the intersection
of sets containing neighboring relations, such as for example {[t,13]} and {[t,1bs]},
should not be “empty”, but rather lead to a coarser relation such as [t,1;]. These
extensions are implemented by the modified COMBINE in Fig. 8, which checks to see
if subsumed or neighboring relations are available, if the regular intersection of two
relsets is empty. In the first case, the subsumed (more specific) relation is placed in
the new combined set. In the second case, the “next common coarse relation” (nccr)
is added to the combined set. This is a form of constraint relaxation embedded in the
propagation process (Hernandez and Zimmermann 1992).

Continuing our example, assume the initial relation between W and T to be

10



To PROPAGATE 1i,]j
begin
For each node k such that Comparable(i,k) do
begin
New «— Combine(N(i,k),Constraints(N(i,j),N(j,k)));
If New = )
then Signal contradiction;
If New # N(i,k)
then add <i,k,doc(New)> to Agenda;
N(i,k) < New;
end;
For each node k such that Comparable(k,j) do
begin
New «— Combine(N(k,j),Constraints(N(k,i),N(i,j)));
If New = )
then Signal contradiction;
If New # N(k,j)
then add <k,j,doc(New)> to Agenda;
N(k,j) < New;
end;
end;

Figure 7: Weighted Propagation

To COMBINE R1, R2
begin
temp < R1 N R2;
if temp # 0
then Return temp;
C — 0;
For each r1 € R1
For each r2 € R2
begin
if subsumes(ril,r2) then C « C U r2;
if neighbor(r1l,r2) then C « C U nccr(rl,r2);
end;
Return C;
end;

Figure 8: Combining two relsets
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{[d,12),]d,r2]}, and suppose that we learn later that Rwy = [d,rfs]. Instead of re-
turning an empty set as an intersection of the two sets would, COMBINE recognizes
that ry subsumes rfs and returns [d,rfs] as result. After propagation, the relations
between W and F, and between W and S are constrained to be {[d,f],[d,rf]}, and
[{d,t}, {b,rb,r}], respectively.

3.1.4 Complexity
Allen (1983) and later Vilain, Kautz, and van Beek (1990) showed the algorithm to run

in polynomial time w.r.t. the number of intervals in the database. O(n?) set operations
are required in the worst case for the algorithm to run to completion for n intervals,
because there are at most n? relations between n intervals, each of which can only be
non-trivially updated (and correspondingly entered on the queue for propagation) a
constant number of times (each update removes at least one of 13 possible relations).
In turn each of the O(n?) propagations requires O(n) set operations resulting in the
said O(n?) set operations (which in a bit-string implementation of sets can be assumed
to take constant time each).

As a consequence of the modified COMBINE, New # N(i,k) in PROPAGATE being
true does not imply New C N(i,k). However, the worst case complexity analysis of
the original algorithm is not affected by this change, because every non-trivial update
of a relset either removes at least one relation (intersection, original algorithm), or
replaces one relation by a subsumed one, or one or more fine relations by a coarser
one. The average case performance is greatly improved by the modifications described,
particularly by the hierarchical decomposition, and by the preferential propagation of
specific relations.

3.2 Deleting Relations

Deleting relations between two nodes is not just a matter of removing a link from the
data structure representing the network. The consequences of the propagation of the
constraint now being deleted must be taken back as well.

This requires a further modification of the insertion algorithm described in the
previous section to maintain justifications for derived constraints. Instead of just
modifying a link to contain the new constrained relset, we also record the link whose
propagation led to the new constraint. In general, a justification is a list of the links
that were used to derive the relation of the new link. To allow for multiple derivation
paths, usually a list of justifications is maintained. At the same time a link has
pointers to those links that it in turn served in deriving in a so called justificands list.
Relations originally entered by the user (considered as “premises”) have an empty
justification list. This information is usually maintained in a separate “dependency
network”, where the links of the constraint network are the “nodes” ®
connecting them represent the dependency structure. Fig. 9 shows a typical graphical
representation of dependency networks, and illustrates the terminology introduced
above (empty justifications marking premises are shown as solid rectangles). The
dependency network can also serve as direct indexing and retrieval mechanism for sets

and the arcs

8Note, however, that each particular relset R;; between objects ¢ and j is recorded as a separate
node of the dependency network.
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of consistent relsets. The process operating on a dependency network is called “reason

T// ___________________
N

premise

} justification
\\\.'/’-- Y

} justificand

Figure 9: Graphical representation of dependency networks

maintenance”. Because they can operate independently from the problem solver (the
constraint propagation algorithm, in our case), reason maintenance algorithms and
the corresponding dependency networks have been developed as separate systems
called “Reason Maintenance Systems” (RMS). RMSs were introduced in the late 70s
in the context of computer-aided circuit analysis by Stallman and Sussman (1977),
and first studied as independent systems by Doyle (1979).? Further variants were
later developed by McAllester (1980), de Kleer (1986), and others.

Based on the dependency information recorded during the propagation of con-
straints, the RMS establishes which nodes of the dependency network are affected
by the deletion of a link in the constraint network. Figure 10a shows the depen-
dency network for the example from the previous section, after the first set of rela-
tions (the “premises” Rpr, Rsr, Rwr) and its consequences (Rsp, Rwr) have been
established.!® The one as superscript indicates that this particular relset is the first
one assigned to that link. Figure 10b shows the next step in which Ry is added as a
premise, resulting in the derivation of new values for Ry, and R}y, 5 (indicated by the
two as superscript). Note that the old values Rj;; and Rj;, . are cancelled out. Now
suppose we originally got the wrong description and are forced to delete the relation
between S and T. In that case, all the consequences derived by using that relation
must be removed as well, as shown in Fig. 10c. Unfortunately, we are left only with
the relations R}y and Rjy g, even though we had previously the relations R}, and
Riy - that did not depend on the erased relation. The RMS mechanism, however, does
usually reconsider the evidence in support of all nodes based ultimately on premises,
when other values are erased, and would restore in this case the old values for Ry,
and R}, (Fig. 10d). Thus, maintaining dependencies not only allows us to retract
the consequences of deleted relations, but also helps us to avoid repeated computa-
tions. Of course, there is always a tradeoff between the overhead of caching inferences
and the costs of recomputing them, particularly when restrictive propagation policies

apply.

9They were originally called “Truth Maintenance Systems”, a somewhat misleading term, still of-
ten found in the literature. We prefer the name “Reason Maintenance Systems” following McDermott
(1983).

0For better readability, we are omitting here the propagation through inverted links (e.g., Rws =
Rwr/Rrs).
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Figure 10: Example dependency network

14



Upon deletion of a link in the constraint network, reason maintenance is triggered,
leading to the corresponding erasure of a node in the dependency network. The basic
idea of reason maintenance is similar to the “garbage collection” mechanism in LISP
systems: The status and support of all elements in the network are reset first, and then
recomputed by a recursive mark procedure that—starting from the premises—finds
all nodes with “well-founded” support. Nodes without such support are physically
removed from the network. While the procedure illustrates the basic idea, it is usu-
ally not very efficient, because all nodes in the network are visited (only once, but
anyway). Thus, other variants start from the erased node, and recursively mark all
its justificands for erasure. However, because of the potential of circular dependen-
cies, a somehow more involved procedure is needed (Hernandez 1992). It resets the
non-circular supporter/supportee links and assigns them a tentative status, assum-
ing that all nodes marked inactive (# {IN, OUT}) will ultimately be erased (0UT). If
that happens not to be the case, i.e., if one such node becomes active (IN), because
of a valid justification, all its supportees must be reconsidered, because they might
have been assigned a new status based on the assumption that the supporter be OUT.
Details of this algorithm can be found in (Herndndez 1984), where several variants
were implemented based on ideas in (Charniak et al. 1980) and (Doyle 1979).

4 Conclusion

Even though the solution techniques for the general constraint satisfaction problem
available in the literature represent large efficiency improvements over the obvious
backtracking algorithm, they are “limited by their generality”. That is, being general,
domain-independent techniques, they ignore the structure of the relational domain.
Thus, in this paper we show that taking the structure of the richly constrained spatial
domain into consideration leads to more efficient algorithms. One way of exploiting
this structure is introducing heuristics to control the propagation of constraints by
using the hierarchical and functional decomposition of space to limit constraints to
physically adjacent objects. Spatial reasoning can be done at coarser or finer levels
of that structure, depending on the kind of information available. In particular, if
only coarse information is available, the reasoning process is less involved than if
more details are known. Also, a weighting of positional relations according to their
information content is used to avoid “information decay” in the network due to the
propagation of weak relations. Retracting the consequences of previous propagations
in order to maintain the consistency of the knowledge base requires keeping track of
dependencies and a reason maintenance mechanism.
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