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Abstract

A framework for the representation of qualitative distances is de-
veloped inspired by previous work on qualitative orientation. It is
based on the concept of “distance systems” consisting of a list of dis-
tance relations and a set of structure relations that describe how the
distance relations in turn relate to each other. The framework is char-
acterized by making the role of the “frame of reference” explicit, which
captures contextual information essential for the representation of dis-
tances. The composition of distance relations as main inference mech-
anism to reason about distances within a given frame of reference is
explained, in particular under “homogeneous structural restrictions”.
Finally, we introduce articulation rules as a way to mediate between
different frames of reference.
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1 Introduction

The qualitative approach to the representation of spatial knowledge has
gained considerable popularity in recent years. Qualitative representations
are characterized by making only as many distinctions in the domain of dis-
course as necessary in a given context.

In previous work, the qualitative description of space has been mostly
restricted to topological relations (Randell and Cohn 1989; Egenhofer and
Herring 1991; Egenhofer and Franzosa 1991; Clementini, Di Felice, and van
Oosterom 1993; Clementini and Di Felice 1995) and orientation relations
(Hernandez 1991; Freksa 1992; Latecki and Réhrig 1993; Zimmermann 1993).
The combination of topological and orientation relations provides a restricted
form of positional information that is mainly useful in small-scale environ-
ments such as “the objects in a room” (Hernandez 1994).

In this paper we develop a model for the qualitative representation of
distances as they are needed in the context of geographic space. People’s
concepts of space and therefore distance are dependent upon both culture
and experience (Lowe and Moryadas 1975). What it means for A to be near
B depends not only on their absolute positions (and the metric distance
between them), but also on their relative sizes and shapes, the position of
other objects, the frame of reference, and “what it takes to go from A to B”.
With other words, distance concepts are context dependent. Quantitative
approaches try to avoid contextual issues by reducing all distance information
to an absolute metric scale. However, this is not always feasible or desirable.
Qualitative approaches must deal with contextual dependencies since, by
definition, only those distinctions relevant in a given context are made. In
our approach, we capture contextual information by using frames of reference
to qualify distance relations.

We will restrict our attention here to two-dimensional space, which is com-
monly used as a projection of the three-dimensional physical space. Thus,
we can consider a scene to be made up of geometric objects (points, lines,
and areas) variously arranged in the plane and possibly overlapping. Fur-
thermore, we assume an isotropic space, in which the effort to move is the
same in all directions, and thus the isolines connecting all points at the same
distance are concentric circles. Most anisotropic spaces can be translated
into isotropic ones by appropriate transformations.

In what follows we will put our contribution in the context of existing
literature by briefly reviewing some related work. We will then introduce
various levels of distance distinctions and their domain structure (section 3)
as well as the composition of distance relations as main inference mechanism
(section 4). While those sections assume for simplicity a uniform reference



frame, we discuss in section 5 how to mediate between different frames of
reference.

2 Related Work

There is a considerable amount of recent work in the area of qualitative spa-
tial reasoning to which the model presented in this paper relates. We shall fo-
cus here only on the most closely related papers and refer to Hernandez (1994)
and Freksa and Rohrig (1993) for a more general review of that literature.!

Most related work has concentrated on the qualitative description of size,
which being a linear quantity has some similarity to distance. In particu-
lar, Allen (1983) briefly describes an extension of his temporal interval rea-
soner to handle duration, the temporal equivalent of size. Mukerjee and Joe
(1990) who extend Allen’s approach to multi-dimensional spaces (essentially
by maintaining tuples of 1-dimensional relations), base their representation
of relative size on the “flush translation operator ¢”. The idea is to observe
the relations between two intervals as they move along what the authors
call “relation continuum” and deduce the relative size from them. Zimmer-
mann (1991) develops a representation for object sizes based on differences
and a partial ordering. The relation A(>,d;)B denotes the fact that “A is
higher/larger than B by the amount d;”, since |A| = |B| + |di|. In Zim-
mermann (1993) this “delta calculus” is combined with orientations. How-
ever, only a restricted set of distance distinctions is possible in that model.
While representations based on direct comparisons can handle moderately
different sizes, other calculi concentrate on differences in the order of mag-
nitude (Raiman 1986; Mavrovouniotis and Stephanopoulus 1988). We shall
use order-of-magnitude relations below to express the structure of distance
systems.

The most closely related work that explicitly describes a method for qual-
itative reasoning about distances (far, close) and cardinal directions (N, F,
S, and W) in geographic space is Frank (1992). It is based on an algebra of
paths on which the two operations of inversion and composition are defined.
Frank discusses two direction systems, one based on triangular areas and
one based on projections, and presents alternatives for the combination of
distance and direction, some of which produce only ‘Euclidean approximate’
results. Our qualitative distance model is superior to Frank’s in that not
only equally spaced distance intervals but also regions of varying sizes are
dealt with.

IThere is also a large amount of relevant cognitive and linguistic work which we are
excluding here for brevity.



3 Modeling Distances Qualitatively

We propose a qualitative framework where three elements are needed to
establish a distance relation: the primary object (PO), the reference object
(RO), and the frame of reference (FofR). The distance between the reference
object A and the primary object B is expressed by d4p = d(A, B). We will
defer discussion of frames of reference to section 5, while this section and
Section 4 treat aspects that are independent or the reference frame.

A distinction has to be made between comparing the magnitudes of dis-
tances and naming distances. For comparing distances, the obvious set of
predicates is <, =, >, which characterize the result of direct comparison.
With respect to naming, the types of objects involved and the context in
which they are embedded are decisive factors for establishing the set of re-
lations to be used. The first level of granularity that comes to mind distin-
guishes between close and far. Those two relations subdivide the plane into
two regions centered around the reference object, where the outer region goes
to infinity. Characteristic of the semantic of qualitative distance relations is
that they partition the physical space into regions of different sizes (where
the difference can be even in the order of magnitude).
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Figure 1: Various levels of distance distinctions

Cognitive considerations suggest the need for systems of distance rela-
tions organized along various levels of granularity, for e xample: a level with
three distinctions close, medium, and far, a level with four distinctions very
close, close, far, and very far, a level with five distinctions very close, close,
commensurate, far, and very far, and so on. Notice that the names given



to relations are arbitrary, since we do not discuss linguistic reasons to asso-
ciate a meaning to a given term. The relations partition the plane in circular
regions (see Figure 1).

The qualitative approach deals implicitly with uncertainty in that the
next coarser level of distinctions is chosen whenever no decision can be made
about the appropriate relation at a finer level. Most of the time this is
better than coming up with fuzzy membership numbers, which can be quite
arbitrary. However, the general framework presented here is independent of
the kind of boundary (sharp, fuzzy, overlapping) between the regions.

In general, at a given granularity level space surrounding a reference ob-
ject is partitioned according to a number of totally ordered distance distinc-
tions @ = {40, ¢1,q2, - - -, Gn }, where g is the distance closest to the reference
object and ¢, is the one farthest away (going to infinity). Distance relations
are organized in distance systems (D) consisting of:

e a list of distance relations (i.e., the set of qualitative distinctions being
made and their increasing distance order);

o a set of structure relations describing how the distance relations in
turn relate to each other (e.g., order-of-magnitude relations between
the various named distance ranges).
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Figure 2: Distance ranges vs. distance from origin

In this paper we will only consider homogeneous distance systems, in
which all distance relations are related to each other by the same type of
property. In order to describe those properties, we distinguish between §;
being the “distance range :”, and A; being the “distance range from the
origin up to and including the distance range §,” (Figure 2). (Note that the



distance symbol g; labels all distances starting from the origin and falling in
the range A;.)
A very common restriction is that of monotonically increasing ranges:

00 <61 <6y <LLo <0, (1)

An additional useful range restriction is that a given distance range be bigger
than the sum of the previous ones:

i 2 Ai—q, Vi >0 (2)

Finally, if a distance range ¢; is much bigger than a previous one ¢; (6; > ¢;),
then 6; will absorb ¢; in the composition:

These restrictions constrain the resulting sets in the composition of re-
lations as we will see in the next section. = The restrictions imposed on
homogeneous distance systems correspond to the most common types of dis-
tance concepts used. The general case of heterogeneous distance systems is
dealt with in (Clementini, Di Felice, and Hernandez 1995).

4 Composition of Distance Relations

Given the distance dap = d(A, B) between the reference object A and the
primary object B and the distance dpc = d(B,C') between B and C, the
composition of distances gives us the distance d4¢ between A and C'. This
resulting distance will in general be a range of possible distances, for which
we will find a lower and an upper bound.
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Figure 3: Composition of distances for same orientation

In the case in which the orientation of B with respect to A is the same
as the orientation of C' with respect to B (see Figure 3), the composition
amounts to adding two “positive quantities”, so that the lower bound cannot
be less than the bigger of the two distances:

LB(dac) = dap & dpe = max(dap, dpc). (4)
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Without structural restrictions, the upper bound for the composition is g,.

Assuming monotonically increasing distance ranges (restriction 1 above),

however, we obtain:?

UB(dAc) = ord_l(ord(dAB) + Ord(dBc)). (5)

Considering five possible distance symbols, the resulting composition table

© qo il q2 q3 a4
qo | 9o0,%1 q1,92 42,93 43,44 G4
q1 | 91,92 G1,92,93 42,493,494 §3,4a G4
92 | 92,93 42,943,944 G2,93,44 §3,4a G4
q3 | 43,94 43,94 43,44 43,44 G4
q4 q4 q4 q4 q4 q4

Table 1: Composition of distances for same orientation
(monotonicity)

is given in Table 1.

Some of the entries in Table 1 are possible only in the case of equally
spaced distance ranges. By considering the range restriction (2), the compo-
sition of two distances can at most be one step bigger than the maximum of
the two distances. The upper bound becomes:?

UB(dac) = succ(max(dag, dpc)). (6)

Therefore, some of the resulting distances in Table 1 can be excluded ob-
taining the composition table in Table 2.

The upper bound can be further lowered with the absorption rule (re-
striction 3), which allows us to disregard the effect of the smaller relation
(for example, for a difference between distances of two steps, i.e., p = 2, we
obtain the results in Table 3):

|0rd(dAB) — Ord(dBc)| >p= UB(dAc) = max(dAB, dBO)- (7)

In the case of the composition of distances with opposite orientations—
see Figure 4—the upper bound is given by the maximum of the two distances
since this corresponds to the difference between two “positive quantities”:

UB(dAc) = dAB @ dBC = maX(dAB,ng). (8)

“The function ordinal is defined as: ord : Q — {1...n + 1}, such that ord(¢q;) =i + 1.
Note that ord™!(i) = ¢, for i > n.

3The function successor gives the next symbol in the list, that is: succ(g;) = g1 for
each 7 < n and succ(gqn) = qn.




D] G 92 43 qa
9o | 90,91  G1,92 42,93 §3,4a2 G4
q1 | 91,92 G1,92 42,93 §3,4a2 G4
q2 | 92,93 42,93 42,43 §3,4a2 G4
93 | 93,94 43,92 (43,42 §3,4a2 G4
q4 q4 q4 q4 q4 q4

Table 2: Composition of distances for same orientation (range
restriction)

D qo0 91 q2 q3 q4
qo | 90,91 41,92 q2 q3 q4
q | 91,92 91,92 42,93 E! q4
q2 qz 92,93 42,93 43,44 G4
q3 q3 q3 93,94 43,494 G4
q4 q4 q4 q4 94 q4

Table 3: Composition of distances for same orientation (ab-
sorption rule)

| ! !
A C B

Figure 4: Composition of distances for opposite orientation



Without restrictions, the lower bound is LB(d4c) = ¢o, while, applying a
similar strategy as in the ‘same orientation’ case, we can increasingly restrict
the lower bound. Imposing restriction 1, the lower bound becomes:

LB(CZAO) = ord_1(|ord(dAB) — ord(ng)D. (9)

The results for the five distance symbols are shown in Table 4. In Table 5 the

o qo q q2 q3 q4
qo qo0 qo,q1 1,92 92,43 43,44
q1 qo,q1 do,q1 40,491,492 q1,42,493 42,493,494

q2 q1,92 d0,91,92 40,491,492 40,491,92,93 q1,92,43,44
q3 | 92,93 41,492,493  40,491,92,93 q0,91,92,93 q0,491,92,93,94
q4 | 93,94 92,93,94 41,92,93,94 G0,91,92,93,94 40,91,92,93,94

Table 4: Composition of distances for opposite orientation

(monotonicity)

S, 9o il q2 qs3 Q4

qo qo0 q0,q1 41,42 92,93 43,44

q1 | 4o,q1 Go,q1 40,491,492 42,43 43,44

q2 | 41,92 40,491,492 40,491,492 40,91,92,93 43,44

q3 | 92,93 42,93 q0,91,92,93 q0,91:92,93 q0,91,92,93,94
q4 | 93,94 q3,94 q3,94 q0,91,92,93,94  q0,91,92,93,q4

Table 5: Composition of distances for opposite orientation
(range restriction)

results that may happen for equally spaced distance ranges (restriction 2) are
removed. The results affected by this rule are those for which the difference
between the distances is at least two steps, that is:*

|01‘d(dAB) - ord(ng)| 2 2= LB(CZAC) = pred(max(dAB,ng)). (10)
Eventually, by applying restriction 3, the lower bound becomes:
|0rd(dAB) — ord(ng)| >p= LB(dAO) = maX(dAB, dBC)- (11)

With a difference p = 2, we have the results in Table 6.

4The function predecessor gives the previous symbol in the list, that is: pred(q;) = ¢i—1
for each i > 0 and pred(go) = qo.



S, 9o il q2 qs 44
qo0 qo0 q0,q1 q2 q3 q4
q1 | 90,91 q0,%1 40,491,492 q3 q4
q2 q2 40,491,492 q0,91,92 q0,91,492,93 q4
q3 q3 q3 q0,91,92,93 q0,91,92,93 q0,91,92,93,94
q4 q4 q4 q4 q0,91,92,93,94  90,91,92,93,94

Table 6: Composition of distances for opposite orientation
(absorption rule)

In the general case, the composition of two distance relations must take
into account any of the possible orientations and not just the two cases
of same and opposite orientation (see Clementini et al. 1995). However,
these two cases correspond to the two extremes of the range of resulting
distances when an arbitrary orientation is taken into consideration. The
case of opposite orientations gives the lower bound and the case of same
orientation gives the upper bound of the range.

In what has been said up to now, we have ignored the role of frames of
reference, which will be addressed in the following section.

5 Frames of Reference and Articulation Rules

Thus far, we have implicitly assumed that the scale in which the distance
distinctions apply is known. The scale of a distance system is determined
by the context in which the distinctions are made. Using an analogy to the
qualitative representation of orientation, we distinguish among three different
types of contexts or frames of reference (Hernandez 1994):

e Intrinsic frame of reference
The distance is determined by some inherent characteristics of the ref-
erence object, like its topology, size or shape. An object like a house,
for example can implicitly determine what is close and far with respect
to itself, without the need of any external factors.

¢ Extrinsic frame of reference
The distance is determined by some external factor, like the arrange-
ment of objects, the traveling time, or the costs involved.

e Deictic frame of reference
The distance is determined by an external point of view. The most

10



immediate case is the one of objects that are visually perceived from
an observer standing at the point of view. Deictic frames of reference
include also cases in which the point of view is used figuratively, i.e.,
not in the sense of sight. Often the point of view is related to how an
individual builds a mental map of space.

Thus, a frame of reference has to take into account all contextual infor-
mation. For a given type, we have to establish the criteria fixing the scale
and choose an appropriate distance system. Therefore, three components
make up a frame of reference:

FofR = (T, S, D) (12)

The type T' is either intrinsic, extrinsic or deictic. The scale S is, depending
on the type: a function of inherent characteristics of the reference object,
e.g., f(size(RO)) (for the intrinsic type), a reference unit given by external
factors (for the extrinsic type), or a function of the distance between the
point of view and the reference object f(d(PV, RO)) (for the deictic type).
The distance system D is a structure as defined in Section 3 (made up of
distance relations and structure relations).

In the general case, the qualitative description of distance among a set
of objects is reasonably assumed to be given according to different frames of
reference. A “basic” type of qualitative reasoning is therefore to relate the
distances to each other and be able to infer new information. Ideally, we
would like to transform all distance descriptions to the same (“canonical”)
frame of reference. However, different distance frames of reference refer to
different granularities or scales, thus making a transformation into an im-
plicit frame difficult. We rather must restrict ourselves to giving articulation
rules (cf. Hobbs 1985) that state how two particular frames of reference
compare. This comparative information, which consists mainly of order in-
formation between reference magnitudes, must be explicitly maintained in
the knowledge base. It can further constrain the relations maintained in the
constraint network, and suggests deferring naming to those cases where it
can be done in a disambiguating context. From the definition of frames of
reference given above it follows that articulation rules must relate the scales
and distance systems of the frames involved. The frame type does not need to
be explicitly related, since it already determines the scale factor and is thus
contained in it. The distance systems must be compared as to the sets of
relations involved and their structure (i.e., the order-of-magnitude relations
between the distances). In general, only similar distance systems might be
successfully related to each other, and some might be incomparable to each
other.
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6 Conclusion

In spite the fact of distance being an important cognitive spatial concept, and
the increased research activity in the area of qualitative spatial reasoning, no
satisfying qualitative model for distances had been developed up to now. This
paper’s major contribution is providing such a model with the characteristic
advantages of the qualitative approach: a flexible set of distance distinctions
at various levels of granularity, an implicit way of handling uncertainty, and
the corresponding reasoning mechanisms.

This, however, is only the beginning of a longer term collaborative re-
search effort. Several of the explicitly stated assumptions and restrictions in
the paper point to further research directions (some of which already have
been pursued as reported elsewhere):

e Distance is only one component (the other one being orientation) of
positional information. Further work will have to deal with the combi-
nation of distance and orientation, which we expect to constrain each
other in a way that actually simplifies the reasoning process.

o Here we have only considered the case of homogeneous distance sys-
tems, in which all distance relations are related to each other by the
same type of property. The more general case of heterogeneous dis-
tance ranges, which is likely to correspond to cognitive distance con-
cepts without a priori restrictions, still needs to be investigated.

o We have ignored the case of extended objects: The extension of objects,
however, influences the concepts of distance. As a first classification,
we will consider three different scenarios. If the distances involved at a
given scale are such that the extension of the objects can be disregarded,
we use the point abstraction as in this paper. If the extension of the
objects is of the same order of magnitude of the distances among them,
then the distance will be computed between the boundaries. If the
objects connect, the distances will be computed between the centroids
of the objects.

e The articulation rules mechanism sketched in the previous section needs
further study. This will be done in the context of an application in the
domain of vehicle navigation systems. In that context, information at
various scales and granularities needs to be dealt with to guide vehi-
cles at the single road level (small-scale environment), at the city level
(urban scale), and at the region level (geographic scale).
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