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Cardinal directions are frequently used as selection criteria in spatial queries or for 

assessing similarities of spatial scenes. Current models for cardinal directions use crude 

approximations in the form of the objects’ minimum bounding rectangles or their 

generalizations to points. To overcome the limitations of these models so that improved 

reasoning can be performed, the coarse direction-relation matrix is introduced. It 

partitions space around a reference object and records into which direction tiles an 

extended target object falls. The detailed direction-relation matrix captures more details 

by recording the ratio of the target object in each direction tile or the number of 

separations per tile. This multi-resolution model provides a better approximation for 

direction relations of complexly structured spatial objects than the approach with 

minimum bounding rectangles.  

 

In order to record directions between arbitrary pairs of point, line, and region objects, 

the model based on the coarse direction-relation matrix is extended to the deep direction-

relation matrix. It additionally records information about the intersection of the target 

object with the boundaries of direction tiles, if necessary. This thesis demonstrates that 

directions recorded at smaller scales using this model are compatible with the directions 

recorded at larger scales. The compatibility makes this model useful for direction-based 

queries in spatial databases over multiple scales.  



To apply direction-relation matrices for the assessment of similarity between spatial 

scenes, this thesis develops a method to compute similarity between direction-relation 

matrices. The similarity between two direction-relation matrices depends on the distances 

between cardinal directions along a conceptual neighborhood graph, which has a node for 

each direction tile and edges connecting nodes corresponding to neighboring tiles. There 

are two types of graphs: the 4-neighborhood graph and the 8-neighborhood graph. The 

comparative study of the mappings from directions changes to similarity values provided 

by the graphs reveals that the 4-neighbohood graph provides a sounder mapping than the 

8-neighborhood graph. The similarity assessment method gives cognitively plausible 

rankings of spatial scenes based on the cardinal direction between objects, and it is useful 

in retrieving spatially similar scenes in image databases, video databases, multimedia 

databases, and web databases.  
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Chapter 1  

Introduction  

People communicate about geographic space often using highly generalized spatial 

concepts such as cardinal directions. For example, they typically refer to relationships 

between objects using such terms as north or northeast. These qualitative spatial concepts 

are sufficient for people to make inferences about the relationships and their 

combinations (Byrne and Johnson-Laird 1989), and qualitative spatial reasoning has been 

found to be fundamental to people’s everyday activities (Riesbeck 1980). For instance, 

when people ponder about where to place a newly acquired table at home or when they 

decide where to construct a new building, they apply various forms of qualitative spatial 

reasoning. While people are good at making decisions based on spatial information for 

daily tasks, it is necessary to use information systems for complex and systematic spatial 

reasoning tasks involving a large number of constraints.  

 

Geographic information systems (GISs) are built to aid people in making decisions 

for such complex tasks as land management, forest management, urban development, and 

hazardous waste management. A GIS’s success depends on its ability to answer people’s 

questions without making people learn about the internal data representation in the GIS. 

The GIS typically stores the geometry and other information about objects, and allows a 

user to perform such operations as retrieving stored information, analyzing the stored 

data, and reasoning to derive new spatial information. For instance, a state government’s 

GIS may store the geometry and population of counties, so that a user can query and 

analyze the population of counties based on their spatial relationships. In order to query 

and analyze spatial data in a meaningful way, GISs need methods to formulate and 

process spatial relations.  
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Typically GISs use analytical techniques for extracting spatial information from 

quantitative representations, such as Euclidean geometry and Cartesian coordinate 

systems. The formalization of spatial relations and the explicit storage of spatial relations 

in a GIS is preferred over analytical methods, because spatial relations form the basis of 

most spatial queries and explicit storage makes this information available right away.  

 

In order to make GISs respond to users’ queries effectively, spatial concepts should 

be formalized in cognitively plausible ways and be incorporated into spatial query 

languages. The formalization of spatial concepts has been a research priority for more 

than a decade, as evident from the research agenda of the National Center for Geographic 

Information and Analysis (NCGIA) that identified the need for coherent mathematical 

theories of spatial relationships (Abler 1987). NCGIA’s Varenius project identifies the 

computational implementation of geographic concepts as a strategic area of GIS research 

(NCGIA 1995). The extension of geographic representations is also a research priority 

according to the University Consortium of Geographic Information Science (UCGIS 

1996). This thesis continues research on formalizing spatial concepts offering a new 

model for cardinal directions that is applicable to extended as well as point objects. 

1.1 Spatial Reasoning 

Reasoning is a fundamental logical operation that is often used to explain people’s 

inferences. It can be performed on quantitative as well as qualitative information. 

Quantitative information is recorded using a predefined unit of a quantity such as meter 

for distances. For example, the distance between Boardman Hall and Fogler Library is 

140 meters. Reasoning on quantitative information is performed by mathematical rules 

that are expressed as numeric operations. Qualitative reasoning, on the other hand, 

focuses on the essence of information using a small set of such symbols as {+, 0, -}. For 

example, if a faucet is discharging water in a bathtub and the rate of water entering the 

tub is more than the water leaving the tub, the tub will eventually overflow. To arrive at 

this conclusion, no elaborate equations were used. Qualitative reasoning allows us to 

make such inferences. Inferring new information using the available qualitative 

information about the space is called spatial reasoning (Hernández 1993; Cohn 1996). In 
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combination with reasoning about time, it is called spatio-temporal reasoning (Egenhofer 

and Golledge 1998).  

 

Naive Geography (Egenhofer and Mark 1995b) is a modern concept in the area of 

spatial reasoning along the line of Naive Physics (Hayes 1978; Hayes 1985). Naive 

Geography attempts to make GISs behave close to the way people reason about space and 

time. Such systems are more likely to be accepted by people due to the expected ease of 

use. Naive Geography is a challenging task for spatio-temporal researchers and GIS 

designers, as the task requires models of spatial concepts that conform to people’s way of 

reasoning. Formalization of spatial concepts has been a topic of active interest across 

such disciplines as GIS, geography, artificial intelligence, computer vision, cognitive 

science, and psychology. Vision systems perform spatial reasoning on objects extracted 

from digital imagery (Freeman 1975; Haar 1976).  

 

Olivier and Gapp (1998) provide a collection of representation and processing 

techniques for spatial expression. Spatial relations capture knowledge about relative 

placement of spatial objects. In GISs, one typically distinguishes three types of spatial 

relations: topology, direction, and distance. Topological relations capture important 

knowledge about geometric relations between objects that are invariant under affine 

transformations such as translation, rotation, and scaling. For example, if two objects are 

disjoint, they continue to remain disjoint if the embedding space is rotated. The 4- 

intersection (Egenhofer and Franzosa 1991) distinguishes eight different topological 

relations between regions, which are called disjoint, overlaps, meets, equals, inside, 

contains, covers, and covered-by. Cardinal direction captures knowledge about relative 

location of an object with respect to another object in the embedding space such as A is 

north of B. Cardinal directions between objects do not depend on the objects’ internal 

structures, the observer, and the scale of embedding space, but they depend on their 

relative positions with respect to each other and their shapes, and their extents. For 

example, if A is north of B, A continues to remain north of B if the embedding space is 

scaled. The distance between two objects depends on the efforts to move from the 

location of one object to the location of another. Distance is typically recorded using 
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Euclidean distance, which is also called quantitative distance. Hong (1994) developed a 

method to transform the quantitative distances into qualitative distances such as near, 

medium, far, and very far. This thesis focuses on models for cardinal directions.  

1.2 Direction Relations 

People perform qualitative spatial reasoning about directions in 2-dimensional space 

often using such concepts as right, left, front, and back and inference rules (Byrne and 

Johnson-Laird 1989). In the case of geographic objects, people use cardinal directions 

such as north and northeast. For example, Orono, Maine is northeast of Bangor, Maine 

(Figure 1.1). In this relation Bangor is the reference object, Orono is the target object, and 

northeast is the cardinal direction between this ordered pair of objects. People typically 

use eight cardinal directions: north, northeast, east, southeast, south, southwest, west, and 

northwest (Frank 1996). In direction reasoning, an additional identity direction 0 or same 

is also used, that gives nine cardinal directions.  

 

Figure 1.1: Three towns in the state of Maine. 

Direction reasoning allows us to infer unknown directions from known directions. In 

databases, such inferences are very useful as they can be performed symbolically, which 

provides consistent information with minimal computing. Direction combined with 

distance is used for reasoning about locations (Hong 1994), and with topology for the 

reasoning about layouts of objects (Sharma 1996).  
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1.3 Motivation for Formalizing Direction Relations 

While people commonly use cardinal directions in communication and for many 

inferences, the concepts are still too vague to be implemented consistently in GISs. There 

are several needs for formalized cardinal directions in GISs such as in query languages, 

in query processors, and in intelligent inference engines for spatial reasoning. The 

following motivations elaborate the properties necessary for a formalization of cardinal 

directions so that such a formalization has the widest applicability in GISs.  

1.3.1 Directions in Queries over Spatial Databases 

The term spatial database refers to a database that employs data structures that allow 

queries based on the spatial extent of objects (Günther and Buchmann 1990). Güting 

(1994) presents a survey of research in the area of data modeling, query languages, 

spatial data types, and spatial indexing. Quad-trees (Samet 1989a) and R-trees (Guttman 

1984) are among the most popular data structures used in spatial databases. To retrieve 

the objects in a given direction, Papadias et al. (1994) used R-trees by defining a search 

rectangle with respect to a reference object based on the direction of interest, and 

returned objects that intersect with the search rectangle. This scheme involves an 

exhaustive search based on the geometry of objects. Formal models of directions allow 

direction relations to be explicitly stored in databases that facilitate the use of direction as 

a search criterion for such queries as, “Select all lakes that are northeast of Orono in 

Maine.” 

 

A study conducted by Franklin et al. (1995) reveals that people parse their 

surrounding horizontal space into overlapping front, left, back, and right direction 

partitions; therefore, an observer may record a point that lies in an overlap of two 

directions as a point belonging to the neighboring directions, such as front and right. 

Similarly, cardinal direction terms such as north and east may also have overlapping 

regions in people’s minds, and these terms may have different meanings for different 

people. For example, some people may treat the north partition as a triangular area 

(Figure 1.2a), while others may treat it as a line passing through the centroid of the 
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reference object and going towards north (Figure 1.2b), and some others may treat it as a 

rectangular area that is north of the reference object (Figure 1.2c). People communicate 

with each other with direction terms that might have different meanings for different 

people, but query languages in GISs require formal definitions of direction terms. 

Therefore, the model of cardinal directions must be formal. 

 

 

Figure 1.2: Various interpretations of the direction term north: (a) cone-shaped 

partition, (b) centroid-based direction line, and (c) rectangle-shaped 

partition.  

1.3.2 Directions in Spatial Reasoning  

Locations of places are often specified with respect to known places or landmarks using 

natural-language descriptions. The locality and elevation interpreter performed spatial 

reasoning on linguistic representations of geographic information (McGranaghan and 

Wester 1988; McGranaghan 1989; Futch et al. 1992). It was designed to convert the 

linguistic text described on herbarium specimens into geodetic coordinates in order to 

perform spatial reasoning about the locations of species of plants. An example of such a 

natural-language description is “Oahu. Palolo Valley. Along the stream and up the 

northeast bank at elevation of 1100-1500 feet.” Figure 1.3 shows a possible visualization 

of this description. The approximate location of a specimen in terms of geodetic 

coordinate is inferred using the geodetic coordinates of a known place such as the 

longitude and latitude of Oahu in the mentioned description. A model of cardinal 
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direction must support spatial reasoning operations to infer unknown directions from the 

known directions, that is, it must be inferential. 

 

 

Figure 1.3:  A feasible visualization of a description in the locality and elevation 

interpreter (Futch et al. 1992). 

1.3.3 Directions between Geographic Objects 

Shapes of objects can affect directions between them (Peuquet and Zhan 1987; 

Abdelmoty 1995). Geographic objects can occur in numerous shapes and can relate to 

each other in many possible ways. For instance, the convex hulls of objects can intersect 

(Figure 1.4a), an object can surround the other object (Figure 1.4b), and two objects can 

be overlapping and intertwined with each other (Figure 1.4c).  

 

 

Figure 1.4: Irregularly shaped geographic objects. 

Shapes of objects are of interest to people in various domains. For example, in 

computer graphics shapes such as triangles, rectangles, polygons, and circles are used 

frequently. In computer vision and image processing, shape parameters such as area, 
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compactness, elongation, directions of major and minor axes, and moments of objects are 

computed from the objects extracted from images to compare the shapes of objects.  

 

Some changes in shapes, in specific situations, affect the direction of an object 

with respect to another object. Figure 1.5 gives an example where a change in the shape 

of target object B does not change its direction with respect to reference object A (Figures 

1.5a-b), while another change in shape changes its direction (Figures 1.5a and 1.5c).  

 

 

Figure 1.5:  (a)-(b) Object B is north of object A and (c) object B is north and northeast 

with respect to A.  

A direction model for geographic objects must be sensitive to those changes in 

shapes that affect cardinal directions between them. This thesis calls this property of 

direction models shape-sensitiveness. In order to record the direction that is sensitive to 

the shapes of the objects, a direction model must not approximate the shapes of the 

objects, but use the shapes of the objects as they are. Existing models of directions 

typically approximate geometries of objects by points or rectangles; therefore, they miss 

the effect of the shapes of objects on the directions between them and may yield 

misleading directions. A direction model must be able to represent directions between 

objects of all shapes without approximating their geometries; therefore, a direction model 

must be shape-sensitive.  

1.3.4 Directions in Multi-Resolution Geographic Databases  

Geographic databases record the geometry of spatial objects as points, lines, or regions 

depending on the level of detail considered (Goodchild and Proctor 1997). For example, a 
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city can be represented by a point or a region, and a road can be represented by a line or a 

region. A database may contain point, line, and region objects, which are the objects of 

different dimensions. Therefore, methods to determine directions between objects of 

different dimension are required. Figure 1.6 shows examples of directions between 

different dimensions. Directions recorded between different dimension representations of 

an ordered pair of objects in GISs must be cognitively equivalent. If a GIS records towns 

as points and another records them as regions, a query “Find towns that are north of 

Bangor in the state of Maine” should return the same result in both GISs.  

 

 

Figure 1.6:  Objects in multi-resolution geographic databases can be points, lines, and 

regions. 

Multi-representation geographic databases (Buttenfield 1989; Tryfona and Egenhofer 

1996; Bertolotto 1998) record more than one approximation of geographic objects. In 

current GISs, a user needs to specify the dimension of an object in a query, as the object-

oriented concepts of polymorphism and operator overloading that enable the use of same 

command for a semantically similar operation across different class-objects and 

arguments are new for GIS community (Newell 1992). Since objects are approximated at 

different dimensions, a user will have to make many queries to search for the objects of 

all dimensions. In order to let a user use one query for a search based on direction, 

direction between objects must not depend on the dimension of objects, that is, a model 

of directions must be dimension-neutral. 

1.3.5 Directions in Content-Based Retrieval  

Query by image content (Flickner et al. 1995) allows a user to retrieve images from a 

database based on the contents of images. Graphic representations of images store 

geometric and visual attributes of objects and spatial relations between them. The 
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geometric attribute of an object refers to its spatial extent, and visual attributes refer to 

color, shape, and texture (Gonzalez and Woods 1992). Geometric and visual attributes 

help in determining the presence of an object in a scene and spatial relations between 

objects distinguish relative placements of the objects in the embedding space. Combining 

object similarity and spatial relation similarity, one can make a query such as “Find 

scenes where object A and B are present, B is north of A, and A disjoint B.” Nabil et al. 

(1995) and Bruns and Egenhofer (1996) use spatial relation as a criterion to assess scene 

similarity. Gudivada and Raghavan (1995) assessed spatial similarity between scenes 

using quantitative directions between representative points of the objects. A query “Find 

scenes where A disjoint B” in a database containing scenes in Figure 1.7 would result in 

all three scenes in Figure 1.7. On the other hand, a query “Select all scenes where object 

A disjoint B and B north of A,” results in only the image in Figure 1.7c.  

 

   

(a) (b)  (c) 

Figure 1.7: Three images in a database. 

A user can also make a query to a geographic database such as, “Find scenes that are 

similar to the scene in Figure 1.7a,” and the system will rank similar scenes by their 

degrees of match based on similarities between objects and similarities between spatial 

relations. Results of this query are scenes in Figure 1.6b and 1.6c, and the degree of 

match for the image in Figure 1.7b will be higher than the degree of match for the image 

in Figure 1.7c. In order to use direction as a criterion to assess spatial similarity between 

scenes, the recorded directions must be comparable.  
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1.4 Cardinal Directions between Extended Spatial Objects 

The concept of direction is well defined for point objects (Peuquet and Zhan 1987; Frank 

1996), but people use this concept for extended objects as well. For example, Canada is 

north of the USA. The direction between extended objects is determined using crude 

approximations of the object geometries such as the approximation of objects by their 

centroids (Section 2.4.1) or by their minimum bounding rectangles (Section 2.4.6). Both 

models suffer from incorrect inferences, because the recorded directions are not the 

directions between the objects, but they are the directions between the approximations of 

the objects. 

1.4.1 Problem Statement  

In order to overcome limitations in direction representations due to approximations and to 

use them for applications mentioned in Section 1.3, a model to represent directions must 

have the following properties:  

 

• The model must be formal so that it can be used as a basis for query 

processing involving directions in spatial databases (Section 1.3.1).  

• The model must be inferential so that it can be used for deriving unknown 

directions from the known directions (Section 1.3.2).  

• The model must be capable of representing direction between irregularly- 

shaped objects without approximating their geometries, that is, it must be 

shape-sensitive (Section 1.3.3). 

• The model must be dimension-neutral so that it can be used in multi-

resolution geographic databases (Section 1.3.4).  

• The model must support similarity between directions, that is, the directions 

must be comparable (Section 1.3.5).  

 

These five points form the foundation for the present investigations in the modeling 

and reasoning about cardinal directions. 
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1.4.2 Goals and Hypothesis  

The goals of this thesis are (1) to develop a model for representing cardinal directions 

that has the properties outlined in the problem statement (Section 1.4.1) and (2) to 

develop a method for similarity assessment using this model of cardinal direction.  

 

This thesis develops the desired model for similarity assessment using direction-

relation matrices. The similarity between two directions depends on the distance between 

two direction-relation matrices along a conceptual neighborhood graph. The distance 

between two identical matrices is 0. If the distance between two directions D0 and D1 

along the conceptual neighborhood graph is smaller than the distance between D0 and D2, 

D0 is more similar to D1 than D0 to D2. A larger distance gives smaller value of similarity 

and vice-versa. 

 

A method of similarity assessment must provide a sound mapping of changes in 

directions onto the similarity values, such that it gives monotonically decreasing 

similarity values for increasingly larger changes in directions. The organization of 

cardinal directions in the direction-relation matrix forms the four-neighborhood and 

eight-neighborhood graphs.  

 

The hypothesis of this thesis is: 

 

“The four-neighborhood and eight-neighborhood graphs provide equally sound 

mappings of direction changes onto similarity values.” 

 

Section 6.6 tests the hypothesis by comparing the rankings provided by both types of 

neighborhood graphs.  

1.4.3 Scope of the Study 

In order to improve the inference power of next-generation GISs and to facilitate the use 

of direction relations in spatial databases and content-based retrieval, this thesis uses 
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direction-relation matrices for direction representation. Direction-relation matrices record 

directions between objects, not their approximations.  

 

This thesis builds the foundation for a new direction model using direction-relation 

matrices between region objects that provides a multi-representation view of cardinal 

directions and allows users to record increasingly more details if desired. It extends this 

model to a deep direction model that applies to arbitrary pairs of point, line, and region 

objects. Using direction-relation matrices, it develops a method to assess similarity 

between directions.  

1.4.4 Topics Excluded from the Present Investigation 

The theme of this thesis is cardinal directions, not direction giving. In direction giving 

and direction following (Riesbeck 1980), a subject checks the consistency of instructions 

and makes a mental map of the situation being described. The following aspects of 

direction relations are excluded from this investigation:  

• This thesis does not formalize the orientation of objects. A quantitative 

orientation between two objects would be recorded as an angle between their 

major axes, and qualitative orientation as directions front, left, right, and back. 

It formalizes the qualitative cardinal directions between extended objects such 

as north, south, east, and west. 

• The direction model presented in this thesis records direction between objects 

based on their geometries, and influences of their semantics such as figure and 

ground are not considered (Talmy 1983; Bittner 1997; Bittner 1999).  

• The model in this thesis uses non-overlapping direction partitions, that is, the 

direction partitions are exclusive. This thesis does not study the effect of 

overlapping direction partitions (Franklin et al. 1995) on computational 

models of cardinal directions.  

• The model in this thesis is tailored to 2-D embedding space, while it has 

potential of being extended to 3-D space (Fuhr et al. 1998). This aspect has 

been excluded from the current studies.  
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• This thesis does not develop methods to perform spatial reasoning using the 

presented model of direction. 

• This thesis does not develop methods to record detailed direction-relation 

matrices for arbitrary pairs of different dimension objects and similarity 

assessment for directions between such arbitrary pairs.  

• This thesis does not characterize the shape of objects. It uses the term shapes-

sensitive for a property of direction models that allows recording of cardinal 

directions without approximating the objects by their minimum bounding 

rectangles or points thus preserves the effects of shape on cardinal directions. 

1.5 Intended Audience  

The intended audience of this thesis constitutes any person interested in spatial reasoning 

in general and design and development of geographic information systems in particular. 

This includes researchers from fields of spatial databases, digital libraries, artificial 

intelligence, content-based retrieval, and computer vision. The direction model and 

methods developed in this thesis are useful for designing next-generation spatial 

databases, spatial query languages, and spatial reasoning systems. 

1.6 Major Results 

The major finding of this thesis is a direction model based on direction-relation matrices 

that record directions between irregularly-shaped objects without approximating their 

geometries. The model has all five required properties: formal, inferential, shape-

sensitive, dimension-neutral, and recorded directions are comparable (Section 1.4.1). 

Major results of this thesis are:  

 

• The coarse direction-relation matrix provides a knowledge structure to record 

multiple directions, such as {north, northeast, east} between regions. The 

model does not approximate the objects’ geometries and it is sensitive to the 

shape of the objects.  

• The detailed direction-relation matrix records the extent of the target object 

and further details about the target object in the framework that is similar to 
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the coarse direction-relation matrix. It can record directions at multiple 

resolutions and enhances the distinguishing capability of direction-relation 

matrices.  

• The deep direction-relation matrix is capable of recording directions between 

arbitrary pairs of point, line, and region objects. The deep direction-relation 

matrix has additional expressive power to distinguish those directions that 

cannot be distinguished by the coarse direction-relation matrix, but the model 

based on minimum bounding rectangles can distinguish. The deep direction-

relation matrices record identical values for cognitively equivalent directions. 

• We demonstrate that directions recorded, using the deep direction-relation 

matrices, at smaller scales are compatible with directions recorded at larger 

scales, which makes this model useful for multi-resolution geographic 

databases.  

• The method for similarity assessment between detailed direction-relation 

matrices makes the direction model useful for query by content in image 

databases, video databases, multimedia databases, and web databases. 

• A major contribution of this thesis is the rejection of the hypothesis, which 

uncovers the following fact: the 4-neighborhood graph provides a sounder 

mapping than the 8-neighborhhod graph.  

1.7 Thesis Organization  

The remainder of this thesis is organized into the following six chapters: 

 

Chapter 2 reviews existing models of direction relations, including direction between 

points and minimum bounding rectangles. It assesses existing models of directions to 

check whether or not these models have the required properties for direction relations 

(Section 1.4.1).  

 

Chapter 3 introduces the concepts of coarse and detailed direction-relation matrices. 

This chapter investigates how many valid directions can be distinguished using coarse 

direction-relation matrices. It discusses effects of shape, size, and distance on direction 
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relations. It also compares distinguishing capabilities of coarse direction-relation matrices 

and directions between minimum bounding rectangles.  

 

In order to represent directions between points and lines, Chapter 4 develops the 

deep direction-relation matrix by extending the coarse direction-relation matrix. The deep 

direction-relation matrix additionally records information about the intersections of a 

target object with boundaries of direction tiles using neighbor codes, if necessary. This 

chapter also demonstrates that a direction recorded using this model at a smaller scale is 

compatible with a direction recorded at a larger scale. The compatibility makes this 

model useful for querying spatial databases at multiple scales.  

 

Chapter 5 develops a method for similarity assessment using detailed direction-

relation matrices for regions. The basis of the similarity assessment is the conceptual 

neighborhood graph of direction relations. The problem of similarity assessment is 

formulated as a balanced transportation problem, which is solved using the transportation 

algorithm. 

 

Chapter 6 discusses the implementation of a direction comparison system. This 

system allows users to draw two ordered pairs of polygons, computes the direction in 

each pair, and computes the similarity between the directions. It evaluates the method of 

similarity assessment developed in Chapter 5, and compares the soundness of mappings 

provided by the 4-neighborhood and 8-neighborhood conceptual graphs.  

 

Chapter 7 summarizes the thesis, identifies contributions, and highlights possible 

further research based on the findings of this thesis. 
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Chapter 2  

Models of Direction Relations 

Models of direction relations are critical in visual interfaces to geographic information 

systems (Mark 1992). In the future, geographic information systems (GISs) that provide 

multi-modal user interfaces with voice interaction will incorporate such terms into their 

query languages (Egenhofer 1996) and will require inference mechanisms to process such 

queries. For example, a user may ask a natural-language query such as, “Find lakes in the 

state of Maine that are northeast of Orono,” and a GIS will be powerful and intelligent 

enough to interpret the semantics of the spatial constraints. Such spatial-reasoning tasks 

are intuitive to human reasoning, but in order to use the processing power of computers to 

assist them in these tasks, formal models of spatial concepts are needed. This chapter 

reviews the existing models of direction relations.  

 

Reference frames are important for specifying directions; therefore, Section 2.1 

discusses reference frames. A model of quantitative directions using Cartesian 

coordinates is described in Section 2.2. Section 2.3 discusses the utility of qualitative 

directions in GISs and reviews the models of cardinal direction for points. Directions 

between extended objects are specified using crude approximations such as centroids and 

minimum bounding rectangles; Section 2.4 reviews models for extended objects. Section 

2.5 compares the models of directions between extended objects and assesses their 

suitability for the five major tasks of direction relations in information systems (Sections 

1.3.1-5). Section 2.6 summarizes the strength and deficiencies of the existing methods.  
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2.1 Reference Frames 

Direction is a binary relation that is recorded for an ordered pair of objects A and B; A is 

the reference object, while B is the target object. The third part of a direction is the 

reference frame that assigns direction symbols to partitions of space. If the reference 

frame changes, the direction also changes. There are three types of reference frames 

(Retz-Schmidt 1988):  

• An intrinsic reference frame refers to an object’s intrinsic front, back, left, and 

right. For example, front of a building is determined by the main side or main 

entrance, such as the entrance of a church.  

• A deictic reference frame is based on the observer’s point of view. An 

observer based on one’s own front side divides the space into four direction 

regions: front, back, left, and right.  

• An extrinsic reference frame on the Earth is defined by the location of poles. 

In 2-D, it leads to the system of the four cardinal directions north, west, east, 

and south.  

 

In GISs, the relative orientation of geographic objects are typically described by 

cardinal directions; therefore, this thesis uses an extrinsic reference frame.  

2.2 A Model of Quantitative Directions  

In geographic applications, the direction of a target point is typically defined with respect 

to a reference point using the azimuth. The azimuth is an angle between the meridian line 

that passes through the reference point A and the geodesic line from A to the target point 

B (Figure 2.1). The value of directions for all points on the meridian towards north with 

respect to A is 0o. For all other points, the azimuth is measured counter-clockwise from 

the northern part of the meridian and lies in a semi-open interval [0, 360) (Equation 2.1). 

Angles that are more than 360o are mapped onto the interval in a cyclic fashion. For 

example, the angle 360o is mapped onto 0o and the angle 450o is mapped onto 90o. 
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Figure 2.1: The azimuth angle. 

Quantitative directions between two points are recorded using azimuth angles and 

their values can be approximated at a resolution suitable for their application. For 

example, the azimuth of B with respect to A may be 43 34 450 ′ ′′ . Applications such as 

land surveying and mechanical design use quantitative directions. However, query 

languages in spatial databases use qualitative directions, not quantitative directions. 

Therefore, this thesis focuses on the formalization of qualitative directions.  

2.3 Models of Qualitative Directions for Points 

Qualitative directions are coarser approximations of directions than the quantitative 

direction and are described using a smaller set of symbols than the quantitative directions. 

Typically, the interval [0o, 360o) is divided into four or eight direction intervals, and an 

appropriate direction term is used for each interval (Frank 1996). A four-direction system 

uses the primary directions north, south, east, and west and an eight-direction system uses 

the primary directions and the secondary directions northeast, southeast, southwest, and 

northwest. People prefer qualitative directions over quantitative directions because often 

qualitative directions are all they need and most people are not able to compute 

trigonometric expression such as tan-1 in their head. While querying a GIS, people are 

less likely to ask a question such as “Select lakes that have azimuth 43 34 450 ′ ′′ with 
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respect to Orono in Maine.” Instead, most people would like to formulate queries such as 

“Select lakes that are northeast of Orono in Maine.”  

 

Models of cardinal directions use an extrinsic reference frame. Primarily, there are 

two types of models for the direction between two points: cone-based direction models 

(Section 2.3.1) and projection-based direction models (Section 2.3.2). Section 2.3.3 

discusses a projection-based model that records directions of a point with respect to a 

line.  

2.3.1 Cone-Based Direction Models for Points 

The cone-based system partitions the space around a reference point into four (Figure 

2.2a) or eight (Figure 2.2b) mutually exclusive partitions of 90o or 45o, respectively 

(Peuquet and Zhan 1987; Hong 1994; Abdelmoty 1995; Frank 1996; Shekhar and Liu 

1998). The four-direction system uses the qualitative directions north (N), east (E), south 

(S), and west (W); whereas, the eight-direction system uses four additional directions: 

northeast (NE), southeast (SE), southwest (SW), and northwest (NW). A boundary 

between two direction partitions is assigned systematically, such as to the partition that is 

the clockwise neighbor of the boundary. For example, the boundary between the north 

and east partitions in the four-direction system is assigned to the east partition and the 

boundary between the east and south partitions is assigned to the south partition.  
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(a) (b) 

Figure 2.2:  The cone-based model: (a) four-direction system and (b) eight-direction 

system. 

If a target object coincides with the reference object, the direction between them is 

called same. Including the same direction, the four-direction system distinguishes among 

five directions and the eight-direction system distinguishes among nine directions. The 

direction of a target point with respect to a reference point is determined by the target’s 

presence in a direction partition for the reference point. For example, in the four-direction 

system dir(A, B) is north (Figure 2.2a), whereas in the eight-direction systems dir(A, B) is 

northeast (Figure 2.2b). 

2.3.2 Projection-Based Direction Models for Points 

A projection-based direction model (Frank 1996) divides the space using horizontal and 

vertical lines passing through the reference point. A horizontal line divides the space into 

north and south half-planes (Figure 2.3a), whereas a vertical line divides the space into 

east and west half-planes (Figure 2.3b). Both horizontal and vertical lines together divide 

the space into four quadrants: northwest, northeast, southeast, and southwest (Figure 

2.3c). The reference frame in the case of four quadrants consists of four direction regions, 

four lines, and a point. Direction regions are secondary directions NW, NE, SW, and SE; 

direction lines are primary directions N, S, W, and E; and same is the only point direction 

that coincides with the reference point.  
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(a) (b) (c) 

Figure 2.3:  The projection-based direction model for point objects. The space is divided 

into (a) north-south half planes, (b) west-east half planes, and (c) nine 

directions.  

The projection-based model (Figure 2.3c) has several advantages over the cone-

based model (Figure 2.2b): (1) longitude and latitude parallels impose a structure on the 

globe that is identical to the projection-based model (Kulik and Klippel 1999), (2) the 

projection-based model results in a higher number of precise composition inferences 

compared to the cone-based model (Frank 1996), and (3) the projection-based model is 

easier to implement than the cone-based model in spatial databases due to the rectangular 

nature of the direction partitions. The cone-based model, on the other hand, is easier to 

scale up for higher number of qualitative directions, such as 16 or 32 directions than the 

projection-based model. However, the emphasis of this thesis is on computationally 

sound representations of directions and people rarely use more than nine qualitative 

directions; therefore, this thesis develops direction models based on projection-based 

partitions. 

2.3.3 Directions between a Line and a Point 

Freksa and Zimmermann developed a framework to represent directions of a point with 

respect to a line (Freksa 1992b; Freksa and Zimmermann 1992; Zimmermann 1993; 

Zimmermann and Freksa 1996). A point can be in any of the 15 qualitatively distinct 

locations with respect to a line (Figure 2.4a), and these relations can be represented 

distinctly using icons (Figure 2.4b).  
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This model is designed for intrinsic reference frames; therefore, it does not assume 

any external orientation and the line AB can be at any angle with respect to the x-axis. 

This model records the direction of a point with respect to a line without any 

approximations, which is a useful property of this model, however, it is not adequate for 

cardinal directions between extended objects due to its following shortcomings: (1) the 

line AB cannot always be parallel to a grid line in the extrinsic reference frame; therefore, 

it cannot always be used to record cardinal directions, (2) it does not apply to curved 

lines, (3) the target object must be approximated by a point, and (4) the method does not 

apply to regions. Section 2.4 discusses models of direction-relations for extended objects. 

  

(a) (b) 

Figure 2.4:  (a) Point C can be in 15 distinct qualitative locations with respect to the line 

AB, which forms the reference frame and (b) an iconic representations of 

these 15 relations. 

2.4  Directions between Extended Objects 

Although direction is well understood for point objects, people frequently specify 

directions between extended objects as well. For example, “Peeks-Kenny state park is 
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northwest of Orono, Maine.” This section reviews existing models for directions between 

extended objects. 

2.4.1 The Triangular Model 

The triangular model (Haar 1976) uses triangles of acceptance to determine a direction 

relation. Typically the object that is perceptually more prominent is used as the reference 

and the other object as the target. The embedding space is divided into four mutually 

exclusive cones or direction triangles of 90o each with respect to the reference object, 

such that all cones coincide with the centroid of the reference object. The centroid of a 

finite set of points p pN1 , ,L  is their arithmetic mean Np
N

i
i /

1








∑
=

 (Preparata and Shamos 

1985). The area of acceptance of a direction triangle grows with increasing distance from 

the centroid. The target object is considered to be in the direction associated with a 

direction triangle in which its centroid is located (Peuquet and Zhan 1987). If the distance 

between objects is large compared to their sizes, the triangular model using centroids 

gives intuitive values for directions (Figure 2.5). However, the model is refined if the 

distance between objects is small compared to their sizes or if objects are overlapping, 

intertwined, or horseshoe-shaped.  

  

Figure 2.5:  The centroid of B (cB) is east of the centroid of A (cA); therefore, dir(A, B) is 

east.  

If the distance between objects is small compared to their sizes, the centroid of a 

target object may not fall in the direction triangle to which it cognitively belongs. For 

example, in Figure 2.6a object B is visually east of object A, but B does not fall in the east 

triangle located at the centroid of A. In order to determine whether object B is in the east, 
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the area of acceptance of the east triangle is increased by moving the triangle’s vertex 

backward (Figure 2.6b). The limit of this movement is a vertex point for the direction 

triangle such that the triangle lines pass through corners of the minimum bounding 

rectangle of the reference object. If the target object falls into the increased area of 

acceptance, the object is considered to be in the respective direction. 

 

Figure 2.6:  The triangular model for extended objects (a) B is visually east of A, but it 

does not fall in the east triangle, and (b) by adjusting the area of acceptance 

of east triangle, B is east of A.  

If objects are overlapping, intertwined, or horseshoe-shaped, directions based on 

centroids can be misleading. For example, in Figure 2.7 the direction of object B’s 

centroid with respect to A’s centroid is north, even though no point of B is north of the 

complete object A. In such cases, a compound of four conditions determine whether an 

object is in a given direction or not.  

 

Figure 2.7: The centroid of B is north of the centroid of A, but B is not north of A.  

In this model, there are special methods for computing directions for special 

conditions of objects, and there is no method that applies uniformly to all the cases. For 

example, the method that applies to the case in Figure 2.5 does not apply to the cases in 
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Figures 2.6 and 2.7. If objects are close to each other, triangles of two directions may 

intersect, for instance the north and east triangles, which may create confusion while 

specifying directions. This model is developed primarily to detect whether a target object 

exists in a given direction or not. If a target object is in multiple directions, such as 

{north, northeast, east}, this model does not provide a knowledge structure to represent 

such multiple directions. This model is computationally cumbersome and informal, due 

to overlapping direction triangles and special methods for computing directions for 

special cases; therefore, it is not suitable for direction queries in spatial databases.  

2.4.2 Interval Relations in Two-Dimensions  

Allen’s interval relations (Allen 1983) represent spatial information in a 1-dimensional 

space. There are thirteen distinct relations (Figure 2.8), which are also called temporal 

interval relations or 1-dimension interval relations. Freksa (1992a) generalizes these 

interval relations to semi-intervals, where a semi-interval captures the information about 

either the beginning or the ending of an event, but not both.  

 

Figure 2.8: Allen’s thirteen temporal interval relations in 1-dimension. 

Guesgen (1989) extends 1-dimensional intervals to perform spatial reasoning by 

taking the projection of 2-dimensional objects onto the x- and y-axes. On an axis, he uses 

eight out of the thirteen interval relations and calls them as left, attached, overlapping, 

inside, and their converse relations (Figure 2.9). This model distinguishes 8*8=64 

relations in 2-D. These relations are combinations of topological and directional relations 

in the rectangular world. This model approximates objects by their minimum bounding 

rectangles; therefore, the spatial relation may not necessarily be the same as the relation 

between exact representations of the objects. Sharma (1996) derives direction-relations 
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from thirteen 1-D interval relations between extended objects, and combines them with 

topological relations between objects to perform heterogeneous spatial reasoning. The 

direction model in Section 2.4.6 uses all thirteen relations on an axis. 

 

  
 

  

Figure 2.9: Four basic relations in 2-D (Guesgen 1989).  

2.4.3 Qualitative Models for Space 

Mukerjee and Joe (1990) and Mukerjee (1990) developed the qualitative models for 

space using Allen’s interval relations. The basis for this model is a set of five relations of 

a point with respect to an interval: posterior (-), back (b), interior (i), front (f), and ahead 

(+) (Figure 2.10a). This model approximates objects by their minimum enclosing 

rectangles having sides parallel to an object’s intrinsic front-back and left-right axes; 

therefore, it works best for the objects that have rectangular shapes. If these rectangles are 

projected onto the x- and y-axes, this model is similar to interval relations in 2-D 

(Guesgen 1989). 

 

 The qualitative model represents a relation between two intervals by a pair of 

interval-point relations. Each relation in a pair corresponds to the relation of an end point 

of the target interval with respect to the reference interval. This model generates a 

collision parallelogram by extending the support lines of both objects along their front-

back axes (Figure 2.10b). The parallelogram has interval projections on the front-back 

axes of both objects. The relative position of an object with respect to another is 

represented by the relation of the object interval with respect to the interval that 

corresponds to the projection of the parallelogram on the object’s axis. For example, 

pos(A/B), the position of A with respect to B in Figure 2.10b is recorded as --. To record 
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the direction, both objects are approximated by points, and direction is recorded in the 

intrinsic reference frame as 1, 2, 3, and 4 for front-left, back-left, back-right, and front-

right directions, respectively. For example, dir(A/B) in Figure 2.10b is 2. Using this 

model, the spatial relation of A with respect to B in Figure 2.10b is recorded as pos(A/B) 

= --, pos(B/A) = ++, and dir(A/B) =2. 

 

Figure 2.10:  (a) Relations between an interval and a point and (b) relations between two 

extended objects at an arbitrary angle. 

The primary difference between the qualitative model for space and Guesgen’s 

model is that the former records spatial relationships between two objects considering 

their intrinsic reference frames, whereas the latter records the projections on the x- and y- 

axes. The qualitative model also suffers from the approximation of the objects by their 

minimum enclosing rectangles, and does not address possibilities of a target object being 

in more than one quadrant, such as {front, front-right, right}. 

2.4.4 Two-Dimensional Strings  

Two-dimensional strings (Chang et al. 1987) are based on the projections of the objects 

on the x- and y-axes. A symbolic picture consists of a fixed size grid whose cells are 

filled by the empty space or symbols corresponding to physical objects in a scene. For 

example, the symbolic picture of the scene in Figure 2.11a is given in Figure 2.11b.  
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Figure 2.11: (a) A scene and (b) its corresponding symbolic picture.  

Symbolic projections are the projections of a symbolic picture onto the x- and y-axes 

and they preserve the qualitative information along axes. Let ∑  be a set of symbols 

representing the objects and A be the set {=, <, :} such that the symbols “=”, “<”, and “:” 

do not belong to the set ∑. The symbols “=” and “<” specify the relations same and 

before, respectively between 1-D projections. The symbol “:” specifies “in the same set” 

in the 2-D symbolic picture. For example, the set ∑ for the symbolic picture in Figure 

2.11b is {a, b, c, d, e}. The 1-D strings on the x- and y-axes are a=d:e<a=b<c and 

a=a<b=c<d:e, respectively. Thus the 2-D string for this symbolic picture is 

(a=d:e<a=b<c, a=a<b=c<d:e).  

 

Chang and Jungert (1996) used generalized 2-D strings to improve qualitative 

descriptions for extended objects over 2-D strings. Generalized 2-D strings use five-

tuples (∑, C, Eop, e, “〈, 〉”), where ∑ is a set of symbols representing the objects in the 

picture, C is the cutting line mechanism, Eop {<, =, |} is the set of extended spatial 

operators, e is empty space of any size and shape, and “〈, 〉” is a pair of operators used to 

describe a local structure. For example, the generalized string on the x-axis for the picture 

in Figure 2.12 is u=A|BeA|Be|CeB|C<D, omitting e we get u=A|BA|B|CB|C<D. 

Similarly, the generalized string on the y-axis is v=B|DeB|D<C|AeC|C, omitting e we get 

v=B|DB|D<C|AC|C. The symbolic description of the picture using the generalized 2-D 

string is {A|BA|B|CB|C<D, B|DB|D<C|AC|C}.  
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Figure 2.12: A scene with extended objects and cutting lines. 

The 2-D C-string (Lee and Hsu 1990) is another string-based representation for 

extended objects using a larger set of operators {<, =, |, %, [, ], \, /}. These operators are 

able to describe Allen’s thirteen interval relations between 1-D projections. Chang and 

Jungert (1996) describe variations of 2-D strings.  

 

Pictures can be indexed according to the 2D-strings of corresponding symbolic 

pictures and similar scenes from image databases can be retrieved by matching 2-D 

strings (Lee et al. 1989; Lee and Hsu 1990; Chang and Wu 1992; Lee et al. 1992). 

Models based on 2-D strings are formal and can be used across different dimension 

objects, but they too approximate extended objects. These models do not encode 

directions explicitly, and one will have to derive the direction information from symbols 

such as “<” and “=” in the 2-D strings. Models described in this section support similarity 

between 2-D strings, but have no provision for computing similarity between directions; 

therefore, they cannot be used for comparing directions.  

2.4.5 Symbolic Arrays  

Symbolic arrays (Glasgow and Papadias 1992) are based on the following cognitive 

factors: (1) hierarchical deep representations of the pictures are used in the long term 

memory, (2) visual and spatial representations are used in the working memory, and (3) 

topology and direction relations are preserved in mental representations. Symbolic arrays 
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preserve the order of an object’s appearance along the x- and y-axes, and they can be used 

in a hierarchical fashion. An object at a higher resolution can be considered as consisting 

of many parts, and this information is represented using nested arrays. For example, in 

Figure 2.13a object A consists of two parts. At a higher-level A is shown as one symbol, 

but at a lower level it is shown as consisting of two parts in Figure 2.13b.  

 

 

Figure 2.13: (a) A scene and (b) the corresponding symbolic array. 

From the symbolic arrays, the information about the topological and directional 

relations between the objects is derived. The symbolic arrays are useful in visualizing the 

arrangement of the objects in the space. This arrangement can be used for retrieving the 

pictures that are topologically and directionally equivalent. Symbolic arrays also suffer 

from the approximation of objects and have no explicit representation of direction 

relations.  

2.4.6 Directions between Minimum Bounding Rectangles 

An approach for representing directions between extended objects is the spatial relation 

between minimum bounding rectangles (MBRs) of objects (Papadias et al. 1995). 

Reasoning between projections of MBRs on the x- and y-axes can be performed using 1-

D interval relations. For example, in Figure 2.14, the projection of B on the x-axis 

( projB
x ) is before projA

x  and projB
y  is before projA

y ; therefore, the relation between 

MBRs of objects B and A is (before, before). Using this method, one can characterize 

relations between MBRs of objects uniquely. There are thirteen possible relations on an 

axis, therefore, this model distinguishes 13*13=169 relations (Figure 2.15). 
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Figure 2.14: Spatial relation between two minimum bounding rectangles. 

   

 

Figure 2.15:  The spatial relations between minimum bounding rectangles (Papadias et al. 

1995). 
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The basic difference between this method and Guesgen’s method (Section 2.4.2) is 

that the latter uses 8 relations out of 13 interval relations on an axis and distinguishes 

only 8*8 = 64 distinct spatial relations, whereas this model distinguishes 169 relations. 

2.5 Comparisons of the Direction Models 

The focus of this thesis is the representation of directions between extended objects; 

therefore, this section compares the models reviewed in Sections 2.4.1-6. The cone-based 

model for points (Section 2.3.1), the projection-based model for points (Section 2.3.2), 

and directions between a line and a point (Section 2.3.3) are not included in this 

comparative study, because they cannot represent directions between region objects. A 

direction model that has all required properties of a direction-relation system (Section 

1.4.1) can be used for applications in Section 1.3. Therefore, models for direction 

between extended objects are evaluated for the following properties: formal, inferential, 

shape-sensitive, dimension-neutral, and comparable (Table 2.1). Shape-sensitiveness in 

this thesis refers to the use of the objects’ geometries as they are without any 

approximation. 

 

The triangular model (Section 2.4.1) approximates a target object’s geometry by its 

centroid only when the distance between objects is large compared to their sizes. The 

models based on the 2-D strings and the symbolic arrays represent scenes at a high level 

of abstraction, and they can be used for the task of scene comparison. However, these 

models do not record direction relations; therefore, these models are not suitable for 

inferring and comparing directions. It is evident from Table 2.1 that there is no model 

that supports all five criteria; therefore, no model has the properties desired in the 

problem statement of this thesis. 
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Model Properties of direction relations 
 Formal Inferential Shape-

sensitive 
Dimension-

neutral 
Comparable  

Triangular 
model (Peuquet 
and Zhan 1987) 
 

 
no 

 
yes 

 

 
sometimes 

 
yes 

 
no 

Interval 
relations in 2-D 
(Guesgen 1989) 
  

 
yes 

 
yes 

 
no 

 
no 
 

 
yes 

Qualitative 
models for 
space (Mukerjee 
and Joe 1990) 
 

 
 

yes 

 
 

yes 

 
 

no 
 

 
 

no 

 
 

no 

2-D Strings 
(Chang et al. 
1987) 
 

 
yes 

 
no 
 

 
no 

 
yes 

 
no 

Symbolic 
Arrays 
(Glasgow and 
Papadias 1992) 
 

 
 

yes 

 
 

no 
 

 
 

no 

 
 

yes 

 
 

no 

Direction 
between MBRs 
(Papadias et al. 
1995) 

 
yes 

 
yes 

 

 
no 

 
no 

 
yes 

 Table 2.1: Evaluation of the directions models for extended objects in 2-D. 

2.6 Summary 

In this chapter, we reviewed existing models of directions for points and extended 

objects. Models for directions between extended objects were evaluated to check whether 

or not these models have the five required properties (Section 1.4.1): formal, inferential, 

shape-sensitive, dimension-neutral, and comparable. The models for directions between 

extended objects were found to approximate objects by their centroids or minimum 

bounding rectangles; such approximations can yield misleading results. None of these 

models was found to be suitable for applications such as direction queries in spatial 

databases and content-based retrieval using directions. Chapter 3 develops a new model 
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based on direction-relation matrices to represent exact directions between extended 

objects that can be used for querying spatial databases and content-based retrieval, and 

this model addresses all the five requirements.  
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Chapter 3  

Direction-Relation Matrix for Region Objects 

Cardinal directions between points are fairly well understood, and they can be 

represented using the projection-based and cone-based models (Chapter 2). There is, 

however, no model for directions between extended objects that uses exact geometries of 

the objects (Table 2.1). Therefore, directions between extended objects have been 

represented using crude approximations of object geometries, such as centroids and 

minimum bounding rectangles (MBRs). The spatial relations between centroids of the 

objects often do not conform to the relations between the objects. The direction of B with 

respect to A in Figure 3.1 is {north, northeast, east}. If MBR approximations are used for 

recording direction, the direction of B with respect to A would be recorded wrongly as 

{north, northeast, east, same}.  

 

It is clear that existing models of cardinal directions have serious limitations due to 

approximations of object geometries; therefore, a comprehensive model of cardinal 

directions that does not approximate the objects’ geometries is needed. This chapter 

introduces an improved representation for cardinal directions between connected regions, 

which is compatible with directions described for point-like spatial objects. It is 

characterized by a cognitively plausible equivalence class for cardinal directions. This 

model partitions space around the reference object using the projection-based method 

(Sections 2.3.2 and 2.4.6) and the exact shape of the reference object. Coarse direction-

relation matrices (Section 3.1) record a purely qualitative description (i.e., into which tile 

the target object falls). Since cardinal direction relations derived with this method do not 

necessarily imply the converse relation, the same method must be applied in the reverse 

direction (i.e., partitioning space around the target object and recording the distribution of 

the reference object across the tiles). Section 3.2 investigates how many direction 
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relations can be distinguished using coarse direction-relation matrices. Section 3.3 

analyzes the effects that shape and size of objects, as well as the distance between them, 

have on direction relations. Detailed direction-relation matrices (Section 3.4) enhance 

qualitative description using quantitative values (i.e., how much of the target object falls 

into any particular tile). Descriptions based on coarse and detailed direction-relation 

matrices operate without metric values, such as radiants or distances; therefore, they lead 

to broad equivalence classes (i.e., the same direction description applies to a series of 

conceptually similar configurations). Section 3.5 compares the expressive power of the 

coarse direction-relation matrix with the expressive power of MBR relations. Section 3.6 

summarizes the results of this chapter.  

 

Figure 3.1: Two objects with their minimum bounding rectangles. 

3.1 Coarse Direction-Relation Matrix  

To overcome the limitations of MBR directions, we introduce a model that better 

captures the influence of the objects’ shapes. It applies to direction relations between 

regions, that is, objects homeomorphic to connected 2-disks. This model uses the 

projection-based method around the reference object (i.e., the object from which the 

direction relation is described) and considers the exact representation of the target object 

(i.e., the object to which the direction relation is described). The projection-based 

method, applied around the reference object, partitions the embedding space into nine 

mutually exclusive regions, called the direction tiles (Figure 3.2), whose union forms a 

complete partition of space. The direction tiles at the periphery correspond to the eight 

cardinal directions—north (NA), northeast (NEA), east (EA), southeast (SEA), south (SA), 

southwest (SWA), west (WA), and northwest (NWA)—while the tile at the center, called 
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same (0A), coincides with the minimum bounding rectangle of the reference object A 

(Sections 2.3.2 and 2.4.6). The boundaries between any neighboring tiles have no extent.  

0A

N A

EAW A

S SE ASW A

NW A NE A

 

Figure 3.2:  The nine tiles resulting from the partitioning of space around the reference 

object A. 

We describe the cardinal direction from the reference object to a target by recording 

those tiles into which at least one part of the target object falls (Figure 3.3a). This method 

is more detailed than the MBR relations, particularly for non-convex shapes; however, it 

gives up converseness, an important property of cardinal-direction reasoning. For 

instance, if B is in (NA, NEA, EA) (Figure 3.3a), then A is not necessarily (SB, SWB, 

WB), but depending on A’s shape it may be (SB,  0B,  WB); (SWB, 0B,  WB); (SB, 0B 

SWB); or (SB, 0B, SWB, WB) as well (Figure 3.3b); therefore, a scene description with 

coarse cardinal directions requires for each pair of objects the calculation and storage of 

two relations—one from A to B and another from B to A. 
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(a) (b)

0A

NA

EAWA

SA SE ASW A

NW A NE A

A
B

0B

NB

EBWB

S SESW B

NW B NE

A

B

B

BB

 

Figure 3.3:  Capturing the cardinal direction relation between two areal objects, A and B, 

through the projection-based partitions (a) around A as the reference object 

and (b) around B as the reference object. 

We capture coarse cardinal directions between two regions in the direction-relation 

matrix dir
RR

, a 3×3 matrix that preserves the neighborhood of the partition around the 

reference object and registers the intersections between the target and the tiles around the 

reference object (Equation 3.1). The elements in the direction-relation matrix have the 

same topological organization as the partition around the reference object. Following the 

usual categorization of neighboring cells in square tessellations, two tiles are 4-neighbors 

if they are horizontally or vertically adjacent (Samet 1989b).  
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To describe coarse cardinal directions, we consider the emptiness and non-emptiness 

of the nine intersections. For example, the two direction-relation matrices for the two 

configurations in Figures 3.3a and 3.3b are given in Equations 3.2a and 3.2b, 

respectively. A direction relation is 4-connected if all pairs of non-empty cells are 

transitively 4-neighbors. 
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3.2 Realizability of the Coarse Direction-Relation Matrix 

The coarse direction-relation matrix has nine elements, which yields 29=512 possible 

distinct configurations. However, not all configurations are possible for direction 

relations. For example, a matrix with all elements having an empty value is impossible, 

as such a matrix would mean that the target object is absent. A matrix that has a non-

empty value in the northwest and southeast elements, and an empty value in all other 

elements is also impossible, because this implies that the target object is disconnected. 

This section gives consistency constraints for regions, introduces icons to represent 

directions, and examines all possible directions.  

3.2.1 Consistency Constraints 

For any direction relation with a non-empty target object, at least one of the nine 

direction tiles must be non-empty. More than one intersection is non-empty if the target 

object extends through more than one direction tile. A direction-relation matrix with 

exactly one non-empty intersection is referred to as a single-item direction-relation 

matrix, whereas those matrices with more than one non-empty intersection are called 

multi-item direction-relation matrices. If the target object is a region, any two non-empty 

intersections have to be 4-connected; otherwise, the representation in a direction-relation 

matrix would be inconsistent. The examples in Equations 3.3a and 3.3b show inconsistent 

direction-relation matrices for region target objects, because the two non-empty 

intersections with the direction tiles are not 4-neighbors.  
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3.2.2 Iconic Representation of Direction-Relation Matrix 

We use an iconic representation of the direction-relation matrix in the form of a 3×3 

tessellation of square cells, where white cells stand for empty tile intersections, while 

black cells represent non-empty intersections (Figure 3.4a). If a value of a cell is 

unknown (i.e., the entry is empty or non-empty), that cell is shown in gray (Figure 3.4b).  

 

(a) (b)  

Figure 3.4: The iconic representation of the direction-relation matrix: (a) a 

configuration with three non-empty cells and (b) a configuration with one 

non-empty cell and two cells that are either empty or non-empty. 

A direction-relation icon with gray cells stands for the disjunction of all possible 

combinations with white and black cells, as long as at least one of the cells is black and 

all black cells are 4-connected. For example, the icon in Figure 3.5a with two gray cells 

would have 22 possible configurations (Figure 3.5b-e), three of which are legal, while 

one is not allowed since its black cells are not 4-connected (Figure 3.5d). Given the 

constraints about 4-connectedness, only a subset of direction-relation matrices may be 

realized—218 out of 29 = 512 possible combinations (Figure 3.6). 
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(a) (b) (c) (d) (e)  

Figure 3.5: The interpretation of gray cells under the 4-connectivity constraint: (a) a 

configuration with gray cells and (b)-(e) the set of possible black-and-white 

configurations, with (d) being an illegal configuration because it is not 4-

connected. 

 

 

Figure 3.6:  An iconic representation of the 218 direction-relation matrices that can be 

realized between two regions. 
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There are nine configurations with one non-empty tile; twelve configurations with 

two non-empty, 4-connected tiles; 22 configurations with three non-empty, 4-connected 

tiles; 36 configurations with four non-empty, 4-connected tiles; 49 configurations with 

five non-empty, 4-connected tiles; 48 configurations with six non-empty, 4-connected 

tiles; 32 configurations with seven non-empty, 4-connected tiles; nine configurations with 

eight non-empty tiles; and one configuration with nine non-empty tiles. These 218 

situations can be recursively derived, starting with the first 9 single-item direction-

relation matrices, by adding a 4-connected black cell into each possible location. With the 

help of a software prototype for direction-relation matrices, these configurations have 

been confirmed computationally (Section 6.3.2).  

3.3 Effects of Shape, Size, and Distance 

Properties of objects, such as shape and size and distance between them, affect their 

direction relations (Section 2.4.1). In this section, we study changes in directions between 

two objects, while the reference object is kept fixed and the target object is subjected to 

one of the following changes. 

  

• For a given shape and distance, if the size of the target object is increased, the target 

object may intersect with more direction partitions (Figures 3.7a and 3.7b). If the size 

of the target object is decreased, it may intersect with fewer direction partitions.  

• For a given shape and size, if the distance between the objects is reduced, the target 

object may intersect with more direction partitions (Figures 3.7a and 3.7c). If the 

distance between the objects is increased, the target object may intersect with fewer 

direction partitions. 

• For a given distance and the size fixed by the area, a change in the shape of the target 

object may change its intersection with direction partitions. Shape is an attribute that 

is difficult to define, but, for the sake of this illustration, eccentricity (Gonzalez and 

Woods 1992) is used (Figures 3.7a and 3.7d). 

 

Changes in shape and size of the reference object also affect direction relations, as 

these changes modify direction partitions. 
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(a) (b) (c) (d) 

Figure 3.7:  (a) The original configuration, (b) the size of the target object is increased, 

(c) the distance between the reference and target object is decreased, and (d) 

the target object is elongated. 

3.4 Detailed Direction-Relation Matrix 

The coarse direction-relation matrix records whether or not a target object falls in a 

direction tile or not. An interpretation of the mere fact that an object falls within some 

direction tile(s) of another object may be misleading or inappropriate. For example, the 

directions in Figures 3.8a and 3.8b may be considered to be more similar than those in 

3.8b and 3.8c, because in 3.8a and 3.8b most or all of B is in the tile NEA, while almost 

nothing of B is in tile NEA in Figure 3.8c. The coarse direction-relation matrix, however, 

would identify 3.8b and 3.8c as equivalent, but 3.8a and 3.8b as different.  

 

(a) (b) (c)

B
B

0A

N ANW A NE A

EAW A

SA SE ASW A

A
0A

NA

EAW A

SA SE ASW A

NW A NE A

A

B

0A

N ANW A NE A

EAW A

SA SEASW A

A

 

Figure 3.8: Three scenes for which the coarse direction-relation matrix serves as a 

cognitively inappropriate equivalence relation. 
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To provide more detail about directions among objects, we extend the cardinal-

direction method describing refinements of the coarse cardinal directions by considering 

additional criteria for non-empty intersections. The refinements considered here are based 

on the areal distribution throughout the direction tiles, and if a tile contains more than one 

disconnected part of the target, the areal distribution within such tiles.  

3.4.1 Areal Distribution 

The areal distribution captures how much of the target object falls into each tile. For non-

empty tiles, we record for each object that falls into more than one direction tile the 

percentage of the common intersection between a tile and the object. The refinement 

measure implies the value 0% for empty intersections with that tile and 100% if and only 

if the entire object falls into a single tile. Since detailed cardinal directions refine coarse 

cardinal directions, they inherit the property that the relations derived from this model are 

not necessarily converse; therefore, for each pair of objects two relations must be 

calculated and stored—from A to B and from B to A. 

 

This refined model leads to a variation of the direction-relation matrix, recording 

normalized areas in lieu of empty and non-empty intersections between the tile and the 

target object (Equation 3.4). The range of each detailed cardinal direction x is 0 ≤ x ≤ 1. 0  

and the sum of all ratios for an object with respect to the direction partition of another 

object must be 1.0.  
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 (3.4) 

 

Equations 3.5a and 3.5b show the detailed direction-relation matrices for the 

configurations shown in Figures 3.3a and 3.3b, respectively. 
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3.4.2 Component Distribution 

As a target object’s position is assessed with respect to the partitioning around the 

reference object, multiple topologically disconnected parts of the target object may exist 

for a single tile. Such disconnected parts within a tile are called components. Two types 

of disconnected parts may exist: components whose closures are disconnected—called 

strongly disconnected—(Figure 3.9a) and a weaker notion of components if they have 

connected closures, but disconnected interiors—called weakly disconnected (Figure 

3.9b). In both cases, each non-empty tile has at least one component, while each empty 

tile has no components. The distribution of the components across the tiles is captured by 

recording the counts of components per tile. Equation 3.6 shows the component 

distribution for Figure 3.9a (and for Figure 3.9b under weakly-connected components). 
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Figure 3.9:  Tile 0A with (a) two strongly disconnected components of B and (b) two 

weakly disconnected components.  
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3.4.3 Areal Distribution of Components 

Whenever a tile contains more than one component, the components may vary in size. 

For example, in Figure 3.10 the Northern tile intersects with four components of B—two 

rather small ones and two larger ones. In order to distinguish such differences, it is 

necessary to capture the area of each component (Equation 3.7a). While the mere listing 

of such component areas provides information about what parts of B are located in that 

particular tile, it does not capture the distribution of the components throughout a tile. 

This can be achieved, however, by recording the sequence of the areas of the 

components, ordered along the boundary of the tile (Equation 3.7b).  
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Figure 3.10: A direction relation with four components in A’s Northern tile. 
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3.5 Comparison with MBR Direction Relations 

Compared to the 169 MBR configurations (Figure 2.15), the direction-relation matrix 

provides more detail for concave shapes, but is less sensitive to the small changes along 

the boundaries of the partitions. For example, the direction-relation matrix may give a 

better assessment of the direction relation when one region surrounds another one than 

the MBR relations do (Figure 3.11); however, it does not capture subtle differences about 

alignments of the objects’ minimal and maximal extents, while the MBR relations do 

distinguish these cases (Figure 3.12). 
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B
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Figure 3.11:  A configuration whose cardinal direction is better captured by the direction-

relation matrix than by MBRs. 
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Figure 3.12: Two configurations with the same direction-relation matrix, but different 

MBR relations. 

The common direction assessments of the direction-relation matrix and the MBR 

relations are the 36 convex configurations of the direction-relation matrix (Figure 3.6). 

The additional details captured by the remaining 133 MBR relations result from a 

refinement of the 36 configurations, distinguishing whether the boundaries of the MBRs 

are exactly aligned or not. On the other hand, the additional 182 direction-matrix 

relations provide refinements for non-convex shapes. A more detailed direction-relation 

matrix that captures the separations between the tiles in addition to the nine direction tiles 

would include all MBR cases. Such a 5×5 direction-relation matrix may be useful—and 

sometimes even necessary—for a small number of cases; however, most inferences will 

be sufficiently precise with the smaller and therefore, cognitively less straining 3×3 

representation. 

3.6 Summary 

This chapter presented a new model for representing cardinal directions between 

extended spatial objects using direction-relation matrices. This model overcomes 

limitations of models that use approximations such as centroids and MBRs, as it captures 

directions more precisely if either of the objects is concave in shape. A particular feature 

of the direction-relation matrix is its ability to describe direction relations at multiple 

levels of detail. At a coarse level, the direction-relation matrix records into which 

partitions around the reference object the target object falls. At a finer level, it captures 
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how much of the target object falls into each partition; an even more detailed view is 

given if the direction-relation matrix records properties of the components in each 

partition. This multi-resolution model has significant implications for spatial query 

processing when a user, for instance, sketches the objects of interest. The coarse 

direction-relation may then act as a filter to quickly retrieve candidates, whereas the more 

detailed direction-relation matrices can be used to prioritize the candidates (Egenhofer 

1997). The converse of a direction-relation cannot always be determined uniquely from a 

matrix; therefore, directions from A to B and from B to A are recorded explicitly. The 

comparison between the coarse direction-relation matrices and the MBR directions 

reveals that coarse direction-relation matrices capture the influence of objects’ shapes on 

directions better than MBR relations. 

 

The direction model presented in this chapter ignores boundaries between direction 

partitions, as the model focuses on the directions between regions. However, these 

boundaries should be taken into account while recording directions for lines and points. 

Chapter 4 presents a method to capture information about intersections between 

boundaries and the target object in direction-relation matrices, thereby enabling a unified 

method for direction relations between point, line, and region objects. 
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Chapter 4  

Deep Direction Model for Point, Line, and Region 

Objects 

The coarse direction model presented in the previous chapter is designed for region 

objects. This chapter extends the coarse direction model to the deep direction model, 

which applies to arbitrary pairs of point, line, and region objects. This extension enables 

the use of cardinal direction in a cognitively plausible way between different internal 

representations of the spatial objects. This extended model allows users to formulate 

queries such as “Find all towns in Maine that are north of Bangor” without pondering 

about the internal representations of the towns in the database. Such a model will 

facilitate queries based on the cardinal directions in multi-representation geographic 

databases (Buttenfield 1989; Puppo and Dettori 1995; Tryfona and Egenhofer 1996; 

Bertolotto 1998).  

 

Section 4.1 discusses limitations of coarse direction-relation matrices when applied 

to point and line objects. Section 4.2 introduces the deep direction-relation matrix, which 

records the information about intersections of a target object with direction tiles and 

boundaries between tiles in a 3x3 matrix. Section 4.3 discusses the behavior of the deep 

direction-relation matrix for various types of reference objects. Section 4.4 describes 

consistency constraints imposed by the type of target object on the deep direction-relation 

matrix. Section 4.5 studies the compatibility of the directions recorded at multiple scales. 

Section 4.6 demonstrates that the deep direction-relation matrix records cognitively 

plausible values of directions, and discusses advantages of the deep direction-relation 

matrix over existing models. Section 4.7 summarizes the results of this chapter. 
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4.1 Applying the Coarse Direction-Relation Matrix to Lines 

and Points 

The coarse direction-relation matrix (Section 3.1) successfully captures directions 

between two region objects, but lacks the expressive power to capture the information 

about line and point target objects in certain configurations. For example, coarse 

direction-relation matrices would not be able to record directions for the configurations in 

Figures 4.1a and 4.1b, because a coarse direction-relation matrix has no boundary 

elements and, therefore, all nine partition intersections with B would be empty. In Figure 

4.1c, the partitions west, same, and east are lines, not regions; therefore, the partitions of 

space are different from the partitions used by the coarse direction-relation matrix.  

 

 

Figure 4.1: Configurations with line and point objects: (a) the reference object is a 

region and the target object is a line, (b) a region and a point object, and (c) 

a line and a point object. 

Since the representation of a spatial object may change across different scales, it is 

necessary for a direction-relation model to be applicable and compatible across multiple 

representations of objects. In order to develop a deep direction model, two issues are 

considered: (1) the influence of the reference object on the construction of the reference 

grid and (2) the variations that arise due to different types of target objects.  

4.1.1 Reference Object Considerations 

The reference grid is based on the orientation and the extent of the reference object. The 

cardinal direction axes determine the orientation of the grid, and the extent of the 
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reference object determines the extent of partitions in the reference grid. At different 

scales, the reference object may be a polygon, a line, or a point. Since the direction-

relation matrix forms the central tile around the reference object, the choice of a polygon, 

a line, or a point influences the construction of the reference grid. The projection of an 

object onto a grid axis results either in a line or a point. For a reference grid with a 

vertical and a horizontal axis, there are four possible combinations: (1) both projections 

are points (Figure 4.2a), (2) the projection onto the horizontal axis is a point and the 

projection onto the vertical axis is a line (Figure 4.2b), (3) the projection onto the 

horizontal axis is a line and the projection onto the vertical axis is a point (Figure 4.2c), 

and (4) both projections are lines (Figure 4.2d). Four pairs of projections yield four types 

of reference frames. The first three cases describe unique configurations when the object 

is a point, a horizontal line, and a vertical line, respectively. The last case occurs when 

the object is a region or a line that is neither strictly horizontal nor vertical.  

 

 

Figure 4.2:  Different references frames based on different types of objects: (a) for a 

point, (b) for a vertical line, (c) for a horizontal line, and (d) for other lines 

and all regions. 

4.1.2 Target Object Considerations 

In a similar way, the type of the target objects may influence the direction relation. While 

a target region must extend through at least one tile of the grid around the reference 

object, a line may fall “between the cracks,” that is, it may be located along the border 

between two neighboring tiles if the line is strictly horizontal or vertical and exactly 

aligned with the reference grid. For a point, additional alternatives exist as it may fall not 

only on the border between two neighboring tiles, but also coincide with the border of 

four tiles. A reference grid for the region reference that supports all cases would require 
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nine direction partitions (Figure 4.3a) with sixteen boundary parts for these nine 

partitions. Twelve of these boundary parts are lines (Figure 4.3b), and four parts are 

points (Figure 4.3c). The lines between the partitions are the north-northwest line (N-

NwL), the north-northeast line (N-NeL), the east-northeast line (E-NeL), the east-

southeast line (E-SeL), the south-southeast line (S-SeL), the south-southwest line (S-

SwL), the west-southwest line (W-SwL), the west-northwest line (W-NwL), the north 

line (NL), the east line (EL), the south line (SL), and the west line (WL). The boundary 

points are the northwest point (NWP), the northeast point (NEP), the southeast point 

(SEP), and the southwest point (SWP). The coarse direction-relation matrix, however, 

captures only the intersections with nine direction partitions.  

 

 

Figure 4.3: A region reference A in a 2-dimensional embedding space: (a) nine 

direction partitions, (b) twelve boundary lines between direction partitions, 

and (c) four boundary points.  

An extension of the 3x3 direction-relation matrix would have to account for the nine 

partitions and all sixteen boundary parts. Such a 5x5 direction-relation matrix would have 

an element for each partition and each boundary part, and record the information about 

the intersection of the target object with all the 25 parts of the space. While it would 

address each possible part at which a point could be located with respect to a reference 

grid, it would increase the spatial resolution by 178% (from 9 to 25) for all types of 

spatial objects. People typically use the primary and secondary directions to communicate 

the knowledge about relative orientation of objects; therefore, the use of a 25-element 

matrix would be cognitively overwhelming, offering more elements than what people 
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handle easily (Miller 1956). In order to perform direction reasoning in a cognitively 

plausible way, it is desirable to keep the number of elements in a direction-relation matrix 

small.  

 

A smaller number of elements also reduces the computational complexity for 

assessing similarity between cardinal directions (Chapter 5). Each of the additional 

sixteen elements would capture a very small part of the space, compared to the significant 

areas covered by the nine direction partitions. From a computational perspective, the 

higher resolution of the reference grid would introduce additional values that are often 

implied. For example, if a target polygon is northeast of a reference polygon and the 

coarse direction-relation matrix has non-empty values for the northeast and the north tiles 

only, it implies that the intersection of the target object with the line between the two tiles 

must be non-empty as well.  

4.2 Deep Direction-Relation Matrix 

Rather than increasing the spatial resolution, we increase the resolution of the values that 

each element in the 3x3-direction-relation matrix may have. In addition to the empty and 

non-empty values for the intersection of the target object with the direction partitions, we 

capture for each empty direction partition when the target object intersects with its 

boundaries. This information is encoded in the neighbor code of a direction. Such a 

direction-relation matrix is called a deep direction-relation matrix. 

 

A neighbor code records information about intersections with the direction partition 

and the neighboring boundary parts using nine bits (x0–x8) (Figure 4.4). Bit 0 (x0) records 

the value of the intersection with the direction partition (DP); and bits 1–8 (x1–x8) record 

the values of intersections with the left (L), bottom-left (BL), bottom (B), bottom-right 

(BR), right (R), top-right (TR), top (T), and top-left (TL) boundary parts, respectively.  
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Figure 4.4: The nine-bit field for a neighbor code in the deep direction-relation matrix.  

If the intersection of the target object with the direction partition (DPA) is empty 

(∅ ), we record a value 0 for x0; if the intersection is non-empty ( ¬∅ ) we record a value 

1 (Equation 4.1a). We denote the boundary of a direction partition that corresponds to bit 

i in the element by i
ADP . For example, in the case of a region reference the direction 

partition for the northwest element is NWRA (Figure 4.3a) and the boundary 

corresponding to bit 5 (i.e., 5
ADP ) is N-NwLA, that is, the right side boundary of NWRA 

(Figure 4.3b). For i=1 to 8, the value of bit i is zero, if the target object intersects with the 

direction partition; it is 1 if the target object does not intersect with the direction partition, 

but intersects with the boundary corresponding to xi (Equation 4.1b).  
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The value (X) of an element in a deep direction-relation matrix is the weighted sum 

of the neighbor code (Equation 4.2); the weighting by the powers of 2 enables a unique 

decoding of the neighbor code. The value of an element lies in the closed interval [0, 510] 

depending upon the target object’s intersection with the direction partition it represents 

and the boundaries of the partition. The value 0 for an element indicates that the target 

object neither intersects with the direction partition nor with the boundaries. The value 1 

implies that the target object intersects with the respective direction partition, which is the 

only possible odd value for an element. All other possible values for an element are even, 

because a neighbor code records bits (x1–x8) as 0, when the intersection of the target 

object with the direction partition is non-empty.  
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The deep direction-relation matrix for the direction of object B with respect to object 

A records nine neighbor codes corresponding to nine cardinal directions: north (XN), 

northeast (XNE), east (XE), southeast (XSE), south (XS), southwest (XSW), west (XW), 

northwest (XNW), and same (X0) in the same topological organization as the coarse 

direction-relation matrix (Equation 4.3). 
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4.3 Deep Direction-Relation Matrices for Various Types of 

 Reference Objects 

A bit in the neighbor code’s eight bits corresponding to boundaries of direction partition 

(x1–x8) is recorded as 1 if (1) the boundary corresponding to the bit exists, (2) the target 

object’s intersection with the respective partition is empty, and (3) the target object’s 

intersection with the boundary is non-empty. If any one of these conditions is not met, the 

bit is marked zero. This section focuses on the first condition. We study the pattern of 

zero bits for the neighbor code due to the non-existence of certain boundaries for 

direction partitions, which occurs due to the type of a reference object and the location of 

a direction partition in the space.  

 

The type of the reference object determines the types of partitions for north, east, 

south, west, and same directions. For example, the north partition for a region reference 

(Figure 4.2a) is a region, whereas for a point reference (Figure 4.2d) the north partition is 

a line. Therefore, a region reference has a boundary between its north and northwest 

partitions, whereas a point reference has no boundary between its north and northwest 

partitions. The location of a direction partition can also force some bits in the neighbor 

code for an element to zero. For example, the northwest partition has no boundary in its 
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top-left; therefore, bit 8 in the northwest element of the deep direction-relation matrix 

would always be 0. Sections 4.3.1-4 discuss neighbor code patterns for four types of 

reference object.  

4.3.1 A Region Reference Object 

A region object has a reference grid with nine direction partitions and sixteen boundaries 

between these partitions. The partitions northwest, northeast, southeast, and southwest 

have three boundaries each with other direction partitions (Figure 4.5a). For instance, the 

northwest region’s boundaries are the west-northwest line, the northwest point, and the 

north-northwest line. Information about their intersections is recorded in bits 3–5 of the 

northwest element, respectively (Figure 4.5b). The remaining five bits (bits 1–2 and 6–8) 

in the neighbor code of the northwest element are always zero. If the intersection of the 

target object with the northwest region is non-empty, the neighbor code would record 0 

for bits 1–8, regardless of the values of the target object’s intersections with the 

boundaries of the northwest partition (Figure 4.6b). The value of the northwest element is 

1 for this case (Table 4.1). If the intersection with the northwest region is empty, there are 

23=8 possibilities (Table 4.1; Figures 4.6a and 4.6c–i). For example, the value of the 

northwest element is 48 if the right and bottom-right boundaries intersect with the target 

object (Figure 4.6h). 

 

The partitions north, east, south, and west have five boundaries each. The eight 

boundaries of the same partition are the west line, the southwest point, the south line, the 

southeast point, the east line, the northeast point, the north line, and the northwest point. 

The information about the intersections is recorded in bits 1–8 of the same (0) element. 

The maximum value (i.e., 510) is assumed only by the same element. 
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Figure 4.5:  (a) The reference grid for a region object and (b) the patterns of neighbor 

codes for the northwest, north and same elements. A zero value for a bit in 

an element implies that the value of that bit is always zero. 

 

Possible values for Element value (XNW) = Illustration  
x5  x4 x3 x0 32x5+16x4+8x3+x0  
0 0 0 0 0 Figure 4.6a 
0 0 0 1 1 Figure 4.6b 
0 0 1 0 8 Figure 4.6c 
0 1 0 0 16 Figure 4.6d 
0 1 1 0 24 Figure 4.6e 
1 0 0 0 32 Figure 4.6f 
1 0 1 0 40 Figure 4.6g 
1 1 0 0 48 Figure 4.6h 
1 1 1 0 56 Figure 4.6i 

Table 4.1:  All possible values of the northwest element in the deep direction-relation 

matrix for the region reference. The remaining five bits (1-2 and 6-8) are 

always zero. 
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Figure 4.6:  (a)-(i) Nine configurations corresponding to nine possible values of the 

northwest element in the deep direction-relation matrix for a region 

reference object.  

4.3.2 A Linear Horizontal Reference Object 

A linear horizontal reference object has nine direction partitions and six boundaries 

between these partitions. The direction partitions are north region, northeast region, east 

line, southeast region, south region, southwest region, west line, northwest region, and 0 

line (Figure 4.7a). The boundaries of the nine partitions are the north-northwest line, the 

north-northeast line, the east point, the south-southeast line, the south-southwest line, and 

the west point.  

 

The northwest partition has two boundaries, because the west-line at the bottom of 

the northwest-region is a direction partition on its own. Two boundaries for the northwest 

partition are the west point and the north-northwest line. The information about their 

intersections with the target object is recorded in bits 4–5, respectively (Figure 4.7b). The 

remaining six bits in the neighbor code are always zero. The north partition has four 

boundaries and the information about their intersections with the target object is recorded 

in bits 1–2 and bits 4–5. The west partition has only one boundary, and information about 
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the target object’s intersection with the boundary is recorded in bit 5. The same partition 

has two boundary parts, and the information about the target object’s intersections with 

these parts is recorded in bits 1 and 5. 

 

 

Figure 4.7: (a) The reference grid for a horizontal line and (b) the patterns of neighbor 

codes for the northwest, north, west, and same elements.  

4.3.3 A Linear Vertical Reference Object 

A vertical line, just like a horizontal line, has nine direction partitions and six boundary 

components (Figure 4.8a). Figure 4.8b shows four patterns of the neighbor codes. 

 

 

Figure 4.8: (a) The reference grid for a vertical line and (b) the patterns of neighbor 

codes for the northwest, west, north, and same elements.  
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4.3.4 A Point Reference Object 

The reference frame for a point object has nine direction partitions and no boundaries 

between these partitions are needed (Figure 4.9a); therefore, the neighbor code is 0 for all 

direction partitions in Figure 4.9b. 

 

Figure 4.9:  (a) The reference grid for a point and (b) the patterns of neighbor codes for 

the northwest, north, and same element.  

4.4 Consistency Constraints Due to the Type of the Target 

Object 

To analyze the consistency constraint for the target object, we distinguish three types of 

objects: regions (Section 4.4.1), lines (Section 4.4.2), and points (Section 4.4.3). Before 

describing these constraints, we need to define the terms used in explaining the 

consistency constraints.  

 

Definition 4.1: A non-zero element in a deep direction-relation matrix is an element that 

has at least one of the nine bits (0-8) with a value 1.  

 

Definition 4.2: An element with a non-empty neighbor code in a deep direction-relation 

matrix is an element that has at least one bit with a value 1 for the neighbor code in bits 

1-8.  
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For example, the deep direction-relation matrix in Figure 4.6c has non-empty 

neighbor codes for the northwest and west elements. An element with a non-empty 

neighbor code is a non-zero element, but the reverse is not always true. For example, the 

deep direction-relation matrix in Figure 4.6b has a non-zero value for the northwest 

element, but its neighbor code is empty.  

 

Definition 4.3: A row-tuple in a deep direction-relation matrix is a set of two adjacent 

elements with non-empty neighbor codes in a row, such that the left element has only its 

right bit with value 1 and the right element has only its left bit with value 1.  

 

The value of the left element in a row-tuple is 2, while the value of the right element 

is 32. For example, the deep direction-relation matrix in Figure 4.6f has a row-tuple 

formed by the northwest and north elements. 

 

Definition 4.4: A column-tuple in a deep direction-relation matrix is a set of two adjacent 

elements with non-empty neighbor codes in a column, such that the top element has only 

its bottom bit with value 1 and the bottom element has only its top with value 1.  

 

Definition 4.5: A quadruple in a deep direction-relation matrix is a set of four elements 

with non-empty neighbor codes arranged in a rectangular fashion, such that only the 

bottom-right, bottom-left, top-left, and top-right bits have a value 1 for the top-left, top-

right, bottom-right, and bottom-left elements, respectively.  

 

A point target on a corner of the same direction partition for a region reference gives 

a deep direction-relation matrix with a quadruple (Figure 4.6d). 

 

Definition 4.6: A row-sextuple in a deep direction-relation matrix is a set of six elements 

with non-empty neighbor codes arranged in two adjacent rows, such that (1) only the 

bottom-right, bottom, and bottom-left bits have a value 1 for the left, central, and right 

elements in the top row and (2) only the top-right, top, and top-left bits have a value 1 for 

the left, central, and right elements in the bottom row, respectively. 
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Definition 4.7: A column-sextuple in a deep direction-relation matrix is a set of six 

elements with non-empty neighbor codes arranged in two adjacent columns, such that (1) 

only the bottom-right, right, and top-right bits have a value 1 for the top, middle, and 

bottom elements in the left column and (2) only the bottom-left, left, and top-left bits 

have a value 1 for the top, middle, and bottom elements in the right column, respectively. 

 

For example, a point target that coincides with the north point of a vertical line 

reference yields a deep direction-relation matrix with a row-sextuple (Figure 4.10a), 

whereas a point target that coincides with the west point of a horizontal line reference 

yields a deep direction-relation matrix with a column-sextuple (Figure 4.10b).  

  
 

















000

25612864

4816

 

















025664

0232

0416

 

 
(a) (b) 

Figure 4.10:  The direction of a point in specific situations with respect to (a) a vertical 

line having a row-sextuple and (b) a horizontal line having a column- 

sextuple.  

4.4.1 A Region Target Object 

A region object imposes the constraint of 4-connectedness on the deep direction-relation 

matrix, similar to the 4-consistency constraint for the coarse direction-relation matrix 

(Section 3.2.1). Additionally, neighbor codes in the deep direction-relation matrix must 

also follow constraints imposed by connected regions. A 4-consistent deep direction-

relation matrix satisfies all of the following three constraints: 



 65

 

• at least one element of the matrix must have a value 1 (Figure 4.11a),  

• all elements that have the value 1 must be 4-connected (Figure 4.11b), and  

• all elements with non-empty neighbor codes have at least one 4-neighbor or 8-

neighbor with a value 1 (Figure 4.11c).  
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Figure 4.11:  Deep direction-relation matrices that are consistent for region targets with 

respect to region references. 

The first two constraints follow from constraints of the coarse direction-relation 

matrix (Section 3.2.1), while the third constraint is specific to deep direction-relation 

matrices. For example, the deep direction-relation matrix in Equation 4.4 satisfies the 

first two constraints, but does not satisfy the third constraint. This matrix refers to a target 

object that only intersects with the northwest-region (NWR) and the south-southwest line 

(S-SwL). It is impossible for a connected region to intersect with NWR and S-SwL 

without intersecting any other direction partitions; therefore, this deep direction-relation 

matrix is inconsistent for a region target.  
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The three constraints apply to the deep direction-relation matrix recorded for a target 

object with respect to any of the four types of reference objects (Figure 4.2). For 

horizontal line, vertical line, and point reference objects, there is an additional constraint 

in each case.  

 

• A horizontal line reference has three non-region partitions–the west line, the same 

point, and the east line. If a target object intersects with non-region direction 

partitions and does not intersect with any region partition, it cannot be a region. 

Therefore, in the case of a horizontal line reference, at least one element 

corresponding to its six region partitionsnorthwest, north, northeast, southeast, 

south, and southwest must have the value 1.  

• Similarly for a vertical line reference, at least one element corresponding to its six 

region partitionsnorthwest, northeast, west, east, southwest, and 

southeastmust have the value 1.  

• For a point reference object, at least one element corresponding to its four region 

partitionsnorthwest, northeast, southeast, and southwestmust have the value 

1. 

4.4.2 A Line Target Object 

In addition to 4-connected configurations, a line target generates 8-connected 

configurations. A line can fall completely on the boundaries of direction partitions, 

except the point boundaries. These two factors impose the following two constraints on 

the deep direction-relation matrix:  

 

• all non-zero elements must be eight-connected (Figures 4.12a-c), and  

• to exclude the possibility of a point fulfilling the eight-connectivity constraint, an 

additional constraint according to the type of the reference object must be 

fulfilled. 

• if the reference object is a region, the matrix must not contain a quadruple.  
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• if the reference object is a vertical line, the matrix must not contain a row-

sextuple. 

• if the reference object is a horizontal line, the matrix must not contain a column-

sextuple. 

• if the reference object is a point and the value of the same element is 1, at least 

another element must be 1.  
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Figure 4.12:  Deep direction-relation matrices that are consistent for line targets with 

respect to (a) a region, (b) a horizontal line, and (c) a point.  

4.4.3 A Point Target Object 

A deep direction-relation matrix is consistent for a point target object if it satisfies any 

and only one of the following six conditions: 

 

• it has only one element with value 1 (Figure 4.13a), 

• it has only one row-tuple (Figure 4.13b), 

• it has only one column-tuple (Figure 4.13c),  

• it has only one quadruple (Figure 4.13d), 

• it has only one row-sextuple (Figure 4.10a), or 

• it has only one column-sextuple (Figure 4.10b). 
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Satisfying more than one constraint would imply that the target object is not a point. 

For example, if a deep direction-relation matrix has more than one element with value 1, 

it would mean that the target object is either a line (Figure 4.12c) or a region (Figure 

4.11b).  
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Figure 4.13:  Deep direction-relation matrices that are consistent for point targets with 

respect to (a) a point, (b) a horizontal line, (c) a vertical line, and (d) a 

region. 

4.5 Directions at Multiple Scales  

Based on the expressive power and flexibility of the deep direction-relation matrix, a 

more complex problem can be addressed: the consistent modeling of direction relations 

across multiple representations. The use of multiple representations of spatial objects is 

an important issue in GISs, because they typically encode the geometry of spatial objects 

in terms of points, lines, and polygons. The choice of the encoding, however, is not 

necessarily unique and often times the same geographic object may be represented as a 

polygon or a point, or as a polygon or a line. The decision about a particular 

representation depends on the level of detail, often referred to as the scale of a data set 

(Goodchild and Proctor 1997). For example, a town may be a dot on a national map, but a 

polygon at a more detailed level. When using spatial data in a GIS, users typically have to 

know about the encoding of the data in order to apply appropriate operations. For 

instance, while it makes sense to calculate the area of a polygon, the same operation does 
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not apply if the object’s geometry is represented as a line or a point. In this section, we 

study the directions recorded by deep direction-relation matrices at multiple scales.  

 

We consider the directions of B with respect to A in a scene at the initial scale (S0) 

and the scale after zooming-out (S1). The zooming out operation in this chapter is a 

graphical zoom (Frank and Timpf 1994), which corresponds to a scale reduction in 

cartographic generalization (McMaster and Shea 1992). Zooming out is equivalent to 

observing the same scene from a more remote distance. A scale reduction can reduce the 

dimension of an object in a scene. “Reduction of the dimension of an object due to a scale 

reduction” is referred as the collapse operation in cartographic generalization (McMaster 

and Shea 1992). A collapse operation may change a region into a line or a point, or a line 

into a point. In the case of a graphical zoom, after zooming-out an object remains in the 

scaled range of the original object, which is not always the case for cartographic 

generalization. In this study, we consider only geometric aspects of the collapse 

operation; therefore, we assume that after a scale reduction, the object at a reduced scale 

remains within the scaled range of the original object.  

 

We call a scale reduction that reduces the dimension of an object a significant scale 

reduction. This study considers significant scale reductions only, because only such 

changes make qualitative differences in a reference target pair of a direction relation. The 

effects of significant scale reductions are studied for the x-axis projections of the objects; 

the results apply to the y-axis projections correspondingly. There are five cases of 

significant scale reductions on the x-axis, where Π x A0 ( )  denotes the projection of object 

A on the x-axis at scale S0 (Table 4.2). While generating the names of the cases, “I” 

denotes an interval, and “P” denotes a point. For example, the case IIPP (Table 4.2) refers 

to a scale reduction that collapses a pair of intervals (II) into a pair of points (PP).  
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Case Before significant scale reduction  
 

After reduction 

 Π x A0 ( )  Π x B0 ( )  Π x A1 ( )  Π x B1 ( )  
IIPP interval interval point point 
IIPI interval interval point interval 
IIIP interval interval interval point 
IPPP interval point point point 
PIPP point interval point point 

Table 4.2:  Significant scale reductions in the types of projections of reference target 

pair on the x-axis.  

In order to study the compatibility of directions at multiple scales, Section 4.5.1 

defines the term compatible for deep direction-relation matrices. We use the projections 

of the objects on the x-axis to study the deep direction-relation matrix at multiple scales. 

Section 4.5.2 discusses the relations between different types of projections of objects. 

Sections 4.5.3–7 analyze the five cases of significant scale reductions (Table 4.2). Section 

4.5.8 summarizes the results of this study. 

4.5.1 Compatibility for Deep Direction-Relation Matrices 

We denote the deep direction-relation matrices for the directions of object B with respect 

to object A at scales S0 and S1 by D0 and D1, respectively.  

 

Definition 4.8: The direction D1 is compatible with the direction D0 if for each non-zero 

element in D1 the corresponding elements in D0 are non-zero (Equation 4.5). 

 

 00::),( 0
,

1
,,

10 ≠⇒≠∀= jijiji DDDDcompatible  (4.5) 

 

The number of non-zero elements in D0 is either equal to or more than the number of 

non-zero elements in D1. For example, if the target object B intersects with the northwest 

and north partitions (Figure 4.14a) at scale S0, then at scale S1 the target object can 

intersect with the northwest partition (Figure 4.14b), the north partition (Figure 4.14c), 

and the north and northwest partitions (Figure 4.14d). The D1 matrices recorded in 

Figures 4.14b-d are compatible with D0 in Figure 4.14a.  
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The binary relation compatible is reflexive, because D0 is compatible with itself. If 

D1 is compatible with D0 and D2 is compatible with D1, D2 is compatible with D0; 

therefore, the relation compatible is transitive. It is also antisymmetric, because D1 

compatible with D0 and D0
 compatible with D1 implies D0 equals D1. The relation 

compatible is reflexive, transitive, and antisymmetric; therefore, it is a partial order 

relation. 
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Figure 4.14:  Objects A and B with their deep direction-relation matrices at (a) scale S0 

and (b)-(d) scale S1.  

4.5.2 Relations between Projections of Objects 

An object’s projection onto an axis is either a point or an interval. The projection of an 

ordered pair of a reference object and a target object onto an axis can be (1) a pair of 

points, (2) an interval and a point, (3) a point and an interval, and (4) a pair of intervals. 

A point in a 1-dimensional space (along an axis) can be before (<), equal to (=), or after 

(>) another point (Table 4.3), where xA is the location of object A on the x-axis.  
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Relation Condition 
before (<) xB  < x A  
equal (=) xB  = x A  
after (>) xB  > x A  

Table 4.3:  The conditions for the relations between two points on the x-axis; A is the 

reference point and B is the target point. 

A point can be before (<), at-start of (as), during (du), at-finish of (af), or after (>) 

an interval on an axis (Figure 4.15a). The relations in Figure 4.15a correspond to the 

relations posterior (-), back (b), interior (i), front (f), and ahead (+) (Mukerjee and Joe 

1990). We denote the left and right extremes of the interval A by xA- and xA+, 

respectively. The relations in Figure 4.15a can be expressed using the conditions between 

xB and the extremes xA- and xA+ (Table 4.4). An interval can have the following relations 

with respect to a point on an axis: before (<), finishes-at (fa), contains (co), starts-at (sa), 

and after (>) (Figure 4.15b; Table 4.5).  

 

 

Figure 4.15: Relations in 1-D space for (a) point B with respect to interval A and (b) 

interval B with respect to point A. 

Relation Conditions 
before (<) 

Bx < −Ax  
at-start (as)  

Bx = −Ax  
during (du) ( Bx > −Ax )∧( Bx < +Ax ) 

at-finish (af) 
Bx = +Ax  

after (>) 
Bx > +Ax  

Table 4.4: Conditions for relations of point B with respect to an interval A.  
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Relation Conditions 
before (<) 

+Bx < Ax  
finishes-at (fa)  

+Bx = Ax  
contains (co) ( −Bx < Ax )∧( +Bx > Ax ) 
starts-at (sa) 

−Bx = Ax  
after (>) 

−Bx > Ax  

Table 4.5: Conditions for relations of interval B with respect to a point A.  

An interval can have one of thirteen relations (Allen 1983) with respect to another 

interval (Figure 2.8). Figure 2.8 uses the symbol B for the reference interval and the 

symbol A for the target interval, whereas Figure 4.16 uses symbol A for the reference 

interval and symbol B for the target interval, because the direction-relation matrix uses 

symbols A and B for the reference and target objects, respectively. Each interval relation 

can also be described using conditions between the extremes of the intervals (Table 4.6) 

(Freksa 1992a).  

  

 

Figure 4.16: One-dimension interval relations, A is the reference interval and B is the 

target interval.  
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Relation Conditions 
before (<) 

+Bx < −Ax  
 meets (m)  

+Bx = −Ax  
overlaps (o) ( −Bx < −Ax )∧( +Bx > −Ax )∧( +Bx < +Ax ) 

finishes-inverse (fi) ( −Bx < −Ax )∧( +Bx = +Ax ) 
starts (s) ( −Bx = −Ax )∧( +Bx < +Ax ) 
during (d) ( −Bx > −Ax )∧( +Bx < +Ax ) 
equal (=) ( −Bx = −Ax )∧( +Bx = +Ax ) 

during-inverse (di) ( −Bx < −Ax )∧( +Bx > +Ax ) 
starts-inverse (si) ( −Bx = −Ax )∧( +Bx > +Ax ) 

finishes (f ) ( −Bx > −Ax )∧( +Bx = +Ax ) 
overlap-inverse (oi) ( −Bx > −Ax )∧( −Bx < +Ax )∧( +Bx > +Ax ) 

meets-inverse (mi) 
−Bx = +Ax  

after (>) 
−Bx > +Ax  

Table 4.6: Conditions for 1-D interval relations. 

To study the deep direction model at multiple scales, we use the relations between an 

ordered pair of points (Table 4.3), a point and an interval (Figure 4.15a), an interval and a 

point (Figure 4. 15b), and intervals (Figure 4.16). 

4.5.3 Collapsing a Pair of Intervals into a Pair of Points 

In this section, we consider the case IIPP, where both the reference and target projections 

on the x-axis are intervals. After a scale reduction, the projection of an interval collapses 

into a point (Equation 4.6).  

 

 [ ]00 , +− AA xx → 1
Ax  (4.6) 

 

We assume that a zooming-out operation on a projection of an object on an axis 

yields the same result as zooming-out on a scene containing this object, followed by 

recording of the projection on an axis. The shrinking of a region reference (Figure 4.5a) 

into a vertical line reference object (Figure 4.8a) is an example of a significant scale 

reduction that collapses the reference interval into a point. In this example, the north 

region with its left and right boundaries collapses into a north line (Equation 4.7).  
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 {N-NwL, NR, N-NeL}0→{NL}1 (4.7) 

 

The point 1
Ax  is the result of collapsing the interval [ ]00 , +− AA xx , therefore, the point 

will lie within the scaled interval 






 +−

a

x

a

x AA
11

, (Equation 4.8).  

 
a

x
x

a

x A
A

A
0

1
0

+− ≤≤  (4.8) 

 

We denote distances of the point 1
Ax  from the left and right extremes of the scaled 

interval A by non-negative variables L and M, respectively, and the range of point 1
Ax  in 

terms of the extremes of the scaled interval A (Equations 4.9a). Similarly, we describe the 

range of point 1
Bx  with respect to the scaled interval for B using non-negative variables N 

and P (Equation 4.9b). Sections 4.5.3.1–3 use the ranges of points 1
Ax  and 1

Bx  (Equations 

4.9a-b) to analyze the scale reduction for the interval relations: meets, overlaps, and 

equal, respectively. 

 M
a

x
xL

a

x A
A

A −==+ +−
0

1
0

, 0≥L , 0≥M  (4.9a) 

 P
a

x
xN

a

x B
B

B −==+ +−
0

1
0

, 0≥N , 0≥P  (4.9b) 

4.5.3.1 Intervals with relation meets 

The condition for the interval relation meets is 00
−+ = AB xx  (Table 4.6), which holds for 

scaled intervals as well (Equation 4.10). To determine new relations for point 1
Bx  with 

respect to the point 1
Ax , we combine the condition of meets relation (Equation 4.10 ) with 

the ranges of the points in the scaled intervals (Equations 4.9a-b), which gives the 

constraint between the points at scale S1 (Equation 4.11). This constraint is rearranged as 

difference between two points (Equation 4.12). If both L and P are zero, 1
Bx = 1

Ax . If L>0 

or P>0, 1
Bx < 1

Ax . Thus, a relation meets between an ordered pair of intervals can 
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transform to either “<” or “=”. The relation between an ordered pair of points is a set {<, 

=} (Table 4.7). 

 
a

x

a

x AB
00

−+ =  (4.10) 

 LxPx AB −=+ 11  (4.11) 

 )(11 PLxx AB +−=−  (4.12) 

 

),(0
iix BAR  ),(1

ppx BAR  

< < 
 m  {<,=} 
o {<, =,>} 
fi {<, =, >} 
s {<, =, >} 
d {<, =, >} 
= {<, =, >} 
di {<, =, >} 
si {<, =, >} 
f {<, =, >} 
oi {<, =, >} 
mi {=, >} 
> > 

Table 4.7:  An IIPP scale reduction maps relations between intervals onto the relations 

between points.  

The reduction in the dimension of the objects’ projections is only due to a scaling 

operation; therefore, the order between projections along an axis does not change. We 

denote the relation of interval B with respect to interval A at scale S0 on the x-axis by 

),(0
iix BAR . If the value of ),(0

iix BAR  is {<}, that is, B west of A, after a case IIPP 

reduction, the value of new relation ),(1
ppx BAR  is {<}, which is also B west of A. If 

),(0
iix BAR ={m} it means B is west of A and runs up to the west point of A’s interval. 

After an IIPP reduction, the relation ),(1
ppx BAR  is a relation from the set {<, =}. In a 

specific instance, the value of a relation from a set depends on the lengths of the intervals 

and their relative placement. For example, the scene in Figure 4.17a can transform into 

the scenes in Figure 4.17c or 4.17e after an IIPP scale reduction. Similarly, an IIPP 
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reduction can transform the scene in Figure 4.17b into the scenes in Figure 4.17d or 

Figure 4.17e. The values of the relation ),(1
ppx BAR  in Figures 4.17c and 4.17d are 

qualitatively equivalent. The directions in Figures 4.17c-e are compatible with the 

directions in Figures 4.17a-b.  
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(a) (b) (c) (d) (e) 

Figure 4.17: The relations between projections on to the x-axis: (a)-(b) interval relation is 

meets and point relations are (c)-(d) before, and (e) equal. 

A query “Find all scenes where object B is northwest of A” on Figure 4.17 would 

return the scenes in Figures 4.17a-d, while a query, “Find all scenes where object B 

intersects with the north partition of A” would return the scenes in Figures 4.17a-b and 

4.17e. This example illustrates that the directions recorded using the deep direction-

relation matrices at a smaller scale are compatible with the directions recorded at a larger 

scale. 

4.5.3.2 Intervals with relation overlaps 

We apply the conditions of overlaps relation (Table 4.6) to the scaled intervals 

(Equations 4.13a-c).  

 

 
a

x

a

x AB
00

−− <  (4.13a) 

 
a

x

a

x AB
00

−+ >  (4.13b) 
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a

x

a

x AB
00

++ <  (4.13c) 

 

Combining the conditions between the extremes of scaled intervals for overlaps 

relation (Equations 4.13a-c) with the ranges of points 1
Ax  and 1

Bx  (Equations 4.9a-b), we 

get relations between the points in terms of inequality conditions (Equations 4.14a-c).  

 

 LxNx AB −<− 11  (4.14a) 

 LxPx AB −>+ 11  (4.14b) 

 MxPx AB +<+ 11  (4.14c) 

 

The inequalities (Equations 4.14a-c) are expressed as the differences between points 

1
Bx  and 1

Ax  using positive variables Q, R, and S, respectively (Equations 4.15a-c). 

 

 QLNxx AB −−=− 11 , 0>Q  (4.15a) 

 PLRxx AB −−=− 11 , 0>R  (4.15b) 

 SPMxx AB −−=− 11 , 0>S  (4.15c) 

 

In Equation 4.15a, if N equals L+Q, 1
Bx = 1

Ax ; if N is more than L+Q, 1
Bx > 1

Ax ; and if 

N is less than L+Q, 1
Bx < 1

Ax , which implies 1
Bx {<, =, >} 1

Ax . Equations 4.15b-c also give 

the same result (Table 4.7). 

4.5.3.3 Intervals with relation equal 

We apply the conditions of equal relation (Table 4.6) to the scaled interval (Equations 

4.16a-b).  

 

 
a

x

a

x AB
00

−− =  (4.16a) 

 
a

x

a

x AB
00

++ =  (4.16b) 
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We combine the conditions of the relation equal (Equations 4.16a-b) with the ranges 

of the points (Equations 4.9a-b), and obtain conditions for the points (Equations 4.17a-b).  

 

 LxNx AB −=− 11  (4.17a) 

 MxPx AB +=+ 11  (4.17b) 

 

The conditions between the points (Equations 4.17a-b) are arranged as the difference 

between the points (Equations 4.18a-b), which imply 1
Bx < 1

Ax , 1
Bx = 1

Ax , and 1
Bx > 1

Ax  

relations are possible; therefore, the resultant relation between the points is a set {<, =, >} 

(Table 4.7). 

 

 LNxx AB −=− 11  (4.18a) 

 PMxx AB −=− 11  (4.18b) 

 

This section derived relations between two points at scale S1 if the relation between 

two intervals at scale S0 is meets, overlaps, and equal. Similar derivation can be 

performed for the remaining ten relations between intervals (Table 4.7). For the interval 

relations before and after, the results for an IIPP reduction are unique. For all other 

relations, a scale reduction gives a set of relations. For a given pair of intervals, the actual 

relation between points is determined by the lengths of the intervals and their relative 

placements, as shown for the relation meets (Figure 4.17). However, values of new 

relations are compatible with the relations before scale reduction. 

4.5.4 Collapsing a Pair of Intervals into a Point and an Interval  

In the case IIPI, the reference object’s interval projection collapses into a point, while the 

target object’s projection continues to be an interval (Equations 4.19a-b). The resulting 

relations are given in Table 4.8. 

 

 [ ]00 , +− AA xx → 1
Ax  (4.19a) 
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 [ ]00 , +− BB xx →[ ]11 , +− BB xx  (4.19b) 

 

If a particular relation does not fit into this case, the result is recorded as impossible. 

For example, if interval B equal interval A, after a significant scale reduction, both A and 

B must collapse into points. Due to the same length of both intervals, it is impossible for 

B to stay an interval, while A collapses into a point. 

 

),(0
iix BAR  ),(1

ipx BAR  

< < 
 m  {<, fa} 
o {<, fa, co} 
fi { fa, co} 
s impossible 
d impossible 
= impossible 
di { fa, co, sa} 
si {co, sa} 
f impossible 
oi {co, sa, >} 
mi {sa, >} 
> > 

Table 4.8:  The scale reduction of the type IIPI maps the relations between intervals 

onto the relations of point B with respect to interval A. 

4.5.5 Collapsing a Pair of Intervals into an Interval and a Point  

In the case IIIP, the reference object’s projection continues to be an interval, while the 

target object’s interval projection collapses into a point (Equations 4.20a-b). Table 4.9 

gives the resulting relations after the change. 

 

 [ ]00 , +− AA xx →[ ]11 , +− AA xx  (4.20a) 

 [ ]00 , +− BB xx → 1
Bx  (4.20b) 
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),(0
iix BAR  ),(1

pix BAR  

< < 
 m  {<, as} 
o {<, as, du} 
fi impossible 
s {as, du} 
d du 
= impossible 
di impossible 
si impossible 
f {du, af, >} 
oi {du, af} 
mi {af, >} 
> > 

Table 4.9:  The scale reduction of the type IIIP maps the relations between intervals 

into the relations of point B with respect to interval A. 

4.5.6 Collapsing an Interval and a Point into a Pair of Points  

In the case IPPP, the reference object’s interval projection collapses into a point, while 

the target object’s projection continues to be a point (Equations 4.21a-b). Table 4.10 

gives the resulting relations.  

 

 [ ]00 , +− AA xx → 1
Ax  (4.21a) 

 0
Bx → 1

Bx  (4.21b) 

),(0
pix BAR  ),(1

ppx BAR  

< < 
 as  {<, =} 
du {<, =, >} 
af { =, >} 
> > 

Table 4.10:  The scale reduction of the type IPPP maps the relations of point B with 

respect to interval A onto the relations between points. 
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4.5.7 Collapsing a Point and an Interval into a Pair of Points  

In the case PIPP, the reference object’s projection continues to be a point, while target 

object’s interval projection collapses into a point (Equations 4.22a-b). Table 4.11 gives 

possible relations after this change. 

 

 0
Ax → 1

Ax  (4.22a) 

 [ ]00 , +− BB xx → 1
Bx  (4.22b) 

),(0
ipx BAR  ),(1

ppx BAR   

< < 
 fa  {<, =} 
co {<, =, >} 
sa {=, >} 
> > 

Table 4.11:  The scale reduction of the type PIPP maps the relations of interval B with 

respect to point A onto the relations between points. 

4.5.8 Compatible Directions at Smaller Scales 

The relations between projections at a smaller scale are compatible with the relations at a 

larger scale in the IIPP case of scale reduction (Section 4.5.3). Similar reasoning applies 

to the other four cases; therefore, the relations between the projections of objects on an 

axis, after a significant scale reduction, are compatible with the relations before zooming 

out. The region reference grid has nine direction partitions and sixteen boundary parts, 

which make 25 parts of space. Similarly, reference grids for a horizontal line and a 

vertical line have 15 parts of the space, and the reference grid for a point has 9 parts of 

space. We analyze the change of direction due to a significant scale reduction in a 

reference frame part by part.  

 

The intersection of each part of space with a target object can have more than one 

separation (Figure 3.9). We call such a separation a target component. The union of all 

the target components yields the target object. The projection of a target component onto 

an axis can be a point or an interval. A significant scale reduction collapses at least one 

projection from all the target components and the reference object. A change in the type 
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of a pair of projections of the reference object and a target component on an axis due to 

zooming out falls in one of the five cases. For these cases, relations after a scale reduction 

on an axis are compatible with the relations before scale reduction. Combining all parts, 

we infer that the direction recorded by the deep direction-relation matrix at a smaller 

scale is compatible with, if not equal to, the direction recorded at a larger scale.  

 

For example, at scale S0 the target object B is a region (Figure 4.18a), and at scale S1 

it collapses into a line (Figure 4.18b), while the reference object A continues to remain a 

region. The target object B has five components B1, B2, B3, B4, and B5. At scale S0, the 

components B1, B3, and B5 are regions, and B2 and B4 are lines. The components B1 and 

B5 intersect with the west partition, B3 intersects with the northwest partition, and B2 and 

B4 intersect with the west-northwest line. At scale S1, the object B becomes a line. The 

components B1, B3, and B5 collapse into lines and B2 and B4 collapse into points.  

 

We analyze the relation of each component’s x-axis projections with the reference 

object’s x-axis projection for this example (Table 4.12). The changes in the types of 

projections occur for the components B2 and B4 only, and both the changes are of the 

same type IIIP. The values of relations for the projections of B2 and B4 with respect to A’s 

projection after scale reduction is obtained from Table 4.9. The analysis for the y-axis 

projections can be performed similarly, but there is no change in the types of projections 

of the reference object and the target components on the y-axis in this example. At both 

scales, the directions of B with respect to A are recorded as the same value (Equation 

4.23). The relations for each component’s projections with respect to the reference 

projections at scale S1 are compatible with the relations at S0; therefore, the direction at 

scale S1 in this example is compatible with the direction at scale S0. 
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Figure 4.18:  (a) The region-region pair at scale S0 and (b) region-line pair at scale S1 

after a zooming-out operation.  

 At scale S0 At scale S1 
n )(0 AxΠ  )(0

nx BΠ  ),(0
nx BAR  )(1 AxΠ  )(1

nx BΠ  ),(1
nx BAR  

1 interval interval < interval interval < 
2 interval interval < interval point < 
3 interval interval < interval interval < 
4 interval interval < interval point < 
5 interval interval < interval interval < 

Table 4.12:  The projections of the reference object A and the components of the target 

object B onto the x-axis, and their relations, where n is the component 

number.  
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),( BAdir  (4.23) 

 

The directions between a pair of objects recorded at two different scales may not 

always be equal, however. If they were always equal, the models of directions between 

points would be sufficient, and there would be no need for models of directions between 

extended objects. The study in this section shows that the deep direction-relation matrices 

record directions that are compatible with the directions recorded at larger scales, which 

makes this model useful for direction-based queries at multiple scales.  
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4.6 Analysis of the Deep Direction Model 

The deep direction-relation matrix uses nine elements, and each element records 

information in nine bits; therefore, a deep direction-relation matrix needs 81 bits. This is 

224% more than 25 bits in a 5x5 matrix. In the exchange of the larger number of bits, the 

deep direction-relation matrix has the following advantages over a 5x5 matrix: (1) it 

records nine elements, regardless of the types of the objects, (2) all elements across the 

matrix have the same structure, and (3) it facilitates the assessment of compatibility of 

directions at multiple scales (Section 4.5). 

4.6.1 Cognitively Plausible Values of Directions 

The examples in this section illustrate that the deep direction-relation matrix records the 

same value for equivalent directions, irrespective of the dimensions of objects. The 

directions of object B with respect to object A in Figures 4.19a, 4.20a, and 4.21a are 

equivalent, and in all these cases the value of recorded directions dir(A, B) is the same 

(Equation 4.24a). Similarly, the directions of B with respect to A in Figures 4.19b and 

4.20b are equivalent, and they are captured as the same value using neighbor codes 

(Equation 4.24b). The direction dir(A, B) in Figures 4.20c and 4.21b are equivalent and 

recorded as the same value (Equation 4.24c). These examples illustrate that the deep 

direction-relation matrix is capable of capturing directions for point, line, and polygon 

target objects in a consistent and cognitively plausible way. 
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(a) (b) 

Figure 4.19: Pairs of region objects. (a) Object B is north of object A and (b) object B is 

north of A and intersects with the north-northeast line (N-NeL).  

   
(a) (b) (c) 

Figure 4.20: Region reference and line target. (a) object B is north of A, (b) B is north of 

A and intersects with the N-NeL, and (c) object B completely lies on the N-

NeL.  

  
(a) (b) 

Figure 4.21: Region reference and point target. (a) object B is north of A and (b) object B 

completely lies on the N-NeL. 

4.6.2 Advantages of the Deep Direction Model Over Existing Models 

This section compares the deep direction-relation matrix with the MBR-based model 

(Section 2.4.6) and the coarse direction-relation matrix (Section 3.1). The MBR-based 

model is adequate only for recording directions between rectangles, and the coarse 
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direction-relation matrix is adequate only for recording directions between regions. In the 

projection-based direction partitions there are four different types of objects (Figure 4.2). 

These four types of objects can be reference as well as target objects, which gives sixteen 

different types of reference-object pairs (Figure 4.22).  

 

 

Figure 4.22: Sixteen different types of object pairs. 

Out of these sixteen types, the model based on MBRs and the coarse direction-

relation matrix apply to only one type of pair (i.e., pair of regions). They do not apply to 

the remaining fifteen types of pairs. For example, if a horizontal line target object 

coincides with a grid line with respect to a region reference object, none of the 169 MBR 

relations can record this direction (Figure 2.15). Similarly, none of the 218 coarse 

direction-relation matrices can record this direction (Figure 3.6). The deep direction-
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relation matrix, however, provides a unified framework to represent directions for all 

sixteen pairs. 

4.7 Summary  

This chapter extended the model based on the coarse direction-relation matrices to 

include information about the intersections of the target object with the boundaries of 

direction partitions. The new model is capable of recording directions between arbitrary 

pairs of point, line, and polygon objects. The deep direction-relation matrix always has 

nine elements, regardless of the dimensions of the objects. We demonstrated that deep 

direction-relation matrices record directions that are compatible with the directions 

recorded at larger scales, which makes the deep direction model useful for direction-

based queries in multi-resolution spatial databases. Examples in this chapter showed that 

the deep direction-relation matrix records cognitively plausible values of directions; 

therefore, the deep direction model frees the user from pondering about the dimension of 

the objects. 
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Chapter 5  

Similarity Between Cardinal Directions 

People casually assess similarity between spatial scenes in their routine activities. 

Likewise, users of a pictorial database are often interested in retrieving scenes that are 

similar to a given scene, and ranking them according to degrees of their match. For 

example, a town architect would like to query a database for the towns that have a 

landscape similar to the landscape of the site of a planned town. Similarity is an intuitive 

and subjective judgment. It displays no strict mathematical models (Tversky 1977). 

Bruns and Egenhofer (1996) use spatial relations between objects for the assessment of 

scene similarity. Spatial relations are also used for similarity assessment in image 

databases (Chu et al. 1994; Bimbo et al. 1995; Bimbo and Pala 1997; Chu et al. 1998), 

multimedia databases (Al-Khatib et al. 1999; Yoshitaka and Ichikawa 1999), and video 

databases (Jiang and Elmagarmid 1998; Pissinou et al. 1998; Aslandogan and Yu 1999). 

In order to use spatial relations for similarity assessment, we need methods to assess 

similarity between spatial relations.  

 

Cardinal directions can be used for defining the results of queries in spatial 

databases. For example, the query scene (Figure 5.1a) and scenes in the database (Figures 

5.1b-d) contain objects A and B, and the value of the topological relations between 

objects A and B in all these scenes is disjoint. All scenes in this database are topologically 

equivalent to the query scene. However, when considering the cardinal direction as an 

additional search criterion, one can determine that Scene 0 is the most similar to the 

query scene. In order to make the direction-relation matrix applicable for assessing 

spatial similarity between scenes, this chapter develops a method to assess similarity 

between cardinal directions. The similarity assessment uses the detailed direction-relation 

matrix, which for simplicity is referred as direction-relation matrix in this chapter. 
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Figure 5.1: (a) The query scene and (b)-(d) Scenes 0-2 in a database. 

We determine the similarity between two directions by actually assessing the 

dissimilarity between them, which depends on the distance between these directions. 

Section 5.1 discusses the distance computation, and converts it into a problem of 

transforming a direction-relation matrix into another direction-relation matrix. Section 

5.2 describes a method to compute the minimum cost for this transformation using the 

transportation algorithm. Section 5.3 describes the method to convert the minimum cost 

into a similarity value. Section 5.4 summarizes the results of this chapter. 

5.1 The Distance between Two Cardinal Directions 

As a quantitative measure for direction similarity, we introduce a distance measure 

between two cardinal directions, such that (1) a zero value implies that both directions are 

identical and (2) distance(D0, D1) > distance(D0, D2) means D0 is more similar to D2 than 

D0 to D1. The symbol D0 denotes the direction of object B with respect to object A in 

Scene 0.  

 

A direction-relation matrix must have at least one element with a non-zero value. If a 

direction-relation matrix has exactly one non-zero element, we call it a single-element 

direction-relation matrix. A direction that corresponds to a single-element direction-

relation matrix is called a single-element direction. There are nine single-element 
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directions corresponding to nine cardinal directions, which are also called mutually 

exclusive directions. A direction-relation matrix with more than one non-zero element is 

called a multi-element direction-relation matrix. A direction that corresponds to a multi-

element direction-relation matrix is referred as a multi-element direction. The distance 

measures are needed for all direction-relation matrices. We develop first a method to 

compute distance between single-element directions (Section 5.1.1), and extend it 

subsequently to multi-element directions (Section 5.1.2).  

5.1.1 Distance Between Two Single-Element Direction-Relation 

Matrices 

A conceptual neighborhood graph, for a set of mutually exclusive spatial relations, serves 

as the basis for computing distances between the relations in this set. Conceptual 

neighborhood graphs have been used for deriving distance measures between 1-D 

interval relations (Freksa 1992a), topological relations (Egenhofer and Al-Taha 1992; 

Egenhofer and Mark 1995a), and minimum bounding rectangle relations (Papadias and 

Dellis 1997). A continuously changing relation follows a path along the conceptual 

neighborhood graph. For example, if a target object B moves eastward from the 

northwest tile (Figure 5.2a) it cannot move directly to the northeast tile (Figure 5.2c). It 

must go through the direction tile(s) that connect the northwest and northeast tiles. The 

shortest path would lead through the north tile (Figure 5.2b), although other connected 

paths are possible as well, e.g., through west, same, and east tiles.  

 

In order to compute the distance between cardinal directions, we construct a 

conceptual neighborhood graph for the nine cardinal directions using the 4-neighborhood 

of the nine tiles. This graph has a vertex for each cardinal direction and an edge for each 

pair of cardinal directions that are horizontally or vertically adjacent (Figure 5.3). The 

distance between two cardinal directions is the length of the shortest path between two 

directions in the conceptual neighborhood graph (Figure 5.4). The distance between two 

identical directions is zero, which is the shortest of all distances. The distance between 

the cardinal directions northwest and southeast is four, which is the maximum. The only 
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other pair with the maximum distance is northeast and southwest. The distance function 

abides by the axioms of a distance, that is, positivity, symmetry, and triangle inequality. 

 

 

Figure 5.2: The shortest path to move the target object B from the northwest tile to the 

northeast tile is through the north tile, while considering only single-

element directions.  

 

Figure 5.3:  The conceptual neighborhood graph for nine cardinal directions based on 

the 4-neighborhood between tiles.  

 The distance between the directions of B with respect to A along the conceptual 

neighborhood graph in Figures 5.2a and 5.2b is 1, and the distance between the directions 

in Figures 5.2a and 5.2c is 2. Based on these distances, we infer that the direction of B 

with respect to A in Figure 5.2a is more similar to the direction in Figure 5.2b than the 

direction in Figure 5.2a to the direction in Figure 5.2c. Qualitative changes of direction 

relations for an ordered pair of regions follow a 4-conceptual neighborhood graph. Such 
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changes can occur due to increasing or decreasing sizes of objects, movement of objects, 

or rotation of objects. The distance between single element direction-relation matrices 

serves as the basis for the distance between multi-element direction-relation matrices. 

 

 

Figure 5.4: Four-neighbor distances between cardinal directions for regions. 

5.1.2 Distance Between Two Multi-Element Direction-Relation 

Matrices 

In this section, we extend the method of computing the distance between cardinal 

directions from single-element direction-relation matrices to multi-element direction-

relation matrices. If the target object B moves eastward from the northwest tile (Figure 

5.5a) to the northeast tile (Figure 5.5e), it will have the following direction relations with 

respect to A on its trajectory: (1) northwest and north (Figure 5.5b), (2) north (Figure 
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5.5c), and (3) north and northeast (Figure 5.5d). The directions in Figures 5.5b and 5.5d 

require multi-element direction-relation matrices for their representation. 

  

 

Figure 5.5: The target object moves across single as well as multi-element cardinal 

directions from (a) northwest through (b) northwest and north, (c) north, (d) 

north and northeast, to (e) northeast. 

There are 218 coarse direction-relation matrices (Figure 3.6), out of which only nine 

directions are represented by single-element direction-relation matrices. The remaining 

209 directions are represented by multi-element direction-relation matrices. A conceptual 

neighborhood graph for all 218 directions can be constructed, assuming a uniform 

distribution of the target object in non-zero direction tiles. For example, a target object 

that intersects with the north and northeast tiles can be assumed to have 50% of its area in 

each of these tiles; however, such an assumption will mostly give values of direction-

relation matrices that are different from the actual values. Instead of making such 

assumptions, we develop a computational method for determining the distance between 

two arbitrary multi-element direction-relation matrices. This method is based on the 

conceptual neighborhood graph for nine cardinal directions (Figure 5.3).  

 

Definition 5.1: The distance between two direction-relation matrices, D0 and D1, is the 

minimum cost for transforming matrix D0 into D1 by moving the non-zero elements of D0 

from their locations to the locations of the non-zero elements of D1 along the conceptual 

neighborhood graph.  

 

The cost of this transformation is the weighted sum of the distances along the 

neighborhood graph between the source and destination direction tiles, where a source 

refers to a cardinal direction from where a non-zero element is moved and a destination 
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refers to a cardinal direction where the element is moved to. The weighting of a distance 

between a source and a destination is done by the element values moved between them. 

For example, transforming matrix D0 (Equation 5.1a) into D1 (Equation 5.1b) requires the 

movement of the value 0.4 from northwest to northeast, and the value 0.6 from north to 

northeast. The cost of this transformation is 0.4 x distance(NW, NE) + 0.6 x distance(N, 

NE), which is 0.4 x 2 + 0.6 x 1=1.4.  
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The remainder of this section introduces consistency constraints and properties of 

intermediate matrices, which are needed to develop the method for distance computation 

between arbitrary direction-relation matrices.  

 

Definition 5.2: The sum of a matrix P is defined as the sum of the values of it elements 

(Equation 5.2). 

 

 
∑∑
∀ ∀

=
i j

jiPPsum ,:)(
 (5.2) 

 

Definition 5.3: The commonality C01 between two direction-relation matrices, D0 and D1, 

is a 3x3 matrix defined as the minimum of each pair of corresponding element values 

(Equation 5.3). 

 

 ∀ =i j C D Dij ij ij, : : min( , )01 0 1  (5.3) 
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The values of elements in C01 lie in the interval [0, 1]. The value of sum(C01) also 

lies in the interval [0, 1]. It is 0 if all the corresponding pairs of elements have at least one 

0. It would be 1 if the distribution of the target objects in both D0 and D1 is identical. 

Since the minimum of a set of numbers is unique and does not depend on their order, the 

calculation of the commonality is commutative (Equation 5.4).  

 

 1001 CC =  (5.4) 

 

For example, the commonality matrices C01 and C10 for directions of B with respect 

to A in Scene 0 and Scene 1 (Figure 5.6) have the same values (Equation 5.5.). This 

scenario is used as a running example throughout this chapter.  

  

  

Scene 0 

 

Scene 1 
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Figure 5.6:  A direction comparison example Scene 0 and Scene 1 with identical 

objects, but different directions D0 and D1, respectively. 
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Definition 5.4: The asymmetric difference R01 between two direction-relation matrices, 

D0 and D1, is defined as the difference of the direction-relation matrix D0 and the 

commonality (Equation 5.6a), and has a corresponding value for R10 (Equation 5.6b).  

 

 R D C01 0 01:= −  (5.6a) 

 10110 : CDR −=  (5.6b) 

 

We use the term non-zero part of a matrix for a non-zero element or a fraction of a 

non-zero element. The asymmetric difference R01 has the distinct non-zero parts of D0 

that are not in D1. Conversely R10 (Equation 5.6b) has the distinct non-zero parts of D1 

that are not in D0. For example, the asymmetric difference matrix R01 (Equation 5.7a) for 

scenes in Figure 5.6 has no non-zero parts that are in D1, while R10 (Equation 5.7b) has no 

non-zero parts that are in D0.  
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The values of elements in R01 and R10 lie in the closed interval [0, 1]. The values of 

sum(R01) and sum(R10) also lie in the interval [0, 1]. The value 0 for sum(R10) means there 

is no difference between matrices D0 and D1, whereas the value 1 means there is no 

commonality between matrices D0 and D1.  

 

Definition 5.5: The direction-difference (∆01) between two direction-relation matrices, 

D0 and D1, is defined as the difference of the two relations’ asymmetric differences 

(Equation 5.8). 

 

 ∆01 01 10:= −R R  (5.8) 
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The values of the elements in ∆01 lies in the interval [-1, 1]. In order to express the 

direction-difference in terms of direction-relation matrices, we substitute the value of R01 

and R10 (Equations 5.6a and 5.6b) in Equation 5.8, and obtain Equation 5.9, as 

commonalty matrices C01 and C10 cancel each other. For example, Equation 5.10 gives 

the direction-difference matrices ∆01 for the scenes in Figure 5.6.  

 

 
1001 DD −=∆  (5.9) 
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Theorem 5.1.1: 

The sum of the elements in R01 equals the sum of the elements in R10.  

Proof: 

The sum of the elements of a detailed direction-relation matrix is 1 (Equation 5.11). 

 

 )( 0Dsum = )( 1Dsum =1 (5.11) 

 

The addition operation (+) follows the associative law; therefore, we can express the 

asymmetric difference matrices (Equations 5.6a-b) in the sum form (Equations 5.12a-b).  

 

 )()()( 01001 CsumDsumRsum −=  (5.12a) 

 )()()( 10110 CsumDsumRsum −=  (5.12b) 

 

Let us assume the value of sum(C01) is x, which equals sum(C10); substituting x for 

these sums in Equation 5.12a-b and combining them with Equation 5.11, we obtain 

expressions for the sum of asymmetric difference matrices in terms of x (Equations 

5.13a-b).  

 

 xRsum −= 1)( 01

 (5.13a) 
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 xRsum −= 1)( 10

 (5.13b) 

 

The right hand sides of both asymmetric difference matrices’ sums are identical 

(Equations 5.13a-b), which proves the theorem (Equation 5.14). 

 

 )( 01Rsum = )( 10Rsum   (5.14) 

 

For example, the sum of elements in 01R  (Equation 5.7a) is 0.94, which equals the 

sum of elements in 10R  (Equation 5.7b).   

 

Corollary 5.1.2: 

The sum of the elements in a direction-difference matrix is 0. 

Proof: 

We can express the direction-difference matrix (Equation 5.8) in the sum form (Equation 

5.16). The values of the sums of asymmetric difference matrices’ elements is identical, 

(Equation 5.14), which proves this corollary (Equation 5.16).  

 

 )()(:)( 100101 RsumRsumsum −=∆  (5.15) 

 )( 01∆sum =0 (5.16) 

 

 

For example, the sum of elements of ∆01 in Equation 5.10 is zero. Non-zero elements 

of the commonality matrix C01 capture the common non-zero parts of the matrices D0 and 

D1; therefore, the non-zero parts that correspond to non-zero parts of C01 must not be 

moved while transforming D0 into D1 (Definition 5.1). Moving them would increase the 

cost of this transformation, such that the computed cost for this transformation would not 

be the minimum value. Only those non-zero parts of D0 should be moved that are zero in 

D1, which means only non-zero elements of R01 must be moved to obtain R10.  
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Definition 6: The distance between two matrices D0 and D1 is the minimum cost incurred 

in transforming R01 into R10.  

 

Theorem 5.2.1: 

The maximum 4-neighbor distance ( 4
maxcetandis ) between two direction-relation matrices 

is 4.  

Proof: 

The maximum cost is incurred when the maximum possible value of sum(R01) is moved 

by the maximum possible distance. The maximum value of sum(R01) is 1 and the 

maximum 4-neighbor distance between two cardinal directions is 4 (Figure 5.4); 

therefore, the value of 4
maxcetandis is 4x1=4.       

 

The maximum distance between two direction-relation matrices can occur only 

between single-element direction-relation matrices that have non-zero values for the 

farthest direction tiles. For example, the value of 4-neighbor distance between two single-

element direction-relation matrices with non-zero values in the southwest and northeast 

tiles is 4. 

 

In the direction-difference ∆01, non-zero elements that correspond to non-zero 

elements of R01 are of positive polarity, while non-zero elements that correspond to non-

zero elements of R10 are of negative polarity (Equation 5.8). The sum of the elements of 

the matrix ∆01 is zero (Corollary 5.1.2). The matrix ∆01 has all the necessary information 

to compute the minimum cost of transforming D0 into D1, which is the same as the 

minimum cost of transforming R01 into R10. Section 5.2 uses ∆01 for computing the 

distance between two multi-element direction-relation matrices. 

5.2 The Minimum Cost Solution for the Transformation 

Problem 

The problem of determining the minimum cost for transforming matrix 01R  into 

matrix 10R  can be formulated as a balanced transportation problem (Murty 1976; Strayer 
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1989) or a minimum-cost maximum-flow problem across a flow-network (Ford and 

Fulkerson 1962). Both the transportation problem and the network flow problem are 

special cases of the linear programming problem (Dantzig 1963; Dantzig and Thapa 

1997). This section formulates the problem of transforming R01 into R10 as a balanced 

transportation problem and describes a method to solve the transportation problem.  

 

A transportation problem is graphically represented by a transportation tableau 

(Figure 5.7), which records the supplies of all the warehouses, the demands of all the 

markets, and the unit costs for all the pairs of the warehouses and the markets. Let us 

assume there are n negative and p positive elements in the direction difference matrix ∆01. 

Each positive element in ∆01 corresponds to a warehouse, and each negative element 

corresponds to a market in the transportation tableau for ∆01. The supply of the ith 

warehouse Wi is si, which equals the magnitude of the corresponding element in ∆01. 

Similarly, the demand of the jth market Mj is dj, which also equals the magnitude of the 

corresponding element in ∆01. We identify the markets and warehouses in the 

transportation tableau by the names of corresponding direction tiles. The cost cij for 

moving a unit supply from Wi to Mj is distance(Wi, Mj). 

 

 

Figure 5.7: The balanced transportation tableau. 
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The sum(R01) equals the sum(R10) (Theorem 5.1.1); therefore, the sum of the supplies 

of all warehouses equals the sum of the demands of all markets. Due to this equality, this 

transportation problem is a balanced transportation problem. Let us assume the number of 

units to be shipped from the warehouse Wi to the market Mj is xij in the final solution. The 

transportation problem is to determine the values of x such that the total cost (z) is 

minimum (Equation 5.17) and the warehouse and market constraints are satisfied 

(Equations 5.18a-b). 
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For example, the problem of transforming D0 into D1 in Figure 5.6 is formulated as a 

transportation problem (Figure 5.8) from Equation 5.10. The distance between the 

markets and the warehouses is obtained from the table of 4-neighbor distances (Figure 

5.4). The transportation problem is to determine a set of x values that gives the minimum 

value of z (Equation 5.19), such that it satisfies warehouse and market constraints 

(Equation 5.20a-f). 

 

  z=3x11+ 2x12+2x13+x14+2x21+3x22+x23+2x24 (5.19) 

 x11+ x12+x13+x14= 0.84 (5.20a) 

 x21+x22+x23+x24= 0.10 (5.20b) 

 x11+x21=0.06 (5.20c) 

 x12+x22=0.72 (5.20d) 

 x13+x23=0.01 (5.20e) 

 x14+x24=0.15 (5.20f) 

 



 103

 

Figure 5.8:  The transportation tableau for the direction difference matrix of the 

example.  

The transportation problem is solved in two phases: (1) finding a basic feasible 

solution and (2) improving the basic feasible solution iteratively, until an optimal solution 

is obtained. A basic feasible solution is a set of x values that satisfy the market and 

warehouse constraints, but it may not give the minimum value of z. There can be more 

than one set of x values that yield the minimum value of z. Section 5.2.1 describes a 

method to obtain a basic feasible solution and Section 5.2.2 describes an algorithm for 

optimizing a basic feasible solution.  

5.2.1 A Basic Feasible Solution 

A basic feasible solution can be obtained with the northwest corner method (Strayer 

1989). The term northwest corner corresponds to the top-left cost value, that is, first row 

and first column, in the transportation tableau. Alternatives to the northwest corner 

method are the minimum entry method and Vogel’s advanced start method (Strayer 

1989). We use here the northwest corner method. 

 

The Northwest-Corner Method (Strayer 1989, p. 180)  

(0)  Given an initial balanced transportation tableau. 

(1)  Use the northwest-most cost in the tableau to empty a warehouse or 

completely fill a market demand. The northwest-most cost is the cost 

in the top-left position of the tableau. Circle the cost used and write 

above the circle the amount of goods shipped by that route. Reduce the 

supply and demand in the row and column containing the cost used. 
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(2)  Delete the row or column corresponding to the emptied warehouse or 

fully supplied market; if both happens simultaneously, delete the row 

unless that row is the only row remaining in which case delete the 

column. 

(3)  If all tableau entries are deleted, STOP; otherwise go to (1). 

 

For example, when we apply the northwest corner method to the transportation 

problem in Figure 5.8, we obtain a basic feasible solution (Figure 5.9). A circle on a cost 

implies that the value of x for this path is non-zero, that is, this path is used for 

transferring the element values. These non-zero values of x are written at the top of the 

circles. The value of z for the solution in Figure 5.9 is 1.89 (Equations 5.21a-c). 

 

 

Figure 5.9:  A basic feasible solution of the transportation problem in the example using 

the northwest corner method. 

 

 z=3*0.06+2*0.72+2*0.01+1*0.05+2*0.10 (5.21a) 

 z=0.18+1.44+0.02+0.05+0.20 (5.21b) 

 z=1.89 (5.21c) 
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5.2.2 Optimizing a Basic Feasible Solution 

A basic feasible solution may not be an optimum solution; therefore, it must be tested for 

the optimality and optimized, if necessary. This section describes the transportation 

algorithm (Strayer 1989), which is used for optimizing a basic feasible solution. The 

transportation algorithm uses the term cycle (C), which is a subset of cells of the 

transportation tableau (T) such that each row and each column of T contains exactly zero 

or two cells of C (Strayer 1989, p. 151).  

 

The Transportation Algorithm (Strayer 1989, p. 153) 

(0)  Given an initial balanced transportation tableau. 

(1)  Obtain a basic feasible solution and a corresponding basis using a 

method such as northwest corner method.  

(2)  Let 01 =b . Determine paaa ,,, 21 L , nbbb ,,, 21 L  uniquely such that 

ijji cba =+ for all basis cells ijc .  

(3)  Replace ijc  by jiij bac −− ; these are the new cells ijc .  

(4)  If 0≥ijc  for all i and j, STOP; replace all cells with their original costs 

from (0); the basic feasible solution given by the current basis cell is 

optimal. Otherwise, continue. 

(5)  Choose 0<ijc . Usually, the most appropriate choice is the most 

negative ijc . Label this cell as a “getter” cell (+). By convention this 

cell is distinguished by squaring it instead of circling it. Find the 

unique cycle C in the tableau determined by this (squared) cell and 

basis cells. Label the cells in C alternately as “giver” cells (-) and 

“getter” cells (+). Choose the “giver” cell associated with the smallest 

amount of goods. If there is a tie among certain “giver” cells for the 

smallest amount of goods, choose any such cell. 
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(6)  Add the squared cell of (5) to the basis, that is, circle it in a new 

tableau. Remove the chosen “giver” cell of (5) from the basis, that is, 

do not encircle it in a new tableau. Add the amount of goods given up 

by this “giver” cell to all amounts of “getter” cells in C; subtract the 

amount of goods given by this “giver” cell from all amounts of goods 

of “giver” cells in C. Go to (2).  

 

The following example demonstrates the optimization process (Figure 5.10) using 

the transportation algorithm on the basic feasible solution in Figure 5.9.  

 

  
(a) 

 
(b) 

  
(c) 

 
(d) 

 

 

(e)  

Figure 5.10: An iteration of the transportation algorithm for the example. 

According to step 2 in the transportation algorithm, we put the value of b1 as 0 

(Figure 5.10a). The values of a1, a2, b2, b3, and b4 are computed according to this step 
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(Figure 5.10b). We compute new values of ijc  according to step 3, and replace the old 

values of cij by the new values of cij in the tableau (Figure 5.10c). There are two cells 

with negative values of cij in the first and third columns of the second row (Figure 5.10c). 

The values of the new cij in these cells are the same; therefore, we arbitrarily choose the 

cell in the third column and put a square on it (Figure 5.10d). This cell becomes a getter 

cell, and we form a cycle by marking the getter cells as “+” and giver cells as “-” 

alternately. The chosen giver cell is the cell in the first row and third column, as it has the 

least value of ijx  (0.01) among the giver cells. The values of the giver cells ( ijx ) are 

reduced by 0.01 and the values of the getter cells ( ijx ) are increased by 0.01. The chosen 

giver cell leaves the basis, the squared cell joins the basis, and the original value of cij are 

replaced back in the tableau (Figure 5.10e). The second and last iteration of the 

optimization process for this example is performed similarly (Figure 5.11).  

  
(a) 

 
(b) 

  
(c) (d) 

 

 

 

(e)  

Figure 5.11: The second and last iteration of the transportation algorithm for the example. 
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The minimum cost of the transformation from the obtained optimum solution (Figure 

5.11e) is 1.75 (Equations 5.22a-c). This value of z is the 4-neighbor distance between the 

directions D0 and D1 in Figure 5.6. 

 

 z=2*0.72+1*0.12+2*0.06+1*0.01+2*0.03 (5.22a) 

 z=1.44+0.12+0.12+0.01+0.06 (5.22b) 

 z=1.75 (5.22c) 

5.3 The Similarity Value 

Tversky (1977) describes a set-theoretical approach using common and distinct features 

of two objects to assess the similarity between them. If we compare an object and a 

direction-relation matrix, an element value in a direction-relation matrix is analogous to 

an object feature. The commonality C01 corresponds to common features, and asymmetric 

differences R01 and R10 correspond to distinct features. The commonality contributes to 

similarity (s) and distinct features contribute to dissimilarity (δ ). The result of adding 

sum(C01) and sum(R01) is always a constant (i.e., 1); therefore, the result of adding a 

similarity value and a corresponding dissimilarity value should also be a constant, we use 

1.0 for this constant (Equation 5.23). 

 

 0.1),(),( 1010 =+ DDDDs δ  (5.23) 

 

The distance between two directions lies in the interval [0, distmax]. We normalize 

this distance into a dissimilarity value in the closed interval [0, 1.0] (Equation 5.24). The 

similarity value is complimentary to the dissimilarity value (Equation 5.25).  
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A value 1.0 for the similarity between the direction-relation matrices D0 and D1 

implies that the matrices are identical, whereas a similarity value of 0 implies that 

matrices D0 and D1 are single-element direction-relation matrices and their non-zero 

elements are located in the farthest direction tiles. Using the computed distance (Equation 

5.22c), the value of similarity for the directions of object B with respect to object A in 

Scene 0 and Scene 1 in Figure 5.6 is 1.0-1.75/4 = 0.5625. 

 

Applying the similarity assessment method to the query scene in Figure 5.1a and 

Scenes 0-2 in the database (Figures 5.1b-d), the similarities values are s(Dq, D0) = 0.92, 

s(Dq, D1) = 0.56, and s(Dq, D2) = 0.04. From these values, we can infer that the direction 

in the query scene is most similar to the direction in Scene 0, followed by Scene 1, and 

Scene 2, as the similarity is decreasing in this order. 

5.4 Summary  

This chapter presented a method to assess similarity between cardinal directions. The 

scheme to assess similarity needs a distance measure between cardinal directions. We 

presented a method to compute distance between cardinal directions based on their 

conceptual neighborhood graph. The distance between two direction-relation matrices is 

the minimum cost to transform a matrix into another matrix, which can be computed 

using the transportation algorithm. We use this distance to compute the similarity 

between two direction-relation matrices. The similarity value between two directions lies 

in the range 0 to 1.0. The method presented in this chapter for similarity assessment 

between cardinal directions is useful for the assessment of spatial similarity between 

scenes. The method developed in this chapter is systematically evaluated in the next 

chapter. 
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Chapter 6  

Evaluation of the Similarity Assessment Method  

The three levels of the direction-relation matrixcoarse, detailed, and deep form a 

flexible framework for modeling direction relations. So far, however, the assessment of 

the direction-relation matrix and its compliance with an expected behavior have been 

purely theoretical. This chapter provides an empirical evaluation of the direction-relation 

matrix by testing a set of scenarios with the help of a software prototype.  

 

The prototype called Disha, a Sanskrit word for direction uses the coarse direction-

relation matrix to check consistency of directions, and the detailed direction-relation 

matrix to assess similarity between cardinal directions. It has a graphical user interface, 

which allows a user to draw the outlines of the objects for which directions are compared. 

After a user has drawn the outlines of two ordered pairs of objects, Disha computes and 

displays the similarity value between the directions in each ordered pair. Disha allows a 

user to choose a conceptual neighborhood graph, either the 4-neighbor graph (Figure 5.3) 

or the 8-neighbor graph (Figure 6.22). It has been developed using an object-oriented 

development methodology (Sommerville 1996), and has been implemented in Visual 

C++ 6.0 (Horton 1998; Prosise 1999) under Windows 98 running on a Pentium PC.  

 

Section 6.1 describes the architecture of Disha. Section 6.2 discusses implementation 

issues, such as handling of the rounding errors. Section 6.3 describes user interface 

components of the system. In Section 6.4, we evaluate the method of similarity 

assessment. Section 6.5 introduces the 8-neighbor graph an alternated to the 4-

neighborhood graph. To test the hypothesis of this thesis, Section 6.6 compares the 

mappings provided by the 4-neighbor and 8-neighbor graphs. Section 6.7 summarizes the 

results of this chapter. 
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6.1 Disha’s Architecture  

Disha is designed for the maximum reuse of the code; therefore, the project is divided 

into two parts: platform independent reusable classes in C++ and platform dependent 

classes for interfacing with MS Windows (Figure 6.1). 

 

 

Figure 6.1: Architecture of the prototype Disha. 

The prototype is divided into different types of objects, each implemented in an 

object class having data members and methods. In this chapter, we specify the complete 

name of a method by appending the class name by the scope resolution operator (::) and 

the method name. For example, the Draw method of the CPolygon class is written as 

CPolygon::Draw. The prototype has two major types of classes: the classes without 

components of the user interface are the platform-independent classes (Section 6.1.1) and 

the classes with user interface components are platform-dependent classes (Section 

6.1.2). This separation enables portability such that the code can be transferred to other 

platforms with minimal modifications.  

6.1.1 Platform-Independent Classes 

The computational parts of the prototype are implemented in platform-independent 

classes in C++. These classes are for polygons, direction-relation matrices, and the 

transportation tableau. The class HDPolygon (Paiva 1998) is used for the polygon object. 

The method HDPolygon::DirectionMatrix computes the detailed direction-relation 

matrix for the direction of the polygon passed as an argument with respect to the calling 

polygon. The class CDrm (Figure 6.2a) implements the direction-relation matrix, which 
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is computed using the method HDPolygon::DirectionMatrix. The class CDrm has 

methods for checking the consistency of the detailed direction-relation matrix.  

 

The class CDrmGraph (Figure 6.3) constructs a graph from a direction-relation 

matrix to check the 4-connectedness and 8-connectedness of the non-zero elements. The 

class CDrmGraph has the class CVertex as its data members to represent information 

about vertices. Each non-empty element in a direction-relation matrix has a vertex in the 

graph. The method CountDisjointSets computes the number of disjoint sets in this graph. 

If there is only one disjoint set, the graph is connected (Cormen et al. 1990). If there is 

more than one disjoint set, the graph is disconnected. The class CDeltaMatrix (Figure 

6.2b) implements the direction difference ∆01 (Equation 5.10), which is constructed using 

two direction-relation matrices. 

 

 
 

 
 

(a) (b) 

Figure 6.2:  The object classes for (a) the direction-relation matrix and (b) the direction- 

difference matrix. 

The transportation tableau for the distance computation problem is implemented in 

the class CBTTableau (Figure 6.4). This class is constructed from the data obtained from 

the CDeltaMatrix class. It has a method to compute the cost of transforming the matrix 

D0 into D1. The transportation problem is a special case of the standard linear 

programming problem (Dantzig and Thapa 1997). Due to the wide application of linear 
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programming problems in engineering and management problems, libraries for solving 

linear programming problems are commercially available (LINDO 1999). A linear 

programming problem is solved in two phases, similar to the phases for solving a 

transportation problem (Section 5.2). 

 

 

 

Figure 6.3: The aggregation hierarchy for the classes CDrmGraph and CVertex.  

 

Figure 6.4: The class CBTTableau for the balanced transportation tableau. 
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 Disha uses the transportation tableau to visualize the cost computation problem and 

the LINDO library to compute the solution of the corresponding linear programming 

problem. The method CBTTableau::UseLindoToComputeCost uses LINDO functions to 

compute the minimum cost. 

6.1.2 Platform-Dependent Classes for the User Interface 

This part of the prototype is tailored to Microsoft Windows, using the Microsoft 

Foundation Class (MFC) library. All classes in the MFC library are derived from the 

CObject class. The CObject class has a virtual function Draw for drawing on the screen. 

We implemented the CElement class for geometric elements, which is derived from the 

CObject class (Figure 6.5). The CElement class inherits the Draw function from the 

CObject class. The CLine, CCurve, and CPolygon classes are derived from the CElement 

class. These classes inherit data members and methods of the CElement class and define 

additional data members according to their requirements. The virtual function Draw in 

these classes is used for drawing these geometric elements on the screen. Similarly, the 

virtual function Serialize is used to read and write elements in a file on disk.  

 

The class CDishaApp is derived from the class CWinApp, which creates the Disha 

application. We derive the class CDishaView from the MFC class CView. The class 

CDishaView captures messages from the mouse while drawing the outlines of the 

extended spatial objects. We also derive the class CDishaDoc from the MFC class 

CDocument, which stores all the objects and matrices. The elements in a Disha document 

are stored in the m_ElementList, which is a list of CELement type. When a user creates a 

geometry, the geometry is created in the current type, for instance, a user can create a 

CPolygon type object. After creating this geometric element, it is cast as a CElement type 

object and inserted into the m_ElementList. Whenever the document is to be drawn, the 

m_ElementList is traversed and all the elements are drawn using the virtual function 

Draw. To draw a direction-relation matrix on the screen, we define the class CObDrm, 

which is derived from the classes CDrm and CObject (Figure 6.6).  
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Figure 6.5: Inheritance hierarchy for the classes corresponding to geometric elements. 

The class CObDrm inherits all data members and functions of the class CDrm and 

implements the virtual function Draw. It has an additional data member m_Name to store 

the name of a matrix and methods SetName and GetName for setting and getting the 

name of a CObDrm object. Similarly, we derive the class CObDeltaMatrix from the 

classes CDeltaMatrix and CObject (Figure 6.7a), and the class CObTableau from the 

classes CBTTableau and CObject (Figure 6.7b).  
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Figure 6.6: The class CObDrm inherits from the classes CDrm and CObject.  

 

  

(a) (b) 

Figure 6.7:  Inheritance hierarchy for the classes (a) CObDeltaMatrix and (b) 

CObTableau. 
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We use the methods CObDrm::Draw and CObDeltaMatrix::Draw to draw the 

matrices at the screen. The methods DrawTransportationSetup, 

DrawSimplexSetupAndSolution, and DrawTransportationSolution of the CObTableau 

class are used to draw the problem and solution of the transportation problem and the 

linear programming problem. The methods DrawMinimumCostLine and 

DrawSimilarityLine of the CObTableau class display the results on the screen. 

6.2 Implementation Issues 

The detailed direction-relation matrix records the portion of the target region in a 

direction tile. The value (x) of an element must satisfy 0≤ x≤1. The sum of all elements in 

a detailed direction-relation matrix must be 1. In Disha, there are two methods for 

creating a direction-relation matrix: (1) drawing the polygonal outline of the objects and 

computing it using the method HDPolygon::DirectionMatrix and (2) entering the values 

of elements directly. In the case of graphical sketching, the sum of elements may not be 

exactly 1 due to the rounding of the values of the elements. In the case of directly 

entering values, the user may enter element values beyond the range or may not do his or 

her math right. In both cases, Disha checks the consistency of each element and the 

consistency of the sum of elements. Disha allows a minor tolerance so that the sum may 

deviate from 1.0. To make a matrix sum-consistent, the difference between 1 and the sum 

of the elements is distributed proportionately over the non-zero elements. For example, if 

the tolerance value is 4%, the sum in the range of 0.96 to 1.04 is accepted. A 4% 

tolerance value is very high for most practical situations; this high value is used here for 

illustration purpose only. If there are only two non-zero elements with values 0.72 and 

0.24 (Figure 6.8), the difference 1-(0.72+0.24) = 0.04 is distributed over the non-zero 

elements to yield the values 0.75 and 0.25, respectively. This distribution of difference 

over non-zero elements has the following features: (1) it leaves zero elements as zero, 

therefore, does not alter qualitative information and (2) it distributes the difference 

proportionately among non-zero elements. A sum-consistent detailed direction-relation 

matrix is an essential prerequisite for the similarity computation.  
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Figure 6.8: Making a detailed direction-relation matrix sum-consistent. 

To have a uniform resolution of the values of a detailed direction-relation matrix 

between 0 and 1, the values of detailed direction-relation matrices are internally 

represented as integer values. We multiply the values of the detailed elements obtained 

from the method HDPolygon::DirectionMatrix by 100 and round off to yield integer 

values and apply sum-consistency over the matrix. This in turn gives integer values for 

warehouse supplies and market demands; however, these values are displayed on the 

screen as decimal values. 

6.3 Disha’s Features 

Disha has a number of user interface components that use the classes described in Section 

6.1. Some of these components are discussed in Sections 6.3.1-6.3.4. 

6.3.1 Checking Consistency for Direction-Relation Matrices 

Disha checks the consistency of matrices before using them in similarity computations. 

To illustrate the consistency checking of matrices, we have implemented the coarse 

matrix input dialog (Figure 6.9) and the detailed matrix input dialog (Figure 6.8) for 

coarse and detailed direction-relation matrices, respectively. The coarse input dialog 

allows a user to enter a coarse direction-relation matrix by clicking the checkboxes 

corresponding to each element. A checked box selects a non-empty element and an 

unchecked box corresponds to an empty element.  
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(a) (b) 

Figure 6.9:  The coarse matrix input dialog for checking the consistency of a coarse 

direction-relation matrix.  

Once a matrix is entered, it can be checked for 4-consistency, 8-consistency, and 

point-consistency, which apply to region, line, and point target objects, respectively. A 

matrix is point-consistent if it has only one non-empty element. In order to check the 

point-consistency, we count the number of non-empty elements. Four-consistency and 

eight-consistency checks are based on the respective type of connectedness of non-empty 

elements. For example, a matrix having only two diagonal non-empty elements is not 4-

consistent (Figure 6.9a) but it is 8-consistent (Figure 6.9b).  

 

In the case of detailed direction-relation matrices, there are additional constraints: (1) 

the value of an element must be between 0 and 1, and (2) the sum of all elements must be 

1. The detailed matrix input dialog (Figure 6.8) allows a user to enter a detailed direction-

relation matrix and offers buttons to check the following consistencies: point-consistency, 

4-consistency, 8-consistency, and sum-consistency. The sum-consistency also checks the 

element consistency for all elements. Additionally, it has a button with which a user can 

make a matrix sum consistent.  

6.3.2 Determining the Number of Consistent Configurations 

The prototype implementation was also used to confirm the number of consistent 

configurations (Section 3.2.2). For a 3x3 direction-relation matrix, there are 512 possible 

configurations, but not all of these configurations are consistent. To count the number of 

consistent configurations for a 3x3 matrix, Disha loops through all 512 matrices and 

checks whether this configuration is consistent or not for the considered types of 
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consistency (Figure 6.10). Out of these 512, there are only 218 four-consistent matrices, 

388 eight-consistent matrices, and 9 point-consistent matrices.  

 

 

Figure 6.10: Counting consistent configurations. 

6.3.3 Direction-Similarity from a Direction-Difference Matrix 

To compute the distance between two direction-relation matrices from a direction-

difference, Disha has a delta matrix input dialog (Figure 6.11). It allows a user to enter 

the values of elements in a direction-difference matrix and checks the consistency of the 

difference matrix. For a direction-difference, there are two consistency constraints: (1) 

each element’s value (x) must satisfy -1≤ x ≤1 and (2) the sum of all elements must be 0. 

A user can select either the 4-neighborhood or the 8-neighborhood graph by pressing the 

respective radio button in the dialog box. Disha computes the similarity using the method 

described in Chapter 5 and displays the results in the textbox of the dialog. Disha displays 

the values of dissimilarity and similarity in the range of [0, 100].  

 

Figure 6.11: Computing the distance from a direction-difference matrix. 
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6.3.4 Direction-Similarity between Two Ordered Pairs of Extended 

 Objects 

Disha has a graphical user interface, which allows a user to draw the outlines of two pairs 

of extended objects (Figure 6.12). The user can translate, scale, and rotate these objects 

using the tools provided in Disha. To compute the similarity value between directions, it 

computes detailed direction-relation matrices and the direction-difference (Figure 6.13a). 

The transportation tableau (Figure 6.13b) is constructed from this direction-difference. 

Since we are using the LINDO libraries to determine the minimum cost of transforming a 

matrix D0 into D1, we generate a linear programming problem from this transportation 

problem (Figure 6.14). The LINDO libraries compute an optimum solution for the 

problem (Figure 6.15), which is the solution of the transportation problem (Figure 6.16). 

From this solution, Disha computes the minimum cost and the values for dissimilarity 

and similarity (Figure 6.17).  

 

Figure 6.12:  A snapshot of Disha with two pairs of objects and their direction-relation 

matrices.  
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(a) (b) 

Figure 6.13:  (a) The direction difference matrix and (b) the transportation tableau using 

the 4-neighbor graph. 

 

Figure 6.14:  The linear programming problem for the transportation problem in Figure 

6.13b. 

 

Figure 6.15:  A solution for the linear programming problem in Figure 6.14 using LINDO 

(1999). 
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Figure 6.16: A solution of the transportation problem in Figure 6.13b. 

 

 

Figure: 6.17: Computing the similarity value from the transportation problem solution in 

Figure 6.16. 

6.4 Systematic Evaluation of the Method 

Similarity assessment is the estimation of deviation from equivalence (Bruns and 

Egenhofer 1996). The dissimilarity value between two direction relations records the 

magnitude of deviation from equivalence, and the similarity value is the complement of 

the dissimilarity value (Chapter 5).  

 

To evaluate systematically the method for similarity assessment, we start with a 

query scene containing a pair of reference and target objects, and generate database 

scenes by gradually changing the target object. The variations in the target object change 

the direction of the target object with respect to the reference object. We study the 

changes in similarity between the direction in the query scene and the directions in 

database scenes. We consider two types of changes in the target object: (1) movement 
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(Section 6.4.1) and (2) rotation (Section 6.4.2) of target object with respect to reference 

object. These types of changes were selected because they establish a clear baseline for 

the expected similarity value. A cognitively plausible similarity assessment method is 

expected to give the highest similarity value (100) of similarity to the scene without any 

change and decreasing values of similarity with increasing changes.  

6.4.1 Moving the Target Object Over the Reference Object 

The target object B in the query scene (Figure 6.18) is to the northeast of the reference 

object A. Scene 0 is identical to the query scene, and Scenes 1-7 are generated by moving 

object B diagonally from the northeast to the southwest tile. The number of a scene is 

subscripted to the objects’ labels in the scene, and the values of 4-neighbor similarity 

between the direction in the query scene and the direction in a scene is written under the 

respective database scene.  

 

 

 

Figure 6.18: Scenes generated by moving the target object over the reference object.  
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The similarity between the direction in the query scene and directions in Scenes 0-7 

decreases as the degree of change gets larger, which is as expected (Figure 6.19). If 

object B in Scene 7 were moved further southwest, no further decrease in direction-

similarity could be detected. To distinguish such scenarios, metric properties would need 

to be employed, much like the enhancement of topological properties with metric 

(Egenhofer and Shariff 1998). 
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Figure 6.19: The pattern of similarity values for Scenes 0-7 in Figure 6.18. 

6.4.2 Rotating the Target Object Around the Reference Object 

In another case of similarity assessment we compute the similarity between the direction 

in the query scene and directions in Scenes 0-16 that are generated by rotating the target 

object around the reference object (Figure 6.20). This clockwise rotation starts in the 

northwest title, goes for a full circle so that it ends again in the northwest tile. The 

similarity between the direction in the query scene and the database scenes decreases 

from Scene 0 to Scene 8 as the rotation takes object B to the tile that is farthest from the 

northwest tile (Figure 6.21). The similarity value is 0 in Scene 8, as the southeast tile is 

the farthest tile from the northwest tile. As object B moves further clockwise, the 

similarity value increases, because object B gets closer to the northwest tile. The 

similarity value becomes 100 when object B is back in the northwest tile (Scene 16). To 

reach the value 100 for similarity, object B in Scene 16 need not be exactly at the same 

location as object B in Scene 0, but in the same direction tile. This pattern of similarity 
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values is cognitively plausible, because it matches the expected behavior of a full circle 

rotation.  

  

 

Figure 6.20: Scenes generated by moving the target object around the reference object.  
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Figure 6.21: The pattern of similarity values for Scenes 0-16 in Figure 6.20. 

6.5 Eight-Neighbor Conceptual Graph  

In Chapter 5, we described the 4-neighbor conceptual neighborhood graph (Figure 5.3). 

Another alternate is the 8-neighbor conceptual neighborhood graph, which has additional 

edges for diagonally adjacent pairs of tiles (Figure 6.22).  

 

 

Figure 6.22:  The conceptual neighborhood graph for nine cardinal directions based on 

the 8-neighborhood between tiles.  
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The maximum 8-neighbor distance between two directions is 2 (Figure 6.23); 

therefore, the range of the distance using 8-neighbor graph is 0-2. The next section 

compares the soundness of the similarity assessment provided by both the graphs. 

 

 

Figure 6.23: Eight-neighbor distances between cardinal directions for regions. 

6.6 Comparison of the Soundness of the Mappings Provided 

by Four-Neighbor and Eight-Neighbor Graphs  

There are two types of neighborhood graphs that can be used to compute distances 

between cardinal directions: the 4-neighborhood and 8-neighborhood graphs. A sound 

mapping would give decreasing similarity values for increasing larger direction changes. 

This section compares the soundness of the mappings from direction changes onto the 

similarity values provided by these graphs. The hypothesis (Section 1.4.2) of this thesis is 

about the soundness of mappings provided by these graphs. The hypothesis is: 
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“The four-neighborhood and eight-neighborhood graphs provide equally sound 

mappings of direction changes onto similarity values.” 

 

 To test the hypothesis, we study the similarity profiles and compare the rankings 

provided by both the 4-neighborhood and 8-neighborhood graphs. We consider nine 

different scenarios of gradual changes in the target object and compute the values of 4-

neighbor and 8-neighbor similarities between the query scene and the scenes generated 

by the gradual changes (Sections 6.6.1-9). The neighborhood graph that has higher 

number of monotonic similarity profiles provides a sounder mapping. Section 6.6.10 

discusses the results of this comparison and summarizes the test of hypothesis.  

6.6.1 Curved Movement of a Disjoint Target Object 

In this scenario, the target object is disjoint with respect to the reference object, and we 

generate database scenes by rotating the target object around the reference object (Figure 

6.24). This clockwise rotation starts in the northwest tile, and ends in the southeast tile.  

 

Figure 6.24: The scenes generated by curved movement of the disjoint target object.  
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The 8-neighbor similarity is identical for Scenes 3-7 (Table 6.1; Figure 6.25). We 

can rank these scenes for their similarity with the query scene such that the most similar 

scene is at rank 1. The 8-neighbor graph will give the Scenes 0-2 ranks 1-3, and Scenes 

3-7 will be placed at rank 4; however, the 4-neighbor graph will give Scenes 0-7 ranks 1-

8, respectively. The similarity values in this scenario reveal the following characteristics 

of the graphs: (1) the 4-neighbor graph and the 8-neighbor graph can detect small 

changes, (2) the 4-neighbor graph continues to distinguish between large changes, and (3) 

the 8-neighbor graph fails to distinguish between large changes. Therefore, in this 

scenario, the 4-neighborhood provides a somewhat sounder mapping than the 8-

neighborhood graph.  

 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 86 2 72 2 
2 70 3 40 3 
3 50 4 0 4 
4 44 5 0 4 
5 25 6 0 4 
6 15 7 0 4 
7 0 8 0 4 

Table 6.1: Similarities and ranks of Scenes 0-7 in Figure 6.24. 
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Figure 6.25: The pattern of similarity values for Scenes 0-7 in Figure 6.24. 
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6.6.2 Curved Movement of an Overlapping Target Object 

In this scenario, the target object overlaps with the reference object, and we generate 

database scenes by rotating the target object around the reference object (Figure 6.26). 

The rotation is clockwise and starts from the northwest tile and ends at the southeast tile.  

 

Figure 6.26: The scenes generated by curved movement of the overlapping target object. 

In this scenario, the value for the 4-neighbor similarity of Scene 0-7 decreases 

monotonically (Table 6.2; Figure 6.27), which is expected from a cognitively plausible 

graph.  

 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 98 1 98 1 
1 83 2 72 2 
2 71 3 46 3 
3 53 4 22 6 
4 45 5 24 5 
5 42 6 21 7 
6 39 7 21 7 
7 38 8 37 4 

Table 6.2: Similarities and ranks of Scenes 0-7 in Figure 6.26. 
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The values of 8-neighbor similarity, however, decrease from Scene 0 to Scene 3; 

then Scene 4 has a similarity value that is higher than the similarity value for Scene 3; 

Scenes 5 and 6 have the same similarity value; and the similarity value for Scene 7 is 

more that the similarity value for Scene 6. The pattern of the 8-neighbor similarity values 

for Scenes 4-7 does not match with human intuition. Additionally, the 8-neighbor 

similarity for Scene 7 is higher than the similarity for Scenes 3-6, which is counter 

intuitive. 
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Figure 6.27: The pattern of similarity values for Scenes 0-7 in Figure 6.26. 

6.6.3 Diagonal Movement of a Larger Target Object 

In this scenario, the target object B is larger than the reference object A, and the database 

scenes are generated by moving B diagonally from the northwest tile to the southeast tile 

(Figure 6.28). Both the 4-neighbor graph and 8-neighbror graph rank Scenes 0-4 in the 

same order (Table 6.3; Figure 6.29); therefore, these mappings are equally sound.  
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Figure 6.28: The scenes generated by diagonal movement of the larger target object. 

 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 74 2 60 2 
2 51 3 46 3 
3 24 4 10 4 
4 0 5 0 5 

Table 6.3: Similarities and ranks of Scenes 0-4 in Figure 6.28. 
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Figure 6.29: The pattern of similarity values for Scenes 0-4 in Figure 6.28. 
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6.6.4 Diagonal Movement of a Smaller Target Object 

In this scenario, the target object B is smaller than the reference object A (Figure 6.30). 

We generate database scenes by moving object B diagonally from the northwest tile to 

the southeast tile. In this scenario also both the 4-neighborhood and 8-neighborhood 

graphs rank Scenes 0-4 in the same order (Table 6.4; Figure 6.31).  

 

Figure 6.30: The scenes generated by diagonal movement of the smaller target object. 

 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 74 2 59 2 
2 50 3 50 3 
3 36 4 25 4 
4 0 5 0 5 

Table 6.4: Similarities and ranks of Scenes 0-4 in Figure 6.30. 
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Figure 6.31: The pattern of similarity values for Scenes 0-4 in Figure 6.30. 

6.6.5 Vertical Movement of a Larger Target Object 

In this scenario, the target object B is larger than the reference object A, and the database 

scenes are generated by moving object B vertically from the north tile to the south tile 

(Figure 6.32).  

 

Figure 6.32: The scenes generated by vertical movement of the larger target object. 

In this case, both graphs rank Scenes 0-4 in the same order (Table 6.5; Figure 6.33). 

For Scene 4, however, the value of the 8-neighbor similarity is 0 while the value of 4-

neighbor similarity is 48. The value 48 in the case of 4-neighbor graph implies that there 
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is more room for distinguishing additional changes, which is not the case for 8-neighbor 

graph. 

 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 93 2 87 2 
2 73 3 52 3 
3 55 4 15 4 
4 48 5 0 5 

Table 6.5: Similarities and ranks of Scenes 0-4 in Figure 6.32 
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Figure 6.33: The pattern of similarity values for Scenes 0-4 in Figure 6.32. 

6.6.6 Vertical Movement of a Smaller Target Object 

In this scenario, the target object B is smaller than the reference object A, and we generate 

the database scenes by moving object B vertically from the north tile to the south tile 

(Figure 6.34). In this case, the ranking of the scenes using both the 4-neighbor and 8-

neighbor graphs is identical (Table 6.6; Figure 6.35). 
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Figure 6.34: The scenes generated by vertical movement of the smaller target object. 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 88 2 76 2 
2 75 3 50 3 
3 56 4 12 4 
4 50 5 0 5 

Table 6.6: Similarities and ranks of Scenes 0-4 in Figure 6.34. 
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Figure 6.35: The pattern of similarity values for Scenes 0-4 in Figure 6.34. 
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6.6.7 Scaling up the Target Object in the Northwest Tile 

In this scenario, the target object B is in the northwest tile and we enlarge it such that it 

expands up to the southeast tile (Figure 6.36). In this case, the ranking of the scenes is 

identical (Table 6.7; Figure 6.37) for both the 4-neighbor and the 8-neighbor graphs.  

 

 

Figure 6.36: The scenes generated by enlarging the target object in the northwest tile.  

 

Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 83 2 71 2 
2 72 3 56 3 
3 64 4 43 4 
4 56 5 33 5 

Table 6.7: Similarities and ranks of Scenes 0-4 in Figure 6.36. 
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Figure 6.37: The pattern of similarity values for Scenes 0-4 in Figure 6.36. 

6.6.8 Scaling up the Target Object in the North Tile 

In this scenario, the target object B is in the north tile, and we enlarge it such that it 

expands up to the south tile (Figure 6.38). In this case, the rankings of the scenes using 4-

neighbor similarities and 8-neighbor similarities are identical (Table 6.8; Figure 6.39).  

 

Figure 6.38: The scenes generated by enlarging the target object in the north tile. 
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Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 95 2 89 2 
2 84 3 70 3 
3 73 4 60 4 
4 65 5 50 5 

Table 6.8: Similarities and ranks of Scenes 0-4 in Figure 6.38. 
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Figure 6.39: The pattern of similarity values for Scenes 0-4 in Figure 6.38. 

6.6.9 Rotation of the Target Object 

In this scenario, the target object B is in the northwest tile, and it is rotated clockwise 

with respect to its southeast extreme (Figure 6.40). The similarity value in the case of 4-

neighbor graph decrease monotonically from Scene 0 to Scene 4 and increase 

monotonically from Scene 4 to Scene 7 (Table 6.9; Figure 6.41); however, in the case of 

8-neighbor graph it decrease from Scene 0 to Scene 3, increase from Scene 3 to Scene 4, 

decreases from Scene 4 to Scene 5, and increases from Scene 5 to Scene 7 again. The 

similarity profile in the case of 4-neighbor graph reflects a sounder mapping of direction 

changes onto similarity values than the 8-neighbor graph. 
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Figure 6.40: The scenes generated by rotating the target object. 

 Scene 4-neighbor 8-neighbor 
 similarity rank similarity rank 
0 100 1 100 1 
1 96 3 92 3 
2 85 4 70 4 
3 66 7 46 8 
4 52 8 49 6 
5 72 6 48 7 
6 81 5 63 5 
7 98 2 95 2 

Table 6.9: Similarities and ranks of Scenes 0-7 in Figure 6.40. 
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Figure 6.41: The pattern of similarity values for Scenes 0-7 in Figure 6.40. 

6.6.10  Discussion 

Out of nine scenarios considered, the 4-neighbor graph gives more sound rankings in 

three scenarios (Sections 6.6.1, 6.6.2, and 6.6.9), while in the remaining six scenarios 

both graphs give identical rankings. The 8-neighbor graph is able to distinguish between 

small changes, but cannot distinguish between large changes. The 4-neighbor graph, 

however, is capable of distinguishing not only between small changes, but also between 

large changes. In two of these scenarios (Sections 6.6.2 and 6.6.9), the 8-neighborhood 

graph gives similarity values that are non-monotonic, that is, it provides less sound 

mappings than the 4-neighnorhood graph.  

 

This insight refutes the hypothesis of this thesis, such that the four-neighborhood and 

eight-neighborhood graphs do not provide equally sound mappings of direction changes 

onto similarity values. The efforts in computing 4-neighbor and 8-neighbor similarities 

are the same; therefore, the 4-neighbor graph is preferred over the 8-neighbor graph for 

similarity assessments of cardinal directions using the model developed in this thesis.  

6.7 Summary 

This chapter described the implementation of Disha, a direction comparison system, and 

used it to computationally test the hypothesis. The study showed that the similarity values 
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obtained using the method developed in the previous chapter are cognitively plausible. 

We compared the mappings provided by the 4-neighbor and 8-neighbor graphs from 

direction changes to similarity values, and found that the former provides a sounder 

mapping than the latter.  
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Chapter 7  

Conclusions  

Qualitative spatial relations are essential components of questions that people would like 

to ask a Geographic Information System (GIS). To give plausible answers to the 

questions that involve spatial relations, GISs need to employ effective models of spatial 

relations. This thesis focused on cardinal directions, a type of spatial relation that 

captures the information about relative placement of objects in an extrinsic reference 

frame. Current models of cardinal directions approximate objects by points or minimum 

bounding rectangles (MBRs). To record exact directions, including the influence of the 

shape of objects on cardinal directions, we developed a model of cardinal directions 

based on direction-relation matrices. This chapter, summarizes the thesis (Section 7.1), 

describes results and major findings (Section 7.2), and highlights future work made 

possible by this research (Section 7.3). 

7.1 Summary of the Thesis 

Cardinal directions are used in spatial databases for answering queries about the 

directions between objects and inferring unknown directions between the objects from 

the known directions. They are also employed for retrieving spatially similar datasets 

from a digital library of geographic datasets. Keeping these applications in mind, we 

established five requirements for a direction model: formal, inferential, shape-sensitive, 

dimension-neutral, and comparable. This thesis evaluated existing models of cardinal 

directions to test whether or not these models possess the desired properties. No model 

was found that has all the properties, because existing models approximate the geometry 

of the extended objects either by points or by minimum bounding rectangles.  
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This thesis developed a model of cardinal direction using the coarse direction-

relation matrix, which divides the space into nine tiles, each corresponding to a cardinal 

direction with respect to the reference object, and records with which tiles the target 

object intersects. An element in a coarse direction-relation matrix is empty if the target 

object does not intersect with the corresponding tile, and non-empty if it intersects. The 

thesis studied the effects of the objects’ shapes and sizes and distance between them on 

the recorded direction-relation matrix. It compared the direction-relation matrix with the 

model based on minimum bounding rectangles, and developed detailed direction-relation 

matrix to record more details about directions, such as the ratio of target object and 

number of target object separations in a tile.  

 

While the coarse direction model is powerful enough to capture directions between 

regions, it does not immediately apply to other types of geographic representation, such 

as lines and points; therefore, this thesis extended it to a deep direction model, which is 

capable of recording directions between arbitrary pairs of points, lines, and regions. The 

deep direction model uses deep direction-relation matrices, which additionally record the 

neighbor codes, if necessary. The neighbor code is information about the intersections of 

the target object with the boundaries of direction partitions. This thesis analyzed the 

patterns of neighbor code for various types of reference and target objects and showed 

that the directions recorded with the deep direction-relation matrices at smaller scales are 

compatible with the directions recorded at larger scales. It demonstrated that the deep 

direction-relation matrix records equal values of directions for cognitively equivalent 

directions. 

 

Based on the conceptual neighborhood of cardinal directions, this thesis developed a 

method for assessing similarity between cardinal directions. The similarity between two 

directions is complimentary to the dissimilarity, which is proportional to the distance 

between two directions. To compute the distance between two directions, we calculate 

the cost of transforming a direction-relation matrix into another by moving non-zero 

elements along the conceptual neighborhood graph. Direction-relation matrices that have 

more than one non-zero elements can have multiple possibilities of transforming a matrix 
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into another. To compute the minimum cost, this thesis employed the transportation 

algorithm in linear programming.  

 

Since different conceptual neighborhood graphs may be designed, possibly yielding 

different similarity values for a given pair of directions, we compared the soundness of 

mappings provided by the four- and eight-neighborhood graphs. For this purpose, we 

developed a software prototype of a direction-comparison system that uses the model 

developed in this thesis. Through a systematic evaluation of the similarity assessment 

method, we experimentally established that the four-neighborhood conceptual graph 

provides more sound mapping than the eight-neighborhood graph.  

7.2 Results and Major Findings 

The major results of this thesis are:  

 

• The direction-relation matrix is an exact model, which does not approximate the 

objects’ shapes. 

The shape of objects influences the cardinal directions between them. Earlier models of 

directions approximated the objects’ shapes; therefore, they are not able to capture the 

effect of shape on cardinal directions, and often record misleading directions. The 

computational model based on direction-relation matrices records exact directions 

without approximating shapes; therefore, it applies alike to objects that are concave or 

convex; regularly or irregularly shaped; and intertwined or clearly separate. This 

characteristic of the model can significantly improve the results of database queries and 

results of spatial reasoning over directions.  

 

• Direction-relation matrices provide a knowledge structure that can record multiple 

directions.  

A target object can be in multiple directions with respect to a reference object. Most 

models of cardinal directions were designed to determine from the objects’ geometries 

whether or not a target object exists in a particular direction with respect to a reference 

object. The direction-relation matrix provides a knowledge structure to encode multiple 
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directions, such that all questions regarding directions can be answered from a direction-

relation matrix that is computed once and stored as a spatial data-object. The similarity 

assessment and spatial reasoning operations make the spatial data-object useful for 

geographic databases and geographic datasets.  

 

• Direction-relation matrices allow recording of multiple levels of detail in the same 

framework. 

A particular feature of the model based on direction-relation matrices is its ability to 

describe direction relations at multiple levels of detail. At a coarse level, the direction-

relation matrix records into which tiles around the reference object the region target 

object falls. At a finer level, it captures how much of the target object falls into each tile, 

and an even more detailed view is given if the direction-relation matrix records properties 

of the components in each tile. This multi-resolution model has significant implications 

for spatial query processing when a user, for instance, sketches the objects of interest. 

The coarse direction-relation may then act as a filter to quickly retrieve candidates, 

whereas the more detailed direction-relation matrices can be used to prioritize the 

candidates for a similarity assessment. 

 

• The model based on direction-relation matrices applies to points, lines, and regions 

alike.  

The deep direction model records directions in deep direction-relation matrices, which 

are based on coarse direction-relation matrices and additionally record the intersection of 

the target objects with the boundaries of the partitions, if necessary. This model yields 

equal values for cognitively equivalent directions regardless of the dimensions of the 

objects, and frees the user from pondering about the dimension of the objects while 

making queries in a GIS. 

 

• The directions recorded at smaller scales using the deep direction model are 

compatible with the directions recorded at larger scales. 

This thesis demonstrated that directions recorded with the deep direction model at smaller 

scales are compatible with the directions recorded at larger scales. The compatibility 
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makes this model useful for querying spatial databases at multiple scales, as it ensures the 

consistency in the results of the direction queries.  

 

• The model based on direction-relation matrices provides a solid foundation for 

spatial reasoning. 

The correct and multiple directions recorded with direction-relation matrices make this 

model very useful for exact spatial reasoning. Deep direction-relation matrices can be 

used for spatial reasoning for directions between arbitrary pairs of points, lines, and 

regions. 

 

• The model is useful for retrieving spatially similar scenes. 

Retrieval of similar scenes is a common task in most domains including geographic data. 

The method of similarity assessment makes this model useful for retrieving spatially 

similar scenes in image databases, video databases, multimedia databases, and web-

databases.  

 

• The model based on direction-relation matrices can be used to detect and predict 

changes. 

Direction-relation matrices and similarity assessment method capable of detecting and 

quantifying changes between snapshots of varying scene, such as changes in the 

landscape of the city over a period or a video clip of a fast change. The changes in objects 

are primarily movement, rotation, and enlargement. Using the conceptual neighborhood 

graph and the trend of change, one can predict the state of objects in future. 

 

• The rejection of the hypothesis reveals that the 4-neighborhood graph provides a 

sounder mapping than the 8-neighborhood graph.  

We investigated the 4-neighborhood and 8-neighborhood graphs as the basis for the 

direction-similarity assessment. A comparative study shows that the 4-neighborhood 

graph provides a sounder mapping than the 8-neighborhood graph.  
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• The direction-relation matrix meets all five requirements for a cardinal-direction 

model.  

This thesis analyzed the requirements of a direction model before developing it. The 

desired properties are formal, inferential, shape-sensitive, dimension-neutral, and 

comparable. The model applies to all objects alike; therefore, it is formal. It forms a 

strong foundation for spatial reasoning; therefore, it is inferential. It does not approximate 

the shapes of objects; therefore, it is shape-sensitive. It applies to objects of different 

dimensions (i.e., points, lines, and regions) and records compatible directions; therefore, 

it is dimension-neutral. The method for similarity assessment makes the directions 

comparable.  

7.3 Future Work 

This thesis presented a cardinal direction model that is computationally sound and has the 

properties established before developing the model. Although this thesis has presented 

significant results of the research pursued while designing this direction model, this 

research also uncovered avenues for further research, which are closely related to this 

thesis. 

7.3.1 Direction Reasoning using Direction-Relation Matrix  

The deep direction-relation matrices (Chapter 4) are capable of representing directions 

between objects of different dimensions. A method for direction reasoning using this 

model can be developed by performing reasoning on the x- and y-axes and combining 

results by performing a cross product. There are four types of pairs of projections of 

reference and target objects on an axis: (1) a pair of points (PP), (2) a pair of a point and 

an interval (PI), (3) a pair of an interval and a point (IP), and (4) a pair of intervals (II).  

 

In order to obtain the composition of relations along an axis, we will need 

composition tables for eight possible pairs on an axis (Table 7.1). The composition tables 

for the case PP-PP is trivial. The composition table for the case II-II is available for 

interval relations (Allen 1983). For other six cases, composition table must be generated. 
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Case Type of  
projection for A 

Type of  
projection for B 

Type of  
projection for C 

Pair code for 
dir(A, C) 

PP-PP point point point PP 
PP-PI point point interval PI 
PP-IP point interval point PP 
PP-II point interval interval PI 
IP-PP interval point point IP 
IP-PI interval point interval II 
II-IP interval interval point IP 
II-II interval interval interval II 

Table 7.1:  The types of projections of objects A, B, and C along an axis and the 

composition types. The codes P and I stand for point and interval types of 

projections, respectively. 

For a converse operations there are four types of pairs: PP, PI, IP, and II. Computing 

the converse for the case PP is trivial and the method for computing the converse for the 

case II is available (Allen 1983). For the cases IP and PI, methods for computing 

converse relations must be derived, for instance, from Figures 4.15a-b.  

 

The deep direction-relation matrices, however, do not record the information about 

their types of projections, they just record the intersection with partitions and neighbor 

codes, if necessary. A method will be needed that can extract the projection information 

from the deep direction-relation matrices and use it for spatial reasoning operations. 

7.3.2 Deep Detailed Direction-Relation Matrix  

The detailed direction-relation matrix is used for assessing similarity between cardinal 

directions for regions. Similarly, a deep detailed direction-relation matrix for arbitrary 

pairs of points, lines, and regions will be useful for similarity assessment between 

directions across different dimensions of objects. Detailed directions can be recorded for 

line and region targets only, as a point has no extent; therefore, there is no detail to record 

for a point target. In the case of a line target object, the length ratio in each partition can 

be recorded. The primary challenge lies in recording details about the intersection of a 

region with lines and points and the intersection of a line with lines and points. For 

example, if the reference object is a point and the target object is a region, north, south, 

east, and west directions are lines, and the same direction is a point. 
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7.3.3 Cognitive Evaluations 

The direction model and the similarity assessment techniques were targeted for spatial 

querying in databases; therefore, they are formal and computationally elegant. In order to 

use this model for natural language queries, however, the model must be tested for its 

cognitive plausibility. The following areas would need such testing: 

7.3.3.1 Cognitive Plausibility of the Direction-Relation Matrix 

The direction-relation matrix partitions the space in rectangular partitions corresponding 

to cardinal directions. Cognitive studies about the directions in an intrinsic reference 

frame show that people parse space into unequal and overlapping cones (Franklin et al. 

1995). Similar cognitive studies to learn how people perceive cardinal directions between 

extended objects can be conducted. Using the results of the studies, one can evaluate how 

well the direction-relation matrix adheres to people’s intuition.  

 

7.3.3.2 Distances between Single-Element Direction-Relation Matrices 

The distance between two single-element matrices is the distance between their non-zero 

elements along a conceptual neighborhood graph. We have computed distances between 

single-element direction-relation matrices based on the 4-neighborhood (Figures 5.4) and 

8-neighborhood (Figures 6.22) conceptual neighborhood graphs. The 4-neighborhood 

distances give cognitively more plausible rankings of the scenes than the 8-neighbor 

distances, however, the values of distances that conform to people’s perception should be 

determined by performing human subject testing. The method for similarity assessment is 

flexible enough to accommodate these distances.  

7.3.3.3 Similarity Assessment  

The systematic evaluation of the similarity assessment method showed that the values of 

similarity adhered to our expectations. A study involving human subject testing for the 

similarity values can reveal how well these values conform to people’s perception of 

similarity.  
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7.3.4 Mapping of Natural Language Direction Terms onto Direction-

Relation Matrices  

In order to make spatial queries such as “Find all towns that are north of Bangor in the 

state of Maine,” the natural-language direction terms should be mapped onto a 

corresponding direction-relation matrix. For example, some people may consider the area 

of acceptance for north as the north tile, while some others may consider it as the union 

of the northwest, north, and northeast tiles. Shariff (1996) presented the correspondence 

between topological relations and their metric parameters for relations between a region 

and a line. A similar effort for direction terms will be useful for natural-language queries 

using directions. We feel that all the necessary intersections are recorded in deep 

direction-relation matrices, therefore, the direction terms can be defined in terms of the 

values of these matrices.  

7.3.5 Detecting and Quantifying Change 

The change in the directions can be detected from an ordered sequence of direction-

relation matrices. For instance, if one monitors objects by extracting the direction-relation 

matrices from digital imagery, one obtains a higher-level description of the spatial 

configuration. Of particular interest for us is inferring automatically what qualitative 

changes have occurred, and what changes are expected. The conceptual neighborhood 

graphs can be used to infer new relations over the period. The similarity measure can be 

used to quantify the degree of change.  

7.3.6 Inferring the Type of Change from the Profile of Similarity 

Values 

The graphs of similarity values for various changes (Chapter 6) exhibit a degree of 

correlation between the profile of similarity values and the type of change. An 

investigation can be conducted to determine whether or not there is sufficient correlation 

in the profiles of similarity values and the types of change: curved movement, diagonal 

movement, horizontal movement, vertical movement, enlargement in a direction, 

enlargement in all directions, and rotation with respect to its own extreme. If there is 
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sufficient correlation, the profile could be used to infer the type of change and, therefore, 

abstract change to a high-level concept.  

7.3.7 Extension to 3-Dimensional Space 

The model of directions in 2-D using direction-relation matrices can be extended to 3-D. 

the minimum enclosing box for the 3-D reference object will be central to the reference 

grid and will constitute the same volume. The reference grid with 125 parts of the space 

will have 27 volumes, 6*9=54 areas, 12*3 = 36 lines, and 8 points. If the point, lines, and 

areas are considered to have no extent for directions between volumes, a 3-D matrix with 

27 element that is analogous to coarse direction-relation matrix in 2-D is adequate. 

Similarly, detailed and deep direction-relation matrices can also be developed for 

directions in 3-D space, forming the foundation for direction reasoning in 3-D. 

7.3.8 Similarity between Raster Templates Using the Conceptual 

Neighborhood Graph 

In pattern recognition (Schalkoff 1992, p. 330-331), the metrics m1 and m2 are used for 

matching templates f and g (Equations 7.1a-b), where R is the extent over which a match 

occurs. Other methods for comparing image templates are Fourier descriptors (Persoon 

and Fu 1977), least square matching (Agouris and Gruen 1994), and modified least 

square matching (Carswell 2000). 

 

 ∑ −=
R

gfm1  (7.1a) 

 ( )∑ −=
R

gfm 2
2  (7.1b) 

 

 The coarse and detailed direction-relation matrix can alternately be visualized as 

3×3 binary and gray raster templates. The method developed for similarity assessment 

(Chapter 5) compares 3×3 templates, where the sum of the gray (detailed) values of each 

template is 1. This method of similarity assessment can be extended to assess similarity 

between n×n raster templates. Such an extension has the potential of giving better 
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measures than m1 and m2. This extension may be applicable for comparison of well-

defined objects such as brain tumors, where the exact shape of the artifacts are of great 

importance, and scale and orientation of the objects are fixed. 
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