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Cardinal directions are frequently used as selection criteria in spatial queries or for
assessing similarities of spatial scenes. Current models for cardinal directions use crude
approximations in the form of the objects minimum bounding rectangles or their
generalizations to points. To overcome the limitations of these models so that improved
reasoning can be performed, the coarse directionrelation matrix is introduced. It
partitions space around a reference object and records into which direction tiles an
extended target object falls. The detailed direction-relation matrix captures more details
by recording the ratio of the target object in each direction tile or the number of
separations per tile. This multi-resolution model provides a better approximation for
direction relations of complexly structured spatial objects than the approach with

minimum bounding rectangles.

In order to record directions between arbitrary pairs of point, line, and region objects,
the model based on the coarse direction-relation matrix is extended to the deep direction-
relation matrix. It additionaly records information about the intersection of the target
object with the boundaries of direction tiles, if necessary. This thesis demonstrates that
directions recorded at smaller scales using this model are compatible with the directions
recorded at larger scales. The compatibility makes tis model useful for direction-based

gueriesin spatial databases over multiple scales.



To apply direction-relation matrices for the assessment of similarity between spatia
scenes, this thesis develops a method to compute similarity between direction-relation
matrices. The similarity between two direction-relation matrices depends on the distances
between cardina directions along a conceptual neighborhood graph, which has a node for
each direction tile and edges connecting nodes corresponding to neighboring tiles. There
are two types of graphs. the 4-neighborhood graph and the 8neighborhood graph. The
comparative study of the mappings from directions changes to similarity values provided
by the graphs reveals that the 4-neighbohood graph provides a sounder mapping than the
8-neighborhood graph. The similarity assessment method gives cognitively plausible
rankings of spatial scenes based on the cardinal direction between objects, and it is useful
in retrieving spatially similar scenes in image databases, video databases, multimedia
databases, and web databases.
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Chapter 1

| ntroduction

People communicate about geographic space often using highly generaized spatial
concepts such as cardina directions. For example, they typically refer to relationships
between objects using such terms as north or northeast. These qualitative spatial concepts
are sufficient for people to make inferences about the relationships and their
combinations (Byrne and Johnson-Laird 1989), and qualitative spatial reasoning has been
found to be fundamenta to people's everyday activities (Riesbeck 1980). For instance,
when people ponder about where to place a newly acquired table at home or when they
decide where to construct a new building, they apply various forms of qualitative spatial
reasoning. While people are good at making decisions based on spatial information for
daily tasks, it is necessary to use information systems for complex and systematic spatial

reasoning tasks involving alarge number of constraints.

Geographic information systems (GISs) are built to aid people in making decisions
for such complex tasks as land management, forest management, urban development, and
hazardous waste management. A GIS's success depends on its ability to answer people’'s
guestions without making people learn about the internal data representation in the GIS.
The GIS typically stores the geometry and other information about objects, and alows a
user to perform such operations as retrieving stored information, analyzing the stored
data, and reasoning to derive new spatial information. For instance, a state government’s
GIS may store the geometry and population of counties, so that a user can query and
analyze the population of counties based on their spatial relationships. In order to query
and analyze spatial data in a meaningful way, GISs need methods to formulate and
process spatial relations.



Typicdly GISs use analytical techniques for extracting spatial information from
quantitative representations, such as Euclidean geometry and Cartesian coordinate
systems. The formalization of spatial relations and the explicit storage of spatial relations
in aGISis preferred over anaytica methods, because spatial relations form the basis of

most spatia queries and explicit storage makes this information available right away.

In order to make GISs respond to users queries effectively, spatial concepts should
be formalized in cognitively plausible ways and be incorporated into spatial query
languages. The formalization of spatial concepts has been a research priority for more
than a decade, as evident from the research agenda of the National Center for Geographic
Information and Analysis (NCGIA) that identified the need for coherent mathematical
theories of spatial relationships (Abler 1987). NCGIA’s Varenius project identifies the
computational implementation of geographic concepts as a strategic area of GIS research
(NCGIA 1995). The extension of geographic representations is also a research priority
according to the University Consortium of Geographic Information Science (UCGIS
1996). This thesis continues research on formalizing spatial concepts offering a new

model for cardinal directionsthat is applicable to extended as well as point objects.

1.1 Spatial Reasoning

Reasoning is a fundamental logical operation that is often used to explain people’'s
inferences. It can be performed on quantitative as well as qualitative information.
Quantitative information is recorded using a predefined unit of a quantity such as meter
for distances. For example, the distance between Boardman Hall and Fogler Library is
140 meters. Reasoning on quantitative information is performed by mathematical rules
that are expressed as numeric operations. Qualitative reasoning, on the other hand,
focuses on the essence of information using a small set of such symbols as {+, O, -}. For
example, if a faucet is discharging water in a bathtub and the rate of water entering the
tub is more than the water leaving the tub, the tub will eventually overflow. To arrive at
this conclusion, no elaborate equations were used. Qualitative reasoning allows us to
make such inferences. Inferring new information using the available qualitative

information about the space is called spatial reasoning (Hernandez 1993; Cohn 1996). In



combination with reasoning about time, it is called spatio-temporal reasoning (Egenhofer
and Golledge 1998).

Naive Geography (Egenhofer and Mark 1995b) is a modern concept in the area of
gpatial reasoning along the line of Naive Physics (Hayes 1978; Hayes 1985). Naive
Geography attempts to make GISs behave close to the way people reason about space and
time. Such systems are more likely to be accepted by people due to the expected ease of
use. Naive Geography is a challenging task for spatio-tempora researchers and GIS
designers, as the task requires models of spatial concepts that conform to people’ s way of
reasoning. Formalization of spatial concepts has been a topic of active interest across
such disciplines as GIS, geography, artificial intelligence, computer vision, cognitive
science, and psychology. Vision systems perform spatial reasoning on objects extracted

from digital imagery (Freeman 1975; Haar 1976).

Olivier and Gapp (1998) provide a collection of representation and processing
techniques for spatial expression. Spatial relations capture knowledge about relative
placement of spatia objects. In GISs, one typically distinguishes three types of spatia
relations. topology, direction, and distance. Topological relations capture important
knowledge about geometric relations between objects that are invariant under affine
transformations such as trandation, rotation, and scaling. For example, if two objects are
digoint, they continue to remain digoint if the embedding space is rotated. The 4-
intersection (Egenhofer and Franzosa 1991) distinguishes eight different topological
relations between regions, which are called digjoint, overlaps, meets, equals, inside,
contains, covers, and covered-by. Cardina direction captures knowledge about relative
location of an object with respect to another object in the embedding space such as Ais
north of B. Cardinal directions between objects do not depend on the objects interna
structures, the observer, and the scale of embedding space, but they depend on their
relative positions with respect to each other and their shapes, and their extents. For
example, if Ais north of B, A continues to remain north of B if the embedding space is
scaed. The distance between two objects depends on the efforts to move from the
location of one object to the location of another. Distance is typicaly recorded using



Euclidean distance, which is aso called quantitative distance. Hong (1994) developed a
method to transform the quantitative distances into qualitative distances such as near,

medium, far, and very far. This thesis focuses on models for cardinal directions.

1.2 Direction Relations

People perform qualitative spatial reasoning about directions in 2-dimensional space
often using such concepts as right, left, front, and back and inference rules (Byrne and
Johnson-Laird 1989). In the case of geographic objects, people use cardinal directions
such as north and northeast. For example, Orono, Maine is northeast of Bangor, Maine
(Figure 1.1). In this relation Bangor is the reference object, Orono is the target object, and
northeast is the cardinal direction between this ordered pair of objects. People typically
use eight cardina directions. north, northeast, east, southeast, south, southwest, west, and
northwest (Frank 1996). In direction reasoning, an additional identity direction O or same

is also used, that gives nine cardina directions.
e Orono
@ Bangor

Portland

Figure 1.1: Three townsin the state of Maine.

Direction reasoning allows us to infer unknown directions from known directions. In
databases, such inferences are very useful as they can be performed symbolically, which
provides consistent information with minimal computing. Direction combined with
distance is used for reasoning about locations (Hong 1994), and with topology for the
reasoning about layouts of objects (Sharma 1996).



1.3 Motivation for Formalizing Direction Relations

While people commonly use cardina directions in communication and for many
inferences, the concepts are still too vague to be implemented consistently in GISs. There
are severa needs for formalized cardinal directions in GISs such as in query languages,
in query processors, and in intelligent inference engines for spatial reasoning. The
following motivations elaborate the properties necessary for a formalization of cardinal
directions so that such aformalization has the widest applicability in GISs.

1.3.1 Directionsin Queriesover Spatial Databases

The term spatial database refers to a database that employs data structures that alow
queries based on the spatial extent of objects (Gunther and Buchmann 1990). Giiting
(1994) presents a survey of research in the area of data modeling, query languages,
gpatial data types, and spatial indexing. Quad-trees (Samet 1989a) and R-trees (Guttman
1984) are among the most popular data structures used in spatial databases. To retrieve
the objects in a given direction, Papadias et al. (1994) used R-trees by defining a search
rectangle with respect to a reference object based on the direction of interest, and
returned objects that intersect with the search rectangle. This scheme involves an
exhaustive search based on the geometry of objects. Formal models of directions allow
direction relations to be explicitly stored in databases that facilitate the use of direction as
a search criterion for such queries as, “Select all lakes that are northeast of Orono in

Maine.”

A study conducted by Franklin et al. (1995) reveds that people parse their
surrounding horizontal space into overlapping front, left, back, and right direction
partitions; therefore, an observer may record a point that lies in an overlap of two
directions as a point belonging to the neighboring directions, such as front and right.
Similarly, cardina direction terms such as north and east may also have overlapping
regions in people's minds, and these terms may have different meanings for different
people. For example, some people may treat the north partition as a triangular area

(Figure 1.2a), while others may treat it as a line passing through the centroid of the



reference object and going towards north (Figure 1.2b), and some others may treat it as a
rectangular area that is north of the reference object (Figure 1.2c). People communicate
with each other with direction terms that might have different meanings for different
people, but query languages in GISs require formal definitions of direction terms.

Therefore, the model of cardina directions must be formal.

(a) (b) (c)

Figure1.2: Various interpretations of the direction term north: (@) cone-shaped
partition, (b) centroid-based direction line, and (c) rectangle-shaped

partition.

1.3.2 Directionsin Spatial Reasoning

Locations of places are often specified with respect to known places or landmarks using
natural-language descriptions. The locality and elevation interpreter performed spatial
reasoning on linguistic representations of geographic information (McGranaghan and
Wester 1988; McGranaghan 1989; Futch et al. 1992). It was designed to convert the
linguistic text described on herbarium specimens into geodetic coordinates in order to
perform spatial reasoning about the locations of species of plants. An example of such a
natural-language description is “Oahu. Palolo Valley. Along the stream and up the
northeast bank at elevation of 1100-1500 feet.” Figure 1.3 shows a possible visualization
of this description. The approximate location of a specimen in terms of geodetic
coordinate is inferred using the geodetic coordinates of a known place such as the

longitude and latitude of Oahu in the mentioned description. A model of cardinal



direction must support spatial reasoning operations to infer unknown directions from the
known directions, that is, it must beinferential.

Specimen
site

Siream

Palolo valley
® Oahu

Figure1.3: A feasible visudization of a description in the locality and elevation
interpreter (Futch et al. 1992).

1.3.3 Directions between Geographic Objects

Shapes of objects can affect directions between them (Peuquet and Zhan 1987;
Abdelmoty 1995). Geographic objects can occur in numerous shapes and can relate to
each other in many possible ways. For instance, the convex hulls of objects can intersect
(Figure 1.4a), an object can surround the other object (Figure 1.4b), and two objects can

be overlapping and intertwined with each other (Figure 1.4c).

(a) {b) (c)
Figure 1.4: Irregularly shaped geographic objects.
Shapes of objects are of interest to people in various domains. For example, in

computer graphics shapes such as triangles, rectangles, polygons, and circles are used

frequently. In computer vision and image processing, shape parameters such as area,



compactness, elongation, directions of major and minor axes, and moments of objects are
computed from the objects extracted from images to compare the shapes of objects.

Some changes in shapes, in specific situations, affect the direction of an object
with respect to another object. Figure 1.5 gives an example where a change in the shape
of target object B does not change its direction with respect to reference object A (Figures

1.5a-b), while another change in shape changesits direction (Figures 1.5a and 1.5c).

o ¢ o

(a) {b) (c)

Figure 1.5: (a)-(b) Object B is north of object Aand (c) object B is north and northeast
with respect to A

A direction model for geographic objects must be sensitive to those changes in
shapes that affect cardina directions between them. This thesis calls this property of
direction models shape-sensitiveness. In order to record the direction that is sensitive to
the shapes of the objects, a direction model must not approximate the shapes of the
objects, but use the shapes of the objects as they are. Existing models of directions
typicaly approximate geometries of objects by points or rectangles; therefore, they miss
the effect of the shapes of objects on the directions between them and may yied
misleading directions. A direction model must be able to represent directions between
objects of all shapes without approximating their geometries; therefore, a direction model

must be shape-sensitive.

1.3.4 Directionsin Multi-Resolution Geographic Databases

Geographic databases record the geometry of spatial objects as points, lines, or regions
depending on the level of detail considered (Goodchild and Proctor 1997). For example, a



city can be represented by a point or aregion, and aroad can be represented by aline or a
region. A database may contain point, line, and region objects, which are the objects of
different dimensions. Therefore, methods to determine directions between objects of
different dimension are required. Figure 1.6 shows examples of directions between
different dimensions. Directions recorded between different dimension representations of
an ordered pair of objects in GISs must be cognitively equivaent. If a GIS records towns
as points and another records them as regions, a query “Find towns that are north of

Bangor in the state of Maine” should return the same result in both GISs.

3 =

7 . A
® A A

(a) (b) {c) (d)

Figure1.6: Objects in multi-resolution geographic databases can be points, lines, and
regions.

Multi-representation geographic databases (Buttenfield 1989; Tryfona and Egenhofer
1996; Bertolotto 1998) record more than one approximation of geographic objects. In
current GISs, a user needs to specify the dimension of an object in a query, as the object-
oriented concepts of polymorphism and operator overloading that enable the use of same
command for a semanticaly similar operation across different class-objects and
arguments are new for GIS community (Newell 1992). Since objects are approximated at
different dimensions, a user will have to make many queries to search for the objects of
al dimensions. In order to let a user use one query for a search based on direction,
direction between objects must not depend on the dimension of objects, that is, a model

of directions must be dimension-neutral.

1.3.5 Directionsin Content-Based Retrieval

Query by image content (Flickner et a. 1995) alows a user to retrieve images from a
database based on the contents of images. Graphic representations of images store
geometric and visua attributes of objects and spatial relations between them. The



geometric attribute of an object refers D its spatial extent, and visua attributes refer to
color, shape, and texture (Gonzalez and Woods 1992). Geometric and visua attributes
help in determining the presence of an object in a scene and spatia relations between
objects distinguish relative placements of the objects in the embedding space. Combining
object similarity and spatia relation similarity, one can make a query such as “Find
scenes where object A and B are present, B is north of A and Adigoint B.” Nabil et al.
(1995) and Bruns and Egenhofer (1996) use spatial relation as a criterion to assess scene
similarity. Gudivada and Raghavan (1995) assessed spatial similarity between scenes
using quantitative directions between representative points of the objects. A query “Find
scenes where Adigoint B” in a database containing scenes in Figure 1.7 would result in
all three scenes in Figure 1.7. On the other hand, a query “Select all scenes where object

Adigoint B and B north of A” resultsin only theimagein Figure 1.7c.

(@) (b) (c)

Figure 1.7: Threeimagesin a database.

A user can aso make a query to a geographic database such as, “Find scenes that are
similar to the scene in Figure 1.7a” and the system will rank similar scenes by their
degrees of match based on similarities between objects and similarities between spatial
relations. Results of this query are scenes in Figure 1.6b and 1.6¢, and the degree of
match for the image in Figure 1.7b will be higher than the degree of match for the image
in Figure 1.7c. In order to use direction as a criterion to assess spatial similarity between

scenes, the recorded directions must be comparable.
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1.4 Cardinal Directions between Extended Spatial Objects

The concept of direction is well defined for point objects (Peuquet and Zhan 1987; Frank
1996), but people use this concept for extended objects as well. For example, Canada is
north of the USA. The direction between extended objects is determined using crude
approximations of the object geometries such as the approximation of objects by their
centroids (Section 2.4.1) or by their minimum bounding rectangles (Section 2.4.6). Both
models suffer from incorrect inferences, because the recorded directions are not the
directions between the objects, but they are the directions between the approximations of

the objects.

1.4.1 Problem Statement

In order to overcome limitations in direction representations due to approximations and to
use them for applications mentioned in Section 1.3, a model to represent directions must

have the following properties:

The mode must be formal so that it can be used as a basis for query
processing involving directions in spatial databases (Section 1.3.1).

The model must be inferential so that it can be used for deriving unknown
directions from the known directions (Section 1.3.2).

The model must be capable of representing direction between irregularly-
shaped objects without approximating their geometries, that is, it must be
shape-sensitive (Section 1.3.3).

The modd must be dimension-neutral so that it can be used in multi-
resol ution geographic databases (Section 1.3.4).

The model must support similarity between directions, that is, the directions
must be comparable (Section 1.3.5).

These five points form the foundation for the present investigations in the modeling

and reasoning about cardinal directions.
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1.4.2 Goalsand Hypothesis

The godls of this thesis are (1) to develop a model for representing cardinal directions
that has the properties outlined in the problem statement (Section 1.4.1) and (2) to

develop amethod for similarity assessment using this model of cardinal direction.

This thesis develops the desired model for similarity assessment using direction-
relation matrices. The similarity between two directions depends on the distance between
two direction-relation matrices along a conceptual neighborhood graph. The distance
between two identical matrices is 0. If the distance between two directions D° and D*
aong the conceptua neighborhood graph is smaller than the distance between D° and D?,
D°is more similar to D* than D° to D% A larger distance gives smaller value of similarity

and vice-versa.

A method of similarity assessment must provide a sound mapping of changes in
directions onto the similarity values, such that it gives monotonicaly decreasing
similarity values for increasingly larger changes in directions. The organization of
cardinal directions in the direction-relation matrix forms the four-neighborhood and
eight-neighborhood graphs.

The hypothesis of thisthesisis:

“The four-neighborhood and eight-neighborhood graphs provide equally sound

mappings of direction changes onto similarity values.”

Section 6.6 tests the hypothesis by comparing the rankings provided by both types of
neighborhood graphs.

1.4.3 Scope of the Study

In order to improve the inference power of next-generation GISs and to facilitate the use

of direction relations in spatial databases and content-based retrieval, this thesis uses
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direction-relation matrices for direction representation. Direction-relation matrices record
directions between objects, not their approximations.

This thesis builds the foundation for a new direction model using direction-relation
matrices between region objects that provides a multi-representation view of cardinal
directions and allows users to record increasingly more details if desired. It extends this
model to a deep direction model that applies to arbitrary pairs of point, line, and region
objects. Using direction-relation matrices, it develops a method to assess similarity

between directions.

1.4.4 Topics Excluded from the Present Investigation

The theme of this thesis is cardinal directions, not direction giving. In direction giving
and direction following (Riesbeck 1980), a subject checks the consistency of instructions
and makes a mental map of the situation being described. The following aspects of
direction relations are excluded from this investigation:
This thess does not formalize the orientation of objects. A quantitative
orientation between two objects would be recorded as an angle between their
major axes, and qualitative orientation as directions front, left, right, and back.
It formalizes the qualitative cardinal directions between extended objects such
as north, south, east, and west.
The direction model presented in this thesis records direction between objects
based on their geometries, and influences of their semantics such as figure and
ground are not considered (Tamy 1983; Bittner 1997; Bittner 1999).
The model in this thesis uses non-overlapping direction partitions, that is, the
direction partitions are exclusive. This thesis does not study the effect of
overlapping direction partitions (Franklin et al. 1995) on computational
models of cardinal directions.
The mode in this thesis is tailored to 2-D embedding space, while it has
potential of being extended to 3D space (Fuhr et al. 1998). This aspect has

been excluded from the current studies.
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This thesis does not develop methods to perform spatia reasoning using the
presented model of direction.

This thesis does not develop methods to record detailed direction-relation
matrices for arbitrary pairs of different dimension objects and similarity
assessment for directions between such arbitrary pairs.

This thesis does not characterize the shape of objects. It uses the term shapes-
sensitive for a property of direction models that allows recording of cardinal
directions without approximating the objects by their minimum bounding
rectangles or points thus preserves the effects of shape on cardinal directions.

1.5 Intended Audience

The intended audience of this thesis constitutes any person interested in spatial reasoning
in general and design and development of geographic information systems in particular.
This includes researchers from fields of spatial databases, digital libraries, artificial
intelligence, content-based retrieval, and computer vision. The direction model and
methods developed in this thesis are useful for designing next-generation spatial
databases, spatial query languages, and spatial reasoning systems.

1.6 Major Results

The major finding of this thesis is a direction model based on direction-relation matrices
that record directions between irregularly-shaped objects without approximating their
geometries. The model has al five required properties: formal, inferential, shape-
sensitive, dimension-neutral, and recorded directions are comparable (Section 1.4.1).

Major results of thisthesis are:

The coarse direction-relation matrix provides a knowledge structure to record
multiple directions, such as {north, northeast, east} between regions. The
model does not approximate the objects geometries and it is sensitive to the
shape of the objects.

The detailed direction-relation matrix records the extent of the target object
and further details about the target object in the framework that is similar to

14



the coarse directionrelation matrix. It can record directions at multiple
resolutions and enhances the distinguishing capability of direction-relation
matrices.

The deep direction-relation matrix is capable of recording directions between
arbitrary pairs of point, line, and region objects. The deep direction-relation
matrix has additional expressive power to distinguish those directions that
cannot be distinguished by the coarse direction-relation matrix, but the model
based on minimum bounding rectangles can distinguish. The deep direction
relation matrices record identical values for cognitively equivalent directions.
We demonstrate that directions recorded, using the deep direction-relation
matrices, at smaller scales are compatible with directions recorded at larger
scales, which makes this modd useful for multi-resolution geographic
databases.

The method for similarity assessment between detailed direction-relation
matrices makes the direction model useful for query by content in image
databases, video databases, multimedia databases, and web databases.

A magjor contribution of this thesis is the rgection of the hypothesis, which
uncovers the following fact: the 4-neighborhood graph provides a sounder

mapping than the 8-neighborhhod graph.

1.7 ThesisOrganization

The remainder of thisthesisis organized into the following six chapters:

Chapter 2 reviews existing models of direction relations, including direction between

points and minimum bounding rectangles. It assesses existing models of directions to

check whether or not these models have the required properties for direction relations
(Section 1.4.1).

Chapter 3 introduces the concepts of coarse and detailed direction-relation matrices.

This chapter investigates how many valid directions can be distinguished using coarse

direction-relation matrices. It discusses effects of shape, size, and distance on direction
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relations. It a'so compares distinguishing capabilities of coarse direction-relation matrices
and directions between minimum bounding rectangles.

In order to represent directions between points and lines, Chapter 4 develops the
deep direction-relation matrix by extending the coarse direction-relation matrix. The deep
direction-relation matrix additionally records information about the intersections of a
target object with boundaries of direction tiles using neighbor codes, if necessary. This
chapter also demonstrates that a direction recorded using this model at a smaller scae is
compatible with a direction recorded at a larger scale. The compatibility makes this
model useful for querying spatial databases at multiple scales.

Chapter 5 develops a method for similarity assessment using detailed direction
relation matrices for regions. The basis of the similarity assessment is the conceptual
neighborhood graph of direction relations. The problem of similarity assessment is
formulated as a balanced transportation problem, which is solved using the transportation

agorithm.

Chapter 6 discusses the implementation of a direction comparison system. This
system allows users to draw two ordered pairs of polygons, computes the direction in
each pair, and computes the similarity between the directions. It evauates the method of
similarity assessment developed in Chapter 5, and compares the soundness of mappings
provided by the 4-neighborhood and 8-neighborhood conceptua graphs.

Chapter 7 summarizes the thesis, identifies contributions, and highlights possible

further research based on the findings of thisthesis.
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Chapter 2

M odds of Direction Relations

Models of direction relations are critical in visual interfaces to geographic information
systems (Mark 1992). In the future, geographic information systems (GISs) that provide
multi-modal user interfaces with voice interaction will incorporate such terms into their
query languages (Egenhofer 1996) and will require inference mechanisms to process such
queries. For example, a user may ask a natural-language query such as, “Find lakes in the
date of Maine that are northeast of Orono,” and a GIS will be powerful and intelligent
enough to interpret the semantics of the spatial constraints. Such spatial-reasoning tasks
are intuitive to human reasoning, but in order to use the processing power of computers to
assist them in these tasks, formal models of spatial concepts are needed. This chapter
reviews the existing models of direction relations.

Reference frames are important for specifying directions; therefore, Section 2.1
discusses reference frames. A model of quantitative directions using Cartesan
coordinates is described in Section 2.2. Section 2.3 discusses the utility of qualitative
directions in GISs and reviews the models of cardina direction for points. Directions
between extended objects are specified using crude approximations such as centroids and
minimum bounding rectangles; Section 2.4 reviews models for extended objects. Section
2.5 compares the models of directions between extended objects and assesses their
suitability for the five major tasks of direction relations in information systems (Sections

1.3.1-5). Section 2.6 summarizes the strength and deficiencies of the existing methods.
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2.1 Reference Frames

Direction is a binary relation that is recorded for an ordered pair of objects Aand B; Ais
the reference object, while B is the target object. The third part of a direction is the
reference frame that assigns direction symbols to partitions of space. If the reference
frame changes, the direction also changes. There are three types of reference frames
(Retz-Schmidt 1988):
Anintrinsic reference frame refers to an object sintrinsic front, back, left, and
right. For example, front of a building is determined by the main side or main
entrance, such as the entrance of a church.
A deictic reference frame is based on the observer's point of view. An
observer based on one’'s avn front side divides the space into four direction
regions: front, back, left, and right.
An extrinsic reference frame on the Earth is defined by the location of poles.
In 2D, it leads to the system of the four cardina directions north, west, east,
and south.

In GISs, the relative orientation of geographic objects are typically described by
cardina directions; therefore, this thesis uses an extrinsic reference frame.

2.2 A Mode€ of Quantitative Directions

In geographic applications, the direction of a target point is typically defined with respect
to a reference point using the azimuth. The azimuth is an angle between the meridian line
that passes through the reference point A and the geodesic line from A to the target point
B (Figure 2.1). The value of directions for al points on the meridian towards north with
respect to A is . For dl other points, the azimuth is measured counter-clockwise from
the northern part of the meridian and lies in a semi-open interval [0, 360) (Equation 2.1).
Angles that are more than 360° are mapped onto the interval in a cyclic fashion. For
example, the angle 360° is mapped onto 0° and the angle 450° is mapped onto 90°.
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Figure 2.1: The azimuth angle.

Quantitative directions between two points are recorded using azimuth angles and
their values can be approximated at a resolution suitable for their application. For
example, the azimuth of B with respect to A may be 43° 34¢45¢. Applications such as
land surveying and mechanical design use quantitative directions. However, query
languages in spatial databases use qualitative directions, not quantitative directions.

Therefore, this thesis focuses on the formalization of qualitative directions.

2.3 Modelsof Qualitative Directionsfor Points

Qualitative directions are coarser approximations of directions than the quantitative
direction and are described using a smaller set of symbols than the quantitative directions.
Typicaly, the interval [0° 360°) is divided into four or eight direction intervals, and an
appropriate direction term is used for each interval (Frank 1996). A four-direction system
uses the primary directions north, south, east, and west and an eight-direction system uses
the primary directions and the secondary directions northeast, southeast, southwest, and
northwest. People prefer qualitative directions over quantitative directions because often
qualitative directions are all they need and most people are not able to compute
trigonometric expression such as tan™ in their head. While querying a GIS, people are

less likely to ask a question such as “Select lakes that have azimuth 43° 34¢45@with
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respect to Orono in Maine.” Instead, most people would like to formulate queries such as
“Select lakes that are northeast of Orono in Maine.”

Models of cardina directions use an extrinsic reference frame. Primarily, there are
two types of models for the direction between two points: cone-based direction models
(Section 2.3.1) and projection-based direction models (Section 2.3.2). Section 2.3.3
discusses a projection-based model that records directions of a point with respect to a

line.

2.3.1 Cone-Based Direction Modelsfor Points

The cone-based system partitions the space around a reference point into four (Figure
2.2a) or eight (Figure 2.2b) mutually exclusive partitions of 90° or 45°, respectively
(Peuquet and Zhan 1987; Hong 1994; Abdelmoty 1995; Frank 1996; Shekhar and Liu
1998). The four-direction system uses the qualitative directions north (N), east (E), south
(S), and west (W); whereas, the eight-direction system uses four additional directions:
northeast (NE), southeast (SE), southwest (SW), and northwest (NW). A boundary
between two direction partitions is assigned systematically, such as to the partition that is
the clockwise neighbor of the boundary. For example, the boundary between the north
and east partitions in the four-direction system is assigned to the east partition and the

boundary between the east and south partitionsis assigned to the south partition.
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Figure2.2: The cone-based model: (a) four-direction system and (b) eight-direction

system.

If a target object coincides with the reference object, the direction between them is
called same. Including the same direction, the four-direction system distinguishes among
five directions and the eight-direction system distinguishes among nine directions. The
direction of a target point with respect to a reference point is determined by the target’s
presence in a direction partition for the reference point. For example, in the four-direction
system dir(A, B) is north (Figure 2.2a), whereas in the eight-direction systems dir(A, B) is
northeast (Figure 2.2b).

2.3.2 Projection-Based Direction Modelsfor Points

A projection-based direction model (Frank 1996) divides the space using horizontal and
vertical lines passing through the reference point. A horizontal line divides the space into
north and south haf-planes (Figure 2.3a), whereas a vertical line divides the space into
east and west half-planes (Figure 2.3b). Both horizontal and vertical lines together divide
the space into four quadrants: northwest, northeast, southeast, and southwest (Figure
2.3c). The reference frame in the case of four quadrants consists of four direction regions,
four lines, and a point. Direction regions are secondary directions NW, NE, SW, and SE;
direction lines are primary directions N, S W, and E; and same is the only point direction

that coincides with the reference point.
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Figure 2.3:  The projection-based direction model for point objects. The space is divided
into (a) north-south half planes, (b) west-east half planes, and (c) nine

directions.

The projection-based model (Figure 2.3c) has severa advantages over the cone-
based model (Figure 2.2b): (1) longitude and latitude parallels impose a structure on the
globe that is identical to the projection-based model (Kulik and Klippel 1999), (2) the
projection-based model results in a higher number of precise composition inferences
compared to the cone-based model (Frank 1996), and (3) the projection-based model is
easier to implement than the cone-based model in spatial databases due to the rectangular
nature of the direction partitions. The cone-based model, on the other hand, is easier to
scale up for higher number of qualitative directions, such as 16 or 32 directions than the
projection-based model. However, the emphasis of this thesis is on computationally
sound representations of directions and people rarely use more than nine qualitative
directions; therefore, this thesis develops direction models based on projection-based

partitions.

2.3.3 Directions between a Line and a Point

Freksa and Zimmermann developed a framework to represent directions of a point with
respect to a line (Freksa 1992b; Freksa and Zimmermann 1992; Zimmermann 1993;
Zimmermann and Freksa 1996). A point can be in any of the 15 qualitatively distinct
locations with respect to a line (Figure 2.4a), and these relations can be represented

distinctly using icons (Figure 2.4b).
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This model is designed for intrinsic reference frames; therefore, it does not assume
any externa orientation and the line AB can be at any angle with respect to the x-axis.
This model records the direction of a point with respect to a line without any
approximations, which is a useful property of this model, however, it is not adequate for
cardinal drections between extended objects due to its following shortcomings: (1) the
line AB cannot always be parallel to a grid line in the extrinsic reference frame; therefore,
it cannot always be used to record cardinal directions, (2) it does not apply to curved
lines, (3) the target object must be approximated by a point, and (4) the method does not
apply to regions. Section 2.4 discusses models of direction-relations for extended objects.

K
FHH HH HfH BEE AR

€Y (b)
Figure 2.4: (a) Point C can bein 15 distinct qualitative locations with respect to the line

AB, which forms the reference frame and (b) an iconic representations of
these 15 relations.

24 Directions between Extended Objects

Although direction is well understood for point objects, people frequently specify

directions between extended objects as well. For example, “Peeks-Kenny state park is
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northwest of Orono, Maine.” This section reviews existing models for directions between
extended objects.

2.4.1 TheTriangular Model

The triangular model (Haar 1976) uses triangles of acceptance to determine a direction
relation. Typically the object that is perceptually more prominent is used as the reference
and the other object as the target. The embedding space is divided into four mutually
exclusive cones or direction triangles of 90° each with respect to the reference object,
such that al cones coincide with the centroid of the reference object. The centroid of a
finite set of points p,,---, py istheir arithmetic mean E%Nl P, g/N (Preparata and Shamos
i=1

1985). The area of acceptance of a direction triangle grows with increasing distance from
the centroid. The target object is considered to be in the direction associated with a
direction triangle in which its centroid is located (Peuquet and Zhan 1987). If the distance
between objects is large compared to their sizes, the triangular model using centroids
gives intuitive values for directions (Figure 2.5). However, the model is refined if the
distance between objects is small compared to their sizes or if objects are overlapping,
intertwined, or horseshoe-shaped.

Figure 2.5: The centroid of B (Cg) is east of the centroid of A(c,); therefore, dir(A, B) is
east.

If the distance between objects is small compared to their sizes, the centroid of a
target object may not fal in the direction triangle to which it cognitively belongs. For
example, in Figure 2.6a object B is visualy east of object A, but B does not fal in the east
triangle located at the centroid of A In order to determine whether object B isin the east,
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the area of acceptance of the east triangle is increased by moving the triangle’'s vertex
backward (Figure 2.6b). The limit of this movement is a vertex point for the direction
triangle such that the triangle lines pass through corners of the minimum bounding
rectangle of the reference object. If the target object falls into the increased area of
acceptance, the object is considered to be in the respective direction.

(a) (b)

Figure2.6: The triangular model for extended objects (4) B is visualy east of A but it
does not fal in the east triangle, and (b) by adjusting the area of acceptance
of east triangle, Biseast of A

If objects are overlapping, intertwined, or horseshoe-shaped, directions based on
centroids can be mideading. For example, in Figure 2.7 the direction of object B's
centroid with respect to A's centroid is north, even though no point of B is north of the
complete object A In such cases, a compound of four conditions determine whether an

object isin agiven direction or not.

Figure 2.7: The centroid of B is north of the centroid of A, but B is not north of A

In this model, there are special methods for computing directions for specia
conditions of objects, and there is no method that applies uniformly to al the cases. For

example, the method that applies to the case in Figure 2.5 does not apply to the cases in
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Figures 2.6 and 2.7. If objects are close to each other, triangles of two directions may
intersect, for instance the north and east triangles, which may create confusion while
specifying directions. This model is developed primarily to detect whether a target object
exists in a given direction or not. If a target object is in multiple directions, such as
{ north, northeast, east}, this model does not provide a knowledge structure to represent
such multiple directions. This model is computationally cumbersome and informal, due
to overlapping direction triangles and special methods for computing directions for

special cases, therefore, it is not suitable for direction queriesin spatial databases.

2.4.2 Interval Rdationsin Two-Dimensions

Allen’s interval relations (Allen 1983) represent spatial information in a 1-dimensional
gpace. There are thirteen distinct relations (Figure 2.8), which are also called temporal
interval relations or 1-dimension interval relations. Freksa (1992a) generalizes these
interval relations to semi-intervals, where a semi-interval captures the information about
either the beginning or the ending of an event, but not both.

A — A
H B
|_J|3 Conlains L
o HBR
. A . e FinishedBy LA StartedBy |_AB| AL g
B B | 13 I IL i Y
Before  Meets  Overlaps A Fquals OverlappedBy  MetBy  Afier
— B
A
Starts |i| B H B
— —
During liinishes

Figure 2.8: Allen’s thirteen temporal interval relationsin 1-dimension.

Guesgen (1989) extends 1-dimensiona intervals to perform spatial reasoning by
taking the projection of 2-dimensional objects onto the x- and y-axes. On an axis, he uses
eight out of the thirteen interval relations and calls them as left, attached, overlapping,
inside, and their converse relations (Figure 2.9). This model distinguishes 8*8=64
relations in 2-D. These relations are combinations of topological and directional relations
in the rectangular world. This model approximetes objects by their minimum bounding
rectangles; therefore, the spatial relation may not necessarily be the same as the relation
between exact representations of the objects. Sharma (1996) derives direction-relations
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from thirteen 1-D interval relations between extended objects, and combines them with
topological relations between objects to perform heterogeneous spatial reasoning. The

direction model in Section 2.4.6 uses dl thirteen relations on an axis.

u o

O left of O, O, aitached (00,
O O,
O, overlapping O, 0, inside (3,

Figure 2.9: Four basic relationsin 2-D (Guesgen 1989).

2.4.3 Qualitative Modelsfor Space

Mukerjee and Joe (1990) and Mukerjee (1990) developed the qualitative models for
gpace using Allen’s interval relations. The basis for this model is a set of five relations of
a point with respect to an interval: posterior (-), back (b), interior (i), front (f), and ahead
(+) (Figure 2.10a). This model approximates objects by their minimum enclosing
rectangles having sides parallel to an object’s intrinsic front-back and left-right axes,
therefore, it works best for the objects that have rectangular shapes. If these rectangles are
projected onto the x- and y-axes, this model is similar to interval relations in 2-D
(Guesgen 1989).

The qualitative model represents a relation between two intervals by a pair of
interval-point relations. Each relation in a pair corresponds to the relation of an end point
of the target interval with respect to the reference interval. This model generates a
collision paralelogram by extending the support lines of both dojects along their front-
back axes (Figure 2.10b). The paralelogram has interval projections on the front-back
axes of both objects. The relative position of an object with respect to another is
represented by the relation of the object interval with respect to the interval that
corresponds to the projection of the parallelogram on the object’s axis. For example,

pos(A/B), the position of A with respect to B in Figure 2.10b is recorded as --. To record
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the direction, both objects are approximated by points, and direction is recorded in the
intrinsic reference frame as 1, 2, 3, and 4 for front-left, back-left, back-right, and front-
right directions, respectively. For example, dir(A/B) in Figure 2.10b is 2. Using this
model, the spatial relation of A with respect to B in Figure 2.10b is recorded as pos(A/B)

= --, pos(B/A) = ++, and dir (A/B) =2.
I
2
/->3<4

R
. b Uf |
2y . e T4
Collision
parallelogram
@ )

Figure 2.10: (a) Relations between an interval and a point and (b) relations between two

extended objects at an arbitrary angle.

The primary difference between the quadlitative model for space and Guesgen's
model is that the former records spatial relationships between two objects considering
their intrinsic reference frames, whereas the latter records the projections on the x- and y-
axes. The qualitative model also suffers from the approximation of the objects by their
minimum enclosing rectangles, and does not address possibilities of a target object being
in more than one quadrant, such as { front, front-right, right} .

2.4.4 Two-Dimensional Strings

Two-dimensional strings (Chang et al. 1987) are based on the projections of the objects
on the x- and y-axes. A symbolic picture consists of a fixed size grid whose cells are
filled by the empty space or symbols corresponding to physical objects in a scene. For
example, the symbolic picture of the scenein Figure 2.11aisgivenin Figure 2.11b.
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Figure 2.11: (a) A scene and (b) its corresponding symbolic picture.

Symbolic projections are the projections of a symbolic picture onto the x- and y-axes
and they preserve the qualitative information along axes. Let & be a set of symbols
representing the objects and A be the set {=, <, :} such that the symbols “=", “<”, and *:”
do not belong to the set &. The symbols “=" and “<” specify the relations same and
before, respectively between 1-D projections. The symbol “:” specifies “in the same set”
in the 2D symbolic picture. For example, the set & for the symbolic picture in Figure
211bis{a b, ¢, d, €. The 1D drings on the x- and y-axes are a=d:e<a=b<c and
a=a<b=c<d:e, respectively. Thus the 2-D string for this symbolic picture is
(a=d:e<a=Db<c, a=a<b=c<d:e).

Chang and Jungert (1996) used generalized 2-D strings to improve qualitative
descriptions for extended objects over 2-D strings. Generalized 2-D strings use five-
tuples @, C, Eyp, €, “4 '), where & is a set of symbols representing the objects in the
picture, C is the cutting line mechanism, Ey, {<, =, [} is the set of extended spatial
operators, e is empty space of any size and shape, and “§ ' is a pair of operators used to
describe alocal structure. For example, the generalized string on the x-axis for the picture
in Figure 212 is u=A|BeA|BgCeB|C<D, omitting e we get u=A|BAB|CB|C<D.
Similarly, the generalized string on the y-axis is v=B|DeB|D< C|AeC|C, omitting e we get
v=B|DB|D<C|AC|C. The symbolic description of the picture usng the generaized 2D
string is { A|BA|B|CBJ|C<D, B|DB|D<C|AC|C}.
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Figure 2.12: A scene with extended objects and cutting lines.

The 2-D C-dtring (Lee and Hsu 1990) is another string-based representation for
extended objects using a larger set of operators {<, =, |, %, [, ], \, /}. These operators are
able to describe Allen’s thirteen interval relations between 1-D projections. Chang and

Jungert (1996) describe variations of 2-D strings.

Pictures can be indexed according to the 2D-strings of corresponding symbolic
pictures and similar scenes from image databases can be retrieved by matching 2-D
strings (Lee et al. 1989; Lee and Hsu 1990; Chang and Wu 1992; Lee et al. 1992).
Models based on 2-D strings are forma and can be used across different dimension
objects, but they too approximate extended objects. These models do not encode
directions explicitly, and one will have to derive the direction information from symbols
such as “<” and “=" in the 2-D strings. Models described in this section support similarity
between 2D strings, but have no provision for computing similarity between directions;

therefore, they cannot be used for comparing directions.

2.4.5 Symbolic Arrays

Symbolic arrays (Glasgow and Papadias 1992) are based on the following cognitive
factors:. (1) hierarchical deep representations of the pictures are used in the long term
memory, (2) visual and spatia representations are used in the working memory, and (3)

topology and direction relations are preserved in mental representations. Symbolic arrays
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preserve the order of an object’s appearance along the x- and y-axes, and they can be used
in a hierarchical fashion. An object at a higher resolution can be considered as consisting
of many parts, and this information is represented using nested arrays. For example, in
Figure 2.13a object A consists of two parts. At a higher-level Ais shown as one symboal,

but at alower level it is shown as consisting of two partsin Figure 2.13b.

T

Al

O? | A|D
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Figure 2.13: (a) A scene and (b) the corresponding symbolic array.

From the symbolic arrays, the information about the topological and directional
relations between the objects is derived. The symbolic arrays are useful in visuaizing the
arrangement of the objects in the space. This arrangement can be used for retrieving the
pictures that are topologically and directionaly equivalent. Symbolic arrays also suffer
from the approximation of objects and have no explicit representation of direction

relations.

2.4.6 Directions between Minimum Bounding Rectangles

An approach for representing directions between extended objects is the spatial relation
between minimum bounding rectangles (MBRs) of objects (Papadias et al. 1995).
Reasoning between projections of MBRs on the x- and y-axes can be performed using 1-
D interval relations. For example, in Figure 2.14, the projection of B on the x-axis
(projg) is before proj, and proj} is before proj;; therefore, the relation between
MBRs of objects B and A is (before, before). Using this method, one can characterize
relations between MBRs of objects uniquely. There are thirteen possible relations on an
axis, therefore, this model distinguishes 13* 13=169 relations (Figure 2.15).
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Figure 2.14: Spatia relation between two minimum bounding rectangles.
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Figure 2.15: The spatial relations between minimum bounding rectangles (Papadias et al.
1995).
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The basic difference between this method and Guesgen’s method (Section 2.4.2) is
that the latter uses 8 relations out of 13 interval relations on an axis and distinguishes
only 8*8 = 64 distinct spatial relations, whereas this model distinguishes 169 relations.

2.5 Comparisons of the Direction Models

The focus of this thesis is the representation of directions between extended objects,
therefore, this section compares the models reviewed in Sections 2.4.1-6. The cone-based
model for points (Section 2.3.1), the projection-based model for points (Section 2.3.2),
and directions between a line and a point (Section 2.3.3) are not included in this
comparative study, because they cannot represent directions between region objects. A
direction model that has all required properties of a direction-relation system (Section
1.4.1) can be used for applications in Section 1.3. Therefore, models for direction
between extended objects are evaluated for the following properties: formal, inferential,
shape-sensitive, dimension-neutral, and comparable (Table 2.1). Shape-sensitivenessin
this thesis refers to the use of the objects geometries as they are without any
approximation.

The triangular model (Section 2.4.1) approximates a target object’s geometry by its
centroid only when the distance between objects is large compared to their sizes. The
models based on the 2D strings and the symbolic arrays represent scenes at a high level
of abstraction, and they can be used for the task of scene comparison. However, these
models do not record direction relations; therefore, these models are not suitable for
inferring and comparing directions. It is evident from Table 2.1 that there is no model
that supports al five criteria; therefore, no model has the properties desired in the

problem statement of this thesis.
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Model Properties of direction relations

Formal Inferential Shape- Dimension- | Comparable
sensitive neutral

Triangular
model (Peuquet no yes sometimes yes no
and Zhan 1987)

Interval
relationsin 2-D yes yes no no yes
(Guesgen 1989)

Qualitative
models for
space (Mukerjee yes yes no no no
and Joe 1990)

2-D Strings
(Chang et al. yes no no yes no
1987)

Symbolic
Arrays

(Glasgow and yes no no yes no
Papadias 1992)

Direction
between MBRs yes yes no no yes
(Papadias et al.
1995)

Table 2.1: Evaluation of the directions models for extended objectsin 2-D.

2.6 Summary

In this chapter, we reviewed existing models of directions for points and extended
objects. Models for directions between extended objects were evaluated to check whether
or not these models have the five required properties (Section 1.4.1): formal, inferential,
shape-sensitive, dimension-neutral, and comparable. The models for directions between
extended objects were found to approximate objects by their centroids or minimum
bounding rectangles;, such approximations can yield misleading results. None of these
models was found to be suitable for applications such as direction queries in spatial

databases and content-based retrieval using directions. Chapter 3 develops a new model



based on direction-relation matrices to represent exact directions between extended
objects that can be used for querying spatial databases and content-based retrieval, and

this model addresses all the five requirements.
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Chapter 3

Direction-Relation Matrix for Region Objects

Cardinal directions between points are fairly well understood, and they can be
represented using the projection-based and cone-based models (Chapter 2). There is,
however, no model for directions between extended objects that uses exact geometries of
the objects (Table 2.1). Therefore, directions between extended objects have been
represented using crude approximations of object geometries, such as centroids and
minimum bounding rectangles (MBRS). The spatia relations between centroids of the
objects often do not conform to the relations between the objects. The direction of B with
respect to A in Figure 3.1 is {north, northeast, east}. If MBR approximations are used for
recording direction, the direction of B with respect to A would be recorded wrongly as
{north, northeast, east, same} .

It is clear that existing models of cardinal directions have serious limitations due to
approximations of object geometries; therefore, a comprehensive model of cardinal
directions that does not approximate the objects geometries is needed. This chapter
introduces an improved representation for cardinal directions between connected regions,
which is compatible with directions described for point-like spatial objects. It is
characterized by a cognitively plausible equivalence class for cardinal directions. This
model partitions space around the reference object using the projection-based method
(Sections 2.3.2 and 2.4.6) and the exact shape of the reference object. Coarse direction
relation matrices (Section 3.1) record a purely qualitative description (i.e., into which tile
the target object falls). Since cardinal direction relations derived with this method do not
necessarily imply the converse relation, the same method must be applied in the reverse
direction (i.e., partitioning space around the target object and recording the distribution of

the reference object across the tiles). Section 3.2 investigates how many direction
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relations can be distinguished using coarse direction-relation matrices. Section 3.3
analyzes the effects that shape and size of objects, as well as the distance between them,
have on direction relations. Detailed direction-relation matrices (Section 3.4) enhance
qualitative description using quantitative values (i.e., how much of the target object falls
into any particular tile). Descriptions based on coarse and detailed direction-relation
matrices operate without metric values, such as radiants or distances; therefore, they lead
to broad equivalence classes (i.e., the same direction description applies to a series of
conceptually similar configurations). Section 3.5 compares the expressive power of the

coarse direction-relation matrix with the expressive power of MBR relations. Section 3.6

P Y
y

summarizes the results of this chapter.

Figure 3.1: Two objects with their minimum bounding rectangles.

3.1 CoarseDirection-Relation Matrix

To overcome the limitations of MBR directions, we introduce a model that better
captures the influence of the objects shapes. It applies to direction relations between
regions, that is, objects homeomorphic to connected 2-disks. This mode uses the
projection-based method around the reference object (i.e., the object from which the
direction relation is described) and considers the exact representation of the target object
(i.e,, the object to which the direction relation is described). The projection-based
method, applied around the reference object, partitions the embedding space into nine
mutually exclusive regions, called the direction tiles (Figure 3.2), whose union forms a
complete partition of space. The direction tiles at the periphery correspond to the eight
cardina directions—north (Na), northeast (NEp), east (Ea), southeast (SEa), south (Sp),
southwest (SWa), west (Wpa), and northwest (NWa)—while the tile at the center, called
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same (0a), coincides with the minimum bounding rectangle of the reference object A

(Sections 2.3.2 and 2.4.6). The boundaries between any neighboring tiles have no extent.

NW A NA NE A

OA/‘ Ea

SW A S SE A

Figure 3.2:  The nine tiles resulting from the partitioning of space around the reference
object A

We describe the cardinal direction from the reference object to a target by recording
those tiles into which at least one part of the target object falls (Figure 3.3a). This method
is more detailed than the MBR relations, particularly for non-convex shapes, however, it
gives up converseness, an important property of cardinal-direction reasoning. For
instance, if B isin (NA, NEA, Ep) (Figure 3.3a), then A is not necessarily (SB, SWB,
WB), but depending on A's shape it may be (S, 0B, WRB); (SWB, 0B, WRB); (SB, 0B
SWB); or (SB, 0B, SWB, WB) as well (Figure 3.3b); therefore, a scene description with
coarse cardinal directions requires for each pair of objects the calculation and storage of

two rel ations—onefrom Ato B and another from B to A
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Figure 3.3: Capturing the cardinal direction relation between two areal objects, Aand B,
through the projection-based partitions (a) around A as the reference object
and (b) around B as the reference object.

We capture coarse cardinal directions between two regionsin the direction-relation
matrix dir, a 3 3 matrix that preserves the neighborhood of the partition around the

reference object and registers the intersections between the target and the tiles around the
reference object (Equation 3.1). The elements in the direction-relation matrix have the
same topological organization as the partition around the reference object. Following the
usual categorization of neighboring cells in square tessellations, two tiles are 4-neighbors
if they are horizontally or vertically adjacent (Samet 1989b).

é&N\W,CB N,GB NE,GBU

dirRR(A,B):g W,CB 0,CB E,C Bg (3.)
gsw,¢B s,CB SE,CBY

To describe coarse cardinal directions, we consider the emptiness and non-emptiness

of the nine intersections. For example, the two direction-relation matrices for the two

configurations in Figures 3.3a and 3.3b are given in Equations 3.2a and 3.2b,

respectively. A direction relation is 4-connected if all pairs of non-empty cells are

trangitively 4-neighbors.
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3.2 Realizability of the Coarse Direction-Relation Matrix

The coarse direction-relation matrix has nine eements, which yields 2°=512 possible
distinct configurations. However, not all configurations are possible for direction
relations. For example, a matrix with all elements having an empty value is impossible,
as such a matrix would mean that the target object is absent. A matrix that has a non-
empty value in the northwest and southeast elements, and an empty vaue in al other
elements is also impossible, because this implies that the target object is disconnected.
This section gives consistency constraints for regions, introduces icons to represent

directions, and examines all possible directions.

3.2.1 Consistency Constraints

For any direction relation with a nonempty target object, a least one of the nine
direction tiles must be non-empty. More than one intersection is non-empty if the target
object extends through more than one direction tile. A direction-relation matrix with
exactly one non-empty intersection is referred to as a single-item direction-relation
matrix, whereas those matrices with more than one non-empty intersection are called
multi-item direction-relation matrices. If the target object is a region, any two non-empty
intersections have to be 4-connected; otherwise, the representation in a direction-relation
matrix would be inconsistent. The examples in Equations 3.3a and 3.3b show inconsistent
direction-relation matrices for region target objects, because the two non-empty

intersections with the direction tiles are not 4-neighbors.
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3.2.2 lconic Representation of Direction-Relation Matrix

We use an iconic representation of the direction-relation matrix in the form of a 3" 3
tessellation of sguare cells, where white cells stand for empty tile intersections, while
black cells represent non-empty intersections (Figure 3.4a). If a value of a cell is

unknown (i.e., the entry is empty or non-empty), that cell is shown in gray (Figure 3.4b).

-

@) (b)
Figure3.4: The iconic representation of the directionrelation matrix: (@) a

configuration with three non-empty cells and (b) a configuration with one

non-empty cell and two cells that are either empty or non-empty.

A direction-relation icon with gray cells stands for the digunction of all possible
combinations with white and black cells, as long as at least one of the cells is black and
al black cells are 4-connected. For example, the icon in Figure 3.5a with two gray cells
would have 2 possible configurations (Figure 3.5b-€), three of which are legal, while
one is not allowed since its black cells are not 4-connected (Figure 3.5d). Given the
congtraints about 4-connectedness, only a subset of direction-relation matrices may be
realized—218 out of 2° = 512 possible combinations (Figure 3.6).
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Figure 3.5:

FAEFEIEAFTPFREaErRAEEH
AP PRPEAFEATIEATAE D

Figure 3.6:

T

@ b @© @ (@

The interpretation of gray cells under the 4-connectivity congtraint: (a) a
configuration with gray cells and (b)-(e) the set of possible black-and-white
configurations, with (d) being an illegal configuration because it is not 4
connected.

SHIETRKEAAMNEFACNE =G
JFERHAAFeHEdNRREALE S
AXFFV¥PELIALTEGMEGNHR
EFNHIFAREOEREEARNE T
OEUIRARdTPEREREST TN
BEAERAMELCEREAALEEHH
S AR FPEAREANREES
FOEdFAOARRAEEEEXA
ILEFEAAARETERELDTEH
HOPENFOFIYEEEFEFFESE
EOAELPLEARRAERNFELE
EddaAdASCANGAAFEIEAE

An iconic representation of the 218 direction-relation matrices that can be
realized between two regions.
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There are nine configurations with one non-empty tile; twelve configurations with
two nonrempty, 4-connected tiles, 22 configurations with three non-empty, 4 connected
tiles;, 36 configurations with four non-empty, 4-connected tiles;, 49 configurations with
five non-empty, 4-connected tiles, 48 configurations with six non-empty, 4-connected
tiles; 32 configurations with seven non-empty, 4-connected tiles; nine configurations with
eight non-empty tiles; and one configuration with nine non-empty tiles. These 218
situations can be recursively derived, starting with the first 9 single-item direction
relation matrices, by adding a 4-connected black cell into each possible location. With the
help of a software prototype for direction-relation matrices, these configurations have
been confirmed computationally (Section 6.3.2).

3.3 Effectsof Shape, Size, and Distance

Properties of objects, such as shape and size and distance between them, affect their
direction relations (Section 2.4.1). In this section, we study changes in directions between
two objects, while the reference object is kept fixed and the target object is subjected to
one of the following changes.

For a given shape and distance, if the size of the target object is increased, the target
object may intersect with more direction partitions (Figures 3.7a and 3.7b). If the size
of the target object is decreased, it may intersect with fewer direction partitions.

For a given shape and size, if the distance between the objects is reduced, the target
object may intersect with more direction partitions (Figures 3.7a and 3.7c). If the
distance between the objects is increased, the target object may intersect with fewer
direction partitions.

For a given distance and the size fixed by the area, a change in the shape of the target
object may change its intersection with direction partitions. Shape is an attribute that
is difficult to define, but, for the sake of this illustration, eccentricity (Gonzalez and
Woods 1992) is used (Figures 3.7aand 3.7d).

Changes in shape and size of the reference object also affect direction relations, as
these changes modify direction partitions.
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Figure 3.7: (a) The original configuration, (b) the size of the target object is increased,

(c) the distance between the reference and target object is decreased, and (d)
the target object is elongated.

3.4 Detailed Direction-Relation M atrix

The coarse direction-relation matrix records whether or not a target object fallsin a
direction tile or not. An interpretation of the mere fact that an object falls within some
direction tile(s) of another object may be misleading or inappropriate. For example, the
directions in Figures 3.8a and 3.8b may be considered to be more similar than those in
3.8b and 3.8c, because in 3.8a and 3.8b most or all of Bisin thetile NEa, while amost
nothing of B isin tile NEa in Figure 3.8c. The coarse direction-relation matrix, however,

would identify 3.8b and 3.8c as equivalent, but 3.8aand 3.8b as different.

@ (b) (©

Figure 3.8: Three scenes for which the coarse direction-relation matrix serves as a

cognitively inappropriate equivalence relation.



To provide more detail about directions among objects, we extend the cardina-
direction method describing refinements of the coarse cardinal directions by considering
additional criteria for non-empty intersections. The refinements considered here are based
on the area distribution throughout the direction tiles, and if a tile contains more than one

disconnected part of the target, the areal distribution within such tiles.

3.4.1 Areal Disribution

The areal distribution captures how much of the target object fallsinto each tile. For non-
empty tiles, we record for each object that falls into more than one direction tile the
percentage of the common intersection between a tile and the object. The refinement
measure implies the value 0% for empty intersections with that tile and 100% if and only
if the entire object falls into a single tile. Since detailed cardina directions refine coarse
cardinal directions, they inherit the property that the relations derived from this model are
not necessarily converse; therefore, for each pair of objects two relations must be
calculated and stored—from Ato B and from B to A

This refined model leads to a variation of the direction-relation matrix, recording
normalized areas in lieu of empty and non-empty intersections between the tile and the
target object (Equation 3.4). The range of each detailed cardinal direction XxisO£x £1.0
and the sum of al ratios for an object with respect to the direction partition of another
object must be 1.0.

éarea(NW, C B) area(N ,C B) area(NE, C B)u

g area( B) area( B) area( B) i

dir (A B)=é area(W,C B) area(0,CB) area(E,CB) 4
e (A B) = € area(B) area(B) area(B) U (34)

Carea(SW, CB) area(S,C B) area(SE,C B) 3

E area( B) area( B) area(B)

Equations 3.5a and 3.5b show the detailed direction-relation matrices for the
configurations shown in Figures 3.3a and 3.3b, respectively.
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3.4.2 Component Distribution

As a target object’s position is assessed with respect to the partitioning around the
reference object, multiple topologically disconnected parts of the target object may exist
for a single tile. Such disconnected parts within a tile are called components. Two types
of disconnected parts may exist: components whose closures are disconnected—called
strongly disconnected—(Figure 3.9a) and a weaker notion of components if they have
connected closures, but disconnected interiors—called weakly disconnected (Figure
3.9b). In both cases, each non-empty tile has at least one component, while each empty
tile has no components. The distribution of the components across the tiles is captured by
recording the counts of components per tile. Equation 3.6 shows the component
distribution for Figure 3.9a (and for Figure 3.9b under weakly-connected components).

NE A

@ (b)

Figure3.9: Tile 0a with (a) two strongly disconnected components of B and (b) two
weakly disconnected components.
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3.4.3 Areal Distribution of Components

Whenever a tile contains more than one component, the components may vary in size.
For example, in Figure 3.10 the Northern tile intersects with four components of B—two
rather small ones and two larger ones. In order to distinguish such differences, it is
necessary to capture the area of each component (Equation 3.7a). While the mere listing
of such component areas provides information about what parts of B are located in that
particular tile, it does not capture the distribution of the components throughout a tile.
This can be achieved, however, by recording the sequence of the areas of the

components, ordered along the boundary of thetile (Equation 3.7b).

NE A

Figure 3.10: A direction relation with four componentsin A's Northernttile.

€012 (2*0.01,0.04,009) Ou
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3.5 Comparison with MBR Direction Relations

Compared to the 169 MBR configurations (Figure 2.15), the direction-relation matrix
provides more detail for concave shapes, but is less sensitive to the small changes along
the boundaries of the partitions. For example, the direction-relation matrix may give a
better assessment of the direction relation when one region surrounds another one than
the MBR relations do (Figure 3.11); however, it does not capture subtle differences about
alignments of the objects minima and maxima extents, while the MBR relations do

distinguish these cases (Figure 3.12).

O

D

aram = |0 dir e (A 8) = ﬂﬁ arwicor= [JY dir ee(C.0) = ﬁ

dir gy (B,A) = P | dir yer (B, A)= (| dir (x(D,C) = 4 dir ez (D,C) = (|

Figure 3.11: A configuration whose cardinal direction is better captured by the direction-
relation matrix than by MBRs.
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Figure 3.12: Two configurations with the same direction-relation matrix, but different
MBR relations.

The common direction assessments of the direction-relation matrix and the MBR
relations are the 36 convex configurations of the direction-relation matrix (Figure 3.6).
The additional details captured by the remaining 133 MBR relations result from a
refinement of the 36 configurations, distinguishing whether the boundaries of the MBRs
are exactly aligned or not. On the other hand, the additional 182 direction-matrix
relations provide refinements for non-convex shapes. A more detailed direction-relation
matrix that captures the separations between the tiles in addition to the nine direction tiles
would include all MBR cases. Such a5 5 direction-relation matrix may be useful—and
sometimes even necessary—for a small number of cases; however, most inferences will
be sufficiently precise with the smaller and therefore, cognitively less straining 3" 3

representation.

3.6 Summary

This chapter presented a new model for representing cardinal directions between
extended spatia objects using direction-relation matrices. This model overcomes
limitations of models that use approximations such as centroids and MBRS, as it captures
directions more precisely if either of the objects is concave in shape. A particular feature
of the direction-relation matrix is its ability to describe direction relations at multiple
levels of detail. At a coarse level, the direction-relation matrix records into which

partitions around the reference object the target object falls. At a finer level, it captures
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how much of the target object falls into each partition; an even more detailed view is
given if the directionrelation matrix records properties of the components in each
partition. This multi-resolution model has significant implications for spatial query
processing when a user, for instance, sketches the objects of interest. The coarse
direction-relation may then act as afilter to quickly retrieve candidates, whereas the more
detailed direction-relation matrices can be used to prioritize the candidates (Egenhofer
1997). The converse of a direction-relation cannot always be determined uniquely from a
matrix; therefore, directions from Ato B and from B to A are recorded explicitly. The
comparison between the coarse direction-relation matrices and the MBR directions
reveals that coarse direction-relation matrices capture the influence of objects shapes on
directions better than MBR relations.

The direction model presented in this chapter ignores boundaries between direction
partitions, as the model focuses on the directions between regions. However, these
boundaries should be taken into account while recording directions for lines and points.
Chapter 4 presents a method to capture information about intersections between
boundaries and the target object in direction-relation matrices, thereby enabling a unified
method for direction relations between point, line, and region objects.
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Chapter 4
Deep Direction Model for Point, Line, and Region

Objects

The coarse direction model presented in the previous chapter is designed for region
objects. This chapter extends the coarse direction model to the deep direction model,
which applies to arbitrary pairs of point, line, and region objects. This extension enables
the use of cardinal direction in a cognitively plausible way between different internal
representations of the spatial objects. This extended model allows users to formulate
gueries such as “Find al towns in Maine that are north of Bangor” without pondering
about the interna representations of the towns in the database. Such a mode will
facilitate queries based on the cardinal directions in multi-representation geographic
databases (Buttenfield 1989; Puppo and Dettori 1995; Tryfona and Egenhofer 1996;
Bertolotto 1998).

Section 4.1 discusses limitations of coarse direction-relation matrices when applied
to point and line objects. Section 4.2 introduces the deep direction-relation matrix, which
records the information about intersections of a target object with direction tiles and
boundaries between tiles in a 3x3 matrix. Section 4.3 discusses the behavior of the deep
direction-relation matrix for various types of reference objects. Section 4.4 describes
consistency constraints imposed by the type of target object on the deep direction-relation
matrix. Section 4.5 studies the compatibility of the directions recorded at multiple scales.
Section 4.6 demonstrates that the deep direction-relation matrix records cognitively
plausible values of directions, and discusses advantages of the deep direction-relation

matrix over existing models. Section 4.7 summarizes the results of this chapter.
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4.1 Applying the Coarse Direction-Relation Matrix to Lines

and Points

The coarse direction-relation matrix (Section 3.1) successfully captures directions
between two region objects, but lacks the expressive power to capture the information
about line and point target objects in certain configurations. For example, coarse
direction-relation matrices would not be able to record directions for the configurationsin
Figures 4.1a and 4.1b, because a coarse direction-relation matrix has no boundary
elements and, therefore, al nine partition intersections with B would be empty. In Figure
4.1c, the partitions west, same, and east are lines, not regions; therefore, the partitions of

space are different from the partitions used by the coarse direction-relation matrix.

3

o .q.

(a) (b} {c)

Figure4.1: Configurations with line and point objects. (a) the reference object is a
region and the target object isaline, (b) aregion and a point object, and (c)

aline and a point object.

Since the representation of a spatial object may change across different scales, it is
necessary for a direction-relation model to be applicable and compatible across multiple
representations of objects. In order to develop a deep direction model, two issues are
considered: (1) the influence of the reference object on the construction of the reference

grid and (2) the variations that arise due to different types of target objects.

4.1.1 Reference Object Considerations

The reference grid is based on the orientation and the extent of the reference object. The

cardina direction axes determine the orientation of the grid, and the extent of the
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reference object determines the extent of partitions in the reference grid. At different
scales, the reference object may be a polygon, a line, or a point. Since the direction
relation matrix forms the centra tile around the reference object, the choice of a polygon,
a line, or a point influences the construction of the reference grid. The projection of an
object onto a grid axis results either in a line or a point. For a reference grid with a
vertical and a horizontal axis, there are four possible combinations: (1) both projections
are points (Figure 4.2a), (2) the projection onto the horizontal axis is a point and the
projection onto the vertical axis is a line (Figure 4.2b), (3) the projection onto the
horizontal axis is a line and the projection onto the vertical axis is a point (Figure 4.2c),
and (4) both projections are lines (Figure 4.2d). Four pairs of projections yield four types
of reference frames. The first three cases describe unique configurations when the object
is a point, a horizontal line, and a vertical line, respectively. The last case occurs when

the object isaregion or aline that is neither strictly horizontal nor vertical.

(a) (b) (c) (d)

Figure4.2: Different references frames based on different types of objects: (a) for a
point, (b) for a vertical line, (c) for a horizontal line, and (d) for other lines
and all regions.

4.1.2 Target Object Considerations

In asimilar way, the type of the target objects may influence the direction relation. While
a target region must extend through at least one tile of the grid around the reference
object, a line may fall “between the cracks,” that is, it may be located along the border
between two neighboring tiles if the line is strictly horizontal or vertical and exactly
aligned with the reference grid. For a point, additional alternatives exist as it may fall not
only on the border between two neighboring tiles, but also coincide with the border of
four tiles. A reference grid for the region reference that supports all cases would require
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nine direction partitions (Figure 4.3a) with sixteen boundary parts for these nine
partitions. Twelve of these boundary parts are lines (Figure 4.3b), and four parts are
points (Figure 4.3c). The lines between the partitions are the north-northwest line (N-
NwL), the north-northeast line (N-NelL), the east-northeast line (E-Nel), the east-
southeast line (E-Sel), the south-southeast line (S-Sel), the south-southwest line (S
SwL), the west-southwest line (W-SwL), the west-northwest line (W-NwL), the north
line (NL), the east line (EL), the south line (SL), and the west line (WL). The boundary
points are the northwest point (NWP), the northeast point (NEP), the southeast point
(SEP), and the southwest point (SWP). The coarse direction-relation matrix, however,

captures only the intersections with nine direction partitions.

NWR, NR, | NCR, N-NWL,  NdNeL_
. . NWP, NEP,
WR, IR, -
; Ak WT'h 431 TR e | m
W=Swi; 2 T IWP. SCP,
SWE, SR, | SER, S-Sl S-9el.,
(a) (b) {c)

Figure4.3: A region reference A in a 2-dimensiona embedding space: (a) nine
direction partitions, (b) twelve boundary lines between direction partitions,

and (c) four boundary points.

An extension of the 3x3 direction-relation matrix would have to account for the nine
partitions and all sixteen boundary parts. Such a 5x5 direction-relation matrix would have
an element for each partition and each boundary part, and record the information about
the intersection of the target object with all the 25 parts of the space. While it would
address each possible part at which a point could be located with respect to a reference
grid, it would increase the spatial resolution by 178% (from 9 to 25) for all types of
gpatial objects. People typically use the primary and secondary directions to communicate
the knowledge about relative orientation of objects; therefore, the use of a 25-element

matrix would be cognitively overwhelming, offering more elements than what people



handle easily (Miller 1956). In order to perform direction reasoning in a cognitively
plausible way, it is desirable to keep the number of elements in a direction-relation matrix

small.

A smadler number of elements also reduces the computational complexity for
assessing similarity between cardinal directions (Chapter 5). Each of the additional
sixteen elements would capture a very small part of the space, compared to the significant
areas covered by the nine direction partitions. From a computational perspective, the
higher resolution of the reference grid would introduce additional values that are often
implied. For example, if a target polygon is northeast of a reference polygon and the
coarse direction-relation matrix has non-empty values for the northeast and the north tiles
only, it implies that the intersection of the target object with the line between the two tiles

must be non-empty as well.

4.2 Deep Direction-Relation Matrix

Rather than increasing the spatial resolution, we increase the resolution of the values that
each element in the 3x3-direction-relation matrix may have. In addition to the empty and
non-empty values for the intersection of the target object with the direction partitions, we
capture for each empty direction partition when the target object intersects with its
boundaries. This information is encoded in the neighbor code of a direction. Such a

direction-relation matrix is called a deep direction-relation matrix.

A neighbor code records information about intersections with the direction partition
and the neighboring boundary parts using nine bits (X;—Xg) (Figure 4.4). Bit O (xo) records
the value of the intersection with the direction partition (DP); and bits 1-8 (x;—xg) record
the values of intersections with the left (L), bottomleft (BL), bottom (B), bottomright
(BR), right (R), top-right (TR), top (T), and top-left (TL) boundary parts, respectively.
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Figure 4.4: The nine-bit field for a neighbor code in the deep direction-relation matrix.

If the intersection of the target object with the direction partition (DP,) is empty
(A), werecord avalue O for xo; if the intersection is non-empty (J4) we record avalue
1 (Equation 4.1a). We denote the boundary of a direction partition that corresponds to bit
i in the dement by DP;. For example, in the case of a region reference the direction
partition for the northwest element is NWR, (Figure 4.3a) and the boundary
corresponding to bit 5 (i.e., DP?) is N-NwLa, that is, the right side boundary of NWR4
(Figure 4.3b). For i=1 to 8, the value of bit i is zero, if the target object intersects with the
direction partition; it is 1 if the target object does not intersect with the direction partition,

but intersects with the boundary corresponding to x; (Equation 4.1b).

_joif(bP,CB=/A)

%= 11if (0P, C B= o) (4-12)

10if(x, =1)

fori=1t08: x :={ (4.1b)
i

The value (X) of an element in a deep direction-relation matrix is the weighted sum
of the neighbor code (Equation 4.2); the weighting by the powers of 2 enables a unique
decoding of the neighbor code. The value of an element lies in the closed interval [0, 510]
depending upon the target object’s intersection with the direction partition it represents
and the boundaries d the partition. The value O for an element indicates that the target
object neither intersects with the direction partition nor with the boundaries. The value 1
implies that the target object intersects with the respective direction partition, which is the
only possible odd value for an element. All other possible values for an element are even,
because a neighbor code records bits (x;—Xg) as 0, when the intersection of the target

object with the direction partition is non-empty.
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X:=8 2'x, (4.2)

i=0

The deep direction-relation matrix for the direction of object B with respect to object
A records nine neighbor codes corresponding to nine cardinal directions. north (Xy),
northeast (Xyg), east (Xg), southeast (Xsg), south (Xs), southwest (Xsw), west (Xw),
northwest (Xyw), and same (Xg) in the same topologica organization as the coarse

direction-relation matrix (Equation 4.3).

éXNW Xy XNEl:J
dir(A B):= gxw X, XY (4.3)
éXSW XS XSEH

4.3 Deep Direction-Relation Matrices for Various Types of

Reference Objects

A hit in the neighbor code's eight bits corresponding to boundaries of direction partition
(Xi—xg) isrecorded as 1 if (1) the boundary corresponding to the bit exists, (2) the target
object’s intersection with the respective partition is empty, and (3) the target object’s
intersection with the boundary is non-empty. If any one of these conditions is not met, the
bit is marked zero. This section focuses on the first condition. We study the pattern of
zero hits for the neighbor code due to the nonexistence of certain boundaries for
direction partitions, which occurs due to the type of a reference object and the location of

adirection partition in the space.

The type of the reference object determines the types of partitions for north, east,
south, west, and same directions. For example, the north partition for a region reference
(Figure 4.2a) is aregion, whereas for a point reference (Figure 4.2d) the north partition is
a line. Therefore, a region reference has a boundary between its north and northwest
partitions, whereas a point reference has no boundary between its north and northwest
partitions. The location of a direction partition can aso force some bits in the neighbor

code for an element to zero. For example, the northwest partition has no boundary in its
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top-left; therefore, bit 8 in the northwest element of the deep direction-relation matrix
would always be 0. Sections 4.3.1-4 discuss neighbor code patterns for four types of

reference object.

4.3.1 A Region Reference Object

A region object has a reference grid with nine direction partitions and sixteen boundaries
between these partitions. The partitions northwest, northeast, southeast, and southwest
have three boundaries each with other direction partitions (Figure 4.5a). For instance, the
northwest region’s boundaries are the west-northwest line, the northwest point, and the
north-northwest line. Information about their intersections is recorded in bits 3-5 of the
northwest element, respectively (Figure 4.5b). The remaining five bits (bits 1-2 and 6-8)
in the neighbor code of the northwest element are always zero. If the intersection of the
target object with the northwest region is non-empty, the neighbor code would record 0
for bits 1-8, regardless of the values of the target object’s intersections with the
boundaries of the northwest partition (Figure 4.6b). The value of the northwest element is
1 for this case (Table 4.1). If the intersection with the northwest region is empty, there are
2°=8 possibilities (Table 4.1; Figures 4.6a and 4.6c—i). For example, the value of the
northwest element is 48 if the right and bottom-right boundaries intersect with the target
object (Figure 4.6h).

The partitions north, east, south, and west have five boundaries each. The eight
boundaries of the same partition are the west line, the southwest point, the south line, the
southeast point, the east line, the northeast point, the north line, and the northwest point.
The information about the intersections is recorded in bits 1-8 of the same (0) element.

The maximum vaue (i.e., 510) is assumed only by the same element.
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Figure4.5. (a) The reference grid for a region object and (b) the patterns of neighbor
codes for the northwest, north and same elements. A zero value for a bit in

an element implies that the value of that bit is always zero.

Possiblevaluesfor | Element value (Xyw) = | Hlustration

Xs | X4 | X3 | Xo 32X5+16X4+8%3+Xg
O|0|O0]O 0 Figure 4.6a
0Ol0] 0] 1 1 Figure 4.6b
Oo|0|1]O0 8 Figure 4.6¢c
Oj(110]|O0 16 Figure 4.6d
oOo|1|1]0 24 Figure 4.6e
110 0]0 32 Figure 4.6f
1,010 40 Figure 4.69
11|00 48 Figure 4.6h
1110 56 Figure 4.6i

Table4.1: All possible values of the northwest element in the deep direction-relation
matrix for the region reference. The remaining five bits (1-2 and 6-8) are

aways zero.
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Figure4.6: (a)-(i) Nine configurations corresponding to nine possible values of the
northwest element in the deep direction-relation matrix for a region

reference object.

4.3.2 A Linear Horizontal Reference Object

A linear horizontal reference object has nine direction partitions and six boundaries
between these partitions. The direction partitions are north region, northeast region, east
line, southeast region, south region, southwest region, west line, northwest region, and O
line (Figure 4.7a). The boundaries of the nine partitions are the north-northwest line, the
north-northeast line, the east point, the south-southeast line, the south-southwest line, and
the west point.

The northwest partition has two boundaries, because the west-line at the bottom of
the northwest-region is a direction partition on its own. Two boundaries for the northwest
partition are the west point and the north-northwest line. The information about their
intersections with the target object is recorded in bits 4-5, respectively (Figure 4.7b). The
remaining six bits in the neighbor code are always zero. The north partition has four
boundaries and the information about their intersections with the target object is recorded

in bits 1-2 and bits 4-5. The west partition has only one boundary, and information about
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the target object’s intersection with the boundary is recorded in bit 5. The same partition
has two boundary parts, and the information about the target object’s intersections with

these partsisrecorded in bits 1 and 5.

N-Nwl. N-NeL Nw (0|00 |x|x|0]|0 ¥a
L. 17 TR R OBeR 1 B3 L DP
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N Q|0 |0 x| x50 x]x]x
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A
W O[0(0|x|0|0[0]|0]|x
T. T TR R BR B R. I DP
SWR,, SR, SLE,
5-Swl. $-Sel 0 [(0]0|0|x|0|0|0|x]|x
I T TR R BR B BL L DP
(a) (h)

Figure4.7: (a) The reference grid for a horizontal line and (b) the patterns of neighbor

codes for the northwest, north, west, and same elements.

4.3.3 A Linear Vertical Reference Object

A vertica line, just like a horizontal line, has nine direction partitions and six boundary

components (Figure 4.8a). Figure 4.8b shows four patterns of the neighbor codes.

NWR, NI, NER, nw (0000 x[x| 0[]0
T.. T 1k K BR B B T DI
NP, W O 5 X G| a0 0] X
A TI. T Th ® BR B H. T DI

WER., 0L, ER,
) N 0(0|0|0|0|x]0|0]x
b [ ) T. T 1R B BR B R. T DIP
) { D X U U 0 1'_!. 0 0 '\:II
SWR, Sl SER. L 1 TR B BERE B BL L DrP

(a) (b)

Figure4.8: (a) The reference grid for a vertical line and (b) the patterns of neighbor

codes for the northwest, west, north, and same elements.
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4.3.4 A Point Reference Object

The reference frame for a point object has nine direction partitions and no boundaries
between these partitions are needed (Figure 4.99); therefore, the neighbor code is O for all

direction partitionsin Figure 4.9b.

NI,
NWR., \FR, NW [(¢|0(0[0|0[0|0]|0]x
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L,
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Figure4.9: (a) The reference grid for a point and (b) the patterns of neighbor codes for
the northwest, north, and same element.

4.4 Consistency Constraints Due to the Type of the Target
Object

To analyze the consistency constraint for the target object, we distinguish three types of
objects: regions (Section 4.4.1), lines (Section 4.4.2), and points (Section 4.4.3). Before
describing these congtraints, we need to define the terms used in explaining the
consistency constraints.

Definition 4.1: A non-zero element in a deep direction-relation matrix is an e ement that
has at |east one of the nine bits (0-8) with avalue 1.

Definition 4.2 An element with a non-empty neighbor code in a deep direction-relation

matrix is an element that has at least one bit with a value 1 for the neighbor code in bits
1-8.
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For example, the deep direction-relation matrix in Figure 4.6c has non-empty
neighbor codes for the northwest and west elements. An element with a non-empty
neighbor code is a non-zero element, but the reverse is not always true. For example, the
deep direction-relation matrix in Figure 4.6b has a non-zero value for the northwest

element, but its neighbor code is empty.

Definition 4.3: A row-tuple in a deep direction-relation matrix is a set of two adjacent
elements with non-empty neighbor codes in a row, such that the left element has only its

right bit with value 1 and the right element has only its left bit with value 1.

The value of the left element in a row-tuple is 2, while the value of the right element
is 32. For example, the deep direction-relation matrix in Figure 4.6f has a row-tuple

formed by the northwest and north elements.

Definition 4.4: A column-tuple in a deep direction-relation matrix is a set of two adjacent
elements with non-empty neighbor codes in a column, such that the top element has only

its bottom bit with value 1 and the bottom element has only its top with value 1.

Definition 4.5: A quadruple in a deep direction-relation matrix is a set of four elements
with non-empty neighbor codes arranged in a rectangular fashion, such that only the
bottom-right, bottomleft, top-left, and top-right bits have a value 1 for the top-left, top-
right, bottom-right, and bottom-left elements, respectively.

A point target on a corner of the same direction partition for a region reference gives

adeep direction-relation matrix with a quadruple (Figure 4.6d).

Definition 4.6: A row-sextuple in a deep direction-relation matrix is a set of six elements
with non-empty neighbor codes arranged in two adjacent rows, such that (1) only the
bottom-right, bottom, and bottom-left bits have a value 1 for the left, central, and right
elements in the top row and (2) only the top-right, top, and top-left bits have avalue 1 for
the left, central, and right elements in the bottom row, respectively.
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Definition 4.7: A column-sextuple in a deep direction-relation matrix is a set of six
elements with non-empty neighbor codes aranged in two adjacent columns, such that (1)
only the bottom-right, right, and top-right bits have a value 1 for the top, middle, and
bottom elements in the left column and (2) only the bottom-left, left, and top-left bits
have avalue 1 for the top, middle, and bottom elements in the right column, respectively.

For example, a point target that coincides with the north point of a vertical line
reference yields a deep direction-relation matrix with a row-sextuple (Figure 4.10a),
whereas a point target that coincides with the west point of a horizonta line reference

yields a deep direction-relation matrix with a column-sextuple (Figure 4.10Db).

.H
I\ B.
A

g6 8 40 €6 4 O0u
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264 128 256y, 232 2 0y
g0 0 04§ g4 256 0f

(@) (b)

Figure 4.10: The direction of a point in specific situations with respect to (a) a vertical

line having a row-sextuple and (b) a horizontal line having a column-

sextuple.

4.4.1 A Region Target Object

A region object imposes the constraint of 4-connectedness on the deep direction-relation
matrix, similar to the 4-consistency constraint for the coarse direction-relation matrix
(Section 3.2.1). Additionally, neighbor codes in the deep direction-relation matrix must
also follow constraints imposed by connected regions. A 4-consistent deep direction-

relation matrix satisfies al of the following three constraints:
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at least one element of the matrix must have avalue 1 (Figure 4.114),
al dementsthat have the value 1 must be 4-connected (Figure 4.11b), and
al elements with non-empty neighbor codes have at least one 4neighbor or &

neighbor with avalue 1 (Figure 4.11c).

>
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& 0 Ou 6 1 0u 61 6 OO
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Figure4.11: Deep direction-relation matrices that are consistent for region targets with

respect to region references.

The first two constraints follow from constraints of the coarse direction-relation
matrix (Section 3.2.1), while the third constraint is specific to deep direction-relation
matrices. For example, the deep direction-relation matrix in Equation 4.4 satisfies the
first two constraints, but does not satisfy the third constraint. This matrix refers to a target
object that only intersects with the northwest-region (NWR) and the south-southwest line
(S-SwL). It is impossible for a connected region to intersect with NWR and S-SwL
without intersecting any other direction partitions; therefore, this deep direction-relation

matrix isinconsistent for aregion target.

'
\o)

U

u
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dir(AB) = &
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The three constraints apply to the deep direction-relation matrix recorded for a target
object with respect to any of the four types of reference objects (Figure 4.2). For
horizontal line, vertical line, and point reference objects, there is an additional constraint

in each case.

A horizonta line reference has three non-region partitions—the west line, the same
point, and the east line. If a target object intersects with non-region direction
partitions and does not intersect with any region partition, it cannot be a region.
Therefore, in the case of a horizontal line reference, at least one element
corresponding to its six region partitions¥a northwest, north, northeast, southeast,
south, and southwest¥s must have the value 1.

Similarly for a vertical line reference, at least one element corresponding to its six
region partitions¥anorthwest, northeast, west, east, southwest, and
southeast¥s must have the value 1.

For a point reference object, at least one element corresponding to its four region
partitions¥s northwest, northeast, southeast, and southwest%z must have the value
1

442 A LineTarget Object

In addition to 4-connected configurations, a line target generates 8-connected
configurations. A line can fall completely on the boundaries of direction partitions,
except the point boundaries. These two factors impose the following two constraints on
the deep direction-relation matrix:

al non-zero eements must be elght-connected (Figures 4.12a-c), and

to exclude the possibility of a point fulfilling the eight-connectivity constraint, an
additional constraint according to the type of the reference object must be
fulfilled.

if the reference object is aregion, the matrix must not contain a quadruple.
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if the reference object is a vertica line, the matrix must not contain a row-
sextuple.
if the reference object is a horizonta line, the matrix must not contain a column-
sextuple.
if the reference object is a point and the value of the same element is 1, at least

another element must be 1.

B B
B
€ 48 1410 é1 4 Ou 6l 1 10
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@0 0 04 @4 1 0 @0 0 Of
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Figure 4.12: Deep direction-relation matrices that are consistent for line targets with

respect to (a) aregion, (b) ahorizontal line, and (c) a point.

4.4.3 A Point Target Object

A deep direction-relation matrix is consistent for a point target object if it satisfies any

and only one of the following six conditions:

it has only one element with value 1 (Figure 4.13a),
it has only one row-tuple (Figure 4.13b),

it has only one column-tuple (Figure 4.13c),

it has only one quadruple (Figure 4.13d),

it has only one row-sextuple (Figure 4.10a), or

it has only one column-sextuple (Figure 4.10Db).
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Satisfying more than one constraint would imply that the target object is not a point.
For example, if a deep direction-relation matrix has more than one element with value 1,
it would mean that the target object is either a line (Figure 4.12c) or a region (Figure
4.11b).
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Figure 4.13: Deep direction-relation matrices that are consistent for point targets with
respect to (a) a point, (b) a horizontal line, (c) a vertica line, and (d) a
region.

45 Directionsat Multiple Scales

Based on the expressive power and flexibility of the deep direction-relation matrix, a
more complex problem can be addressed: the consistent modeling of direction relations
across multiple representations. The use of multiple representations of spatial objects is
an important issue in GISs, because they typically encode the geometry of spatial objects
in terms of points, lines, and polygons. The choice of the encoding, however, is not
necessarily unique and often times the same geographic object may be represented as a
polygon or a point, or as a polygon or a line. The decision about a particular
representation depends on the level of detail, often referred to as the scale of a data set
(Goodchild and Proctor 1997). For example, atown may be a dot on a national map, but a
polygon at a more detailed level. When using spatial datain a GIS, users typicaly have to
know about the encoding of the data in order to apply appropriate operations. For
instance, while it makes sense to calculate the area of a polygon, the same operation does
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not apply if the object’s geometry is represented as a line or a point. In this section, we
study the directions recorded by deep direction-relation matrices at multiple scales.

We consider the directions of B with respect to A in a scene at the initial scale ()
and the scale after zooming-out (S;). The zooming out operation in this chapter is a
graphica zoom (Frank and Timpf 1994), which corresponds to a scale reduction in
cartographic generalization (McMaster and Shea 1992). Zooming out is equivalent to
observing the same scene from a more remote distance. A scale reduction can reduce the
dimension of an object in a scene. “Reduction of the dimension of an object due to ascale
reduction” is referred as the collapse operation in cartographic generalization (McMaster
and Shea 1992). A collapse operation may change aregion into aline or a point, or aline
into a point. In the case of a graphical zoom, after zooming-out an object remains in the
scaled range of the origina object, which is not always the case for cartographic
generalization. In this study, we consider only geometric aspects of the collapse
operation; therefore, we assume that after a scale reduction, the object at a reduced scale

remains within the scaled range of the original object.

We call a scale reduction that reduces the dimension of an object a significant scale
reduction. This study considers significant scale reductions only, because only such
changes make qualitative differences in a reference target pair of a direction relation. The
effects of significant scale reductions are studied for the x-axis projections of the objects,
the results apply to the y-axis projections correspondingly. There are five cases of
significant scale reductions on the x-axis, where P 2(A) denotes the projection of object
A on the x-axis at scale § (Table 4.2). While generating the names of the cases, “I”
denotes an interval, and “P” denotes a point. For example, the case |1PP (Table 4.2) refers

to a scale reduction that collapses a pair of intervals (11) into apair of points (PP).
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Case Before significant scale reduction After reduction

P (A P;(B) Py (A) P5(B)
PP interval interval point point
[Pl interval interval point interval
P interval interval interval point
|PPP interval point point point
PIPP point interval point point

Table4.2: Significant scale reductions in the types of projections of reference target

pair on the x-axis.

In order to study the compatibility of directions at multiple scales, Section 4.5.1
defines the term compatible for deep direction-relation matrices. We use the projections
of the objects on the x-axis to study the deep direction-relation matrix at multiple scales.
Section 4.5.2 discusses the relations between different types of projections of objects.
Sections 4.5.3-7 analyze the five cases of significant scale reductions (Table 4.2). Section

4.5.8 summarizes the results of this study.

451 Compatibility for Deep Direction-Relation M atrices

We denote the deep direction-relation matrices for the directions of object B with respect
to object Aat scales § and S; by D° and D?, respectively.

Definition 4.8: The direction D* is compatible with the direction D° if for each non-zero

element in D* the corresponding elementsin D° are non-zero (Equation 4.5).
compatiblgD®, D*Y):=",  :D};* 0P D1 0 (4.5)

The number of non-zero elementsin D° is either equal to or more than the number of
non-zero elementsin D*. For example, if the target object B intersects with the northwest
and north partitions (Figure 4.14a) at scale &, then at scale S, the target object can
intersect with the northwest partition (Figure 4.14b), the north partition (Figure 4.14c),
and the north and northwest partitions (Figure 4.14d). The D' matrices recorded in
Figures 4.14b-d are compatible with D° in Figure 4.14a
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The binary relation compatible is reflexive, because D is compatible with itself. If
D' is compatible with D° and D? is compatible with D*, D? is compatible with D%
therefore, the relation compatible is transitive. It is also antisymmetric, because D*
compatible with D° and D° compatible with D' implies D° equals D*. The relation
compatible is reflexive, transitive, and antisymmetric; therefore, it is a partial order

relation.
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Figure4.14: Objects Aand B with their deep direction-relation matrices at (a) scale S
and (b)-(d) scale S.

4.5.2 Relations between Projections of Objects

An object’s projection onto an axis is either a point or an interval. The projection of an
ordered pair of a reference object and a target object onto an axis can be (1) a pair of
points, (2) an interval and a point, (3) a point and an interval, and (4) a pair of intervals.
A point in a 1-dimensiona space (along an axis) can be before (<), equal to (=), or after
(>) another point (Table 4.3), where x, isthelocation of object A on the x-axis.
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Relation | Condition

before (<) Xg < X,
equal (=) Xg = X
after (>) Xg > X,

Table4.3: The conditions for the relations between two points on the x-axis; Ais the

reference point and B is the target point.

A point can be before (<), at-start of (as), during (du), at-finish of (af), or after (>)
an interval on an axis (Figure 4.1538). The relations in Figure 4.15a correspond to the
relations posterior (-), back (b), interior (i), front (f), and ahead (+) (Mukerjee and Joe
1990). We denote the left and right extremes of the interva A by Xa. and Xa,
respectively. The relations in Figure 4.15a can be expressed using the conditions between
xg and the extremes x,. and xa. (Table 4.4). An interval can have the following relations
with respect to apoint on an axis. before (<), finishes-at (fa), contains (co), starts-at (sa),
and after (>) (Figure 4.15b; Table 4.5).

< a5 du al > < f: co . N

e * o @ — e 9 _eo— =2 —_

B A B A Ba Ba AB 7B
(a) (h)

Figure 4.15: Relations in 1-D space for (a) point B with respect to interval A and (b)
interval B with respect to point A

Relation Conditions
before (<) Xg < X,
at-start (as) Xg= X
during (du) | (xg>x, )U(Xg<X,,)
at-finish (af) Xg= Xp,
after (>) Xg> Xp,

Table 4.4: Conditions for relations of point B with respect to an interval A
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Relation Conditions
before (<) Xgy < Xp
finishes-at (fa) Xge = Xu
contains (co) (Xg. < X )U(Xg, > X,)
starts-at (sa) Xg. = X,
after (>) Xg. > X,

Table 4.5: Conditions for relations of interval B with respect to apoint A

An interval can have one of thirteen relations (Allen 1983) with respect to another
interval (Figure 2.8). Figure 2.8 uses the symbol B for the reference interval and the
symbol A for the target interval, whereas Figure 4.16 uses symbol A for the reference
interval and symbol B for the target interval, because the direction-relation matrix uses
symbols A and B for the reference and target objects, respectively. Each interval relation
can aso be described using conditions between the extremes of the intervals (Table 4.6)
(Freksa 1992a).
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Figure 4.16: One-dimension interval relations, A is the reference interval and B is the

target interval.
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Relation Conditions

before (<) Xgr < X
meets (m) Xg+ = Xp
overlaps (0) (Xg. < X, )U(Xg, > X, YU(Xg, < Xu,)
finishes-inverse (fi) (Xg. < X, YU(Xg, = X,,)
starts (s) (Xg. = X, )U(Xg, < Xy,)

during (d) (Xg. > X JU(Xg, < Xyu,)

equal (=) (Xg. = Xa )U( Xg+ = Xay)

during-inverse (di) (Xg. < X, )U(Xg, > X,,)

starts-inverse (si) (Xg. = X, )U(Xg, > X,,)

finishes (f ) (Xg. > Xp )U( Xg+ = Xar)

overlap-inverse (oi) (Xg. > X, )U(Xg. < Xp )U(Xg, > Xg,)

meets-inverse (M) Xg. = Xp,
after (>) Xg. 2 Xps

Table 4.6: Conditionsfor 1-D interval relations.

To study the deep direction model at multiple scales, we use the relations between an
ordered pair of points (Table 4.3), apoint and an interval (Figure 4.15a), an interval and a
point (Figure 4. 15b), and intervals (Figure 4.16).

45.3 Collapsing a Pair of Intervalsinto a Pair of Points

In this section, we consider the case 11PP, where both the reference and target projections
on the x-axis are intervals. After a scale reduction, the projection of an interval collapses

into a point (Equation 4.6).
[xfi_ ,X%J ® X} (4.6)

We assume that a zooming-out operation on a projection of an object on an axis
yields the same result as zooming-out on a scene containing this object, followed by
recording of the projection on an axis. The shrinking of a region reference (Figure 4.5a)
into a vertical line reference object (Figure 4.89) is an example of a significant scale
reduction that collapses the reference interva into a point. In this example, the north

region with its left and right boundaries collapses into a north line (Equation 4.7).
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{N-NwL, NR, N-NeL}¢® {NL} 4 (4.7)

The point x} is the result of collapsing the interval [Xf\_ X0, |, therefore, the point

Al
will lie within the scaled interval g o
éga

l AN
Xar E(Equation 4.8).
a
u

0 0
X X
A X £

(4.8)
a a

We denote distances of the point x; from the left and right extremes of the scaled
interval A by non-negative variables L and M, respectively, and the range of point x; in
terms of the extremes of the scaled interval A (Equations 4.9a). Similarly, we describe the
range of point x; with respect to the scaled interval for B using non-negative variables N
and P (Equation 4.9b). Sections 4.5.3.1-3 use the ranges of points x, and x; (Equations

4.9a-b) to anayze the scale reduction for the interval relations. meets, overlaps, and
equal, respectively.

0 0

Xa oy =xt =22 L30,M2 0 (4.93)
a a
N x2
B +N=x3="2--P,N30,P30 (4.90)
a a

45.3.1 Intervalswith relation meets

The condition for the interval relation meets is xg, =x5 (Table 4.6), which holds for
scaled intervals as well (Equation 4.10). To determine new relations for point x& with

respect to the point x;, we combine the condition of meets relation (Equation 4.10 ) with
the ranges of the points in the scaed intervals (Equations 4.9a-b), which gives the

constraint between the points at scale S, (Equation 4.11). This constraint is rearranged as
difference between two points (Equation 4.12). If both L and P are zero, x5=x. If L>0

or P>0, x;<x;. Thus, a relation meets between an ordered pair of intervals can
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transform to either “<” or “=". The relation between an ordered pair of pointsisaset {<,
=} (Table 4.7).

KXo = Xa (4.10)
a a
XL +P=x;- L (4.12)
Xt - xi=-(L+P) (4.12)
R:(A.B) R.(A,.B,)
< <
m {<=}
0 {<,=>}
fi {<,=>}
s {<, =, >}
d {<,=>}
= {<' =, >}
di {<,=>}
Si {<,=>}
f {<,=>}
oi {<,=>}
mi {=>}
> >

Table4.7.  An IIPP scale reduction maps relations between intervals onto the relations
between points.

The reduction in the dimension of the objects projections is only due to a scaling
operation; therefore, the order between projections along an axis does not change. We

denote the relation of interval B with respect to interval A at scale § on the x-axis by
R’(A,B). If the vaue of RY(A,B) is{<}, that is, B west of A after a case IIPP
reduction, the value of new relation Ri(Ab,Bp) is {<}, which is also B west of A If
R°(A,B)={m} it means B is west of A and runs up to the west point of A'sinterval.
After an IIPP reduction, the relationRi(Ab,Bp) is a relation from the set {<, =}. In a

specific instance, the value of arelation from a set depends on the lengths of the intervals
and their relative placement. For example, the scene in Figure 4.17a can transform into
the scenes in Figure 4.17c or 4.17e dafter an |IPP scale reduction. Similarly, an 1IPP
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reduction can transform the scene in Figure 4.17b into the scenes in Figure 4.17d or

Figure 4.17e. The values of the relation Ri(Ab,Bp) in Figures 4.17c and 4.17d are

qualitatively equivalent. The directions in Figures 4.17c-e are compatible with the
directionsin Figures 4.17a-b.

_B_ il h B* B
'm A A A
& 2 0y & 2 0y & 0 ou & 0 ou @ 1 0u
& u & u : u : u : u
O 0 0y O 0 0y L 0 0y L 0 0y L 0 0
€ 0 0§ € 0 0f & 0 0f & 0 0§ & 0 0f
(a) (b) (© (d) (e)

Figure 4.17: The relations between projections on to the x-axis. (a)-(b) interval relation is
meets and point relations are (¢)-(d) before, and (e) equal.

A query “Find all scenes where object B is northwest of A’ on Figure 4.17 would
return the scenes in Figures 4.17a-d, while a query, “Find al scenes where object B
intersects with the north partition of A’ would return the scenes in Figures 4.17a-b and
4.17e. This example illustrates that the directions recorded using the deep direction

relation matrices at a smaller scale are compatible with the directions recorded at alarger
scale.

4.5.3.2 Intervalswith relation overlaps

We apply the conditions of overlaps relation (Table 4.6) to the scaled intervals
(Equations 4.13a-C).

0

0

Xe o Xa (4.13a)
a a
0 0

Xoe 5 Xa (4.13b)
a a



0 0
Xor o Xae (4.13¢)
a a

Combining the conditions between the extremes of scaled intervals for overlaps
relation (Equations 4.13a-c) with the ranges of pointsx; and x; (Equations 4.9a-b), we

get relations between the points in terms of inequality conditions (Equations 4.14a-c).

Xt - N<x;-L (4.144)
Xt +P>x;- L (4.14b)
Xt +P<x;+M (4.14c)

The inequalities (Equations 4.14a-c) are expressed as the differences between points
xt and x; using positive variables Q, R, and S, respectively (Equations 4.15a-C).

xt-xi=N-L-Q,Q>0 (4.15a)
Xt- x,=R-L-P, R>0 (4.15b)
Xg- X, =M-P-S,S>0 (4.15c)

In Equation 4.15a, if N equals L+Q, xg=Xj; if Nismorethan L+Q, xg>X,; and if
Nislessthan L+Q, x;<xj, whichimplies x;{<, =, >} x}. Equations 4.15b-c also give

the same result (Table 4.7).

4.5.3.3 Intervalswith relation equal

We apply the conditions of equal relation (Table 4.6) to the scaled interval (Equations
4.16a-b).

X = Xa (4.163)
a a
0 0

Xor — Xar (4.16b)
a a
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We combine the conditions of the relation equal (Equations 4.16a-b) with the ranges

of the points (Equations 4.9a-b), and obtain conditions for the points (Equations 4.17a-b).

Xg- N=x5- L (4.17a)

XL +P=x;+M (4.17b)

The conditions between the points (Equations 4.17a-b) are arranged as the difference
between the points (Equations 4.18a-b), which imply Xz<xX,, Xz=X,, and Xg>Xj,
relations are possible; therefore, the resultant relation between the pointsis a set { <, =, >}
(Table 4.7).

Xt- x3=N- L (4.189)

Xg- Xa=M-P (4.18b)

This section derived relations between two points at scale S, if the relation between
two intervals at scale § is meets, overlaps, and equal. Similar derivation can be
performed for the remaining ten relations between intervals (Table 4.7). For the interval
relations before and after, the results for an 1IPP reduction are unique. For al other
relations, a scale reduction gives a set of relations. For a given pair of intervals, the actua
relation between points is determined by the lengths of the intervals and their relative
placements, as shown for the relation meets (Figure 4.17). However, values of new

relations are compatible with the relations before scale reduction.

4.5.4 Collapsing a Pair of Intervalsinto a Point and an Interval

In the case I1PI, the reference object’s interval projection collapses into a point, while the
target object’s projection continues to be an interval (Equations 4.19a-b). The resulting
relations are given in Table 4.8.

[XZ_ ,XLJ ® X, (4.19a)
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[xg_ ,x§+J® [xé Xgs (4.19b)

If a particular relation does not fit into this case, the result is recorded as impossible.
For example, if interval B equal interval A, after a significant scale reduction, both Aand
B must collapse into points. Due to the same length of both intervals, it is impossible for

B to stay an interval, while A collapses into a point.

R.(A,B) R(A,.B)
< <
m {<, fa}
o] {<, fa, co}
fi { fa, co}
S impossible
d impossible
= impossible
di { fa, co, sa}
S {co, sa}
f impossible
oi {co, sa, >}
mi {sa, >}
> >

Table4.8: The scale reduction of the type IIPI maps the relations between intervals
onto the relations of point B with respect to interval A
455 Collapsing a Pair of Intervalsinto an Interval and a Point

In the case I1IP, the reference object’s projection continues to be an interval, while the
target object’s interval projection collapses into a point (Equations 4.20a-b). Table 4.9
gives the resulting relations after the change.

[xi_ ,x‘,lJ ® [xi : XLJ (4.20a)
[, |® % (4.20b)
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R.(A,B) R«(A.B))
< <
m {<, as}
o] {<, as, du}
fi impossible
S {as, du}
d du
= impossible
di impossible
S| impossible
f {du, af, >}
oi {du, af}
mi {af, >}
> >

Table4.9: The scale reduction of the type II1P maps the relations between intervals
into the relations of point B with respect to interval A

45.6 Collapsing an Interval and a Point into a Pair of Points

In the case IPPP, the reference object’s interval projection collapses into a point, while
the target object’s projection continues to be a point (Equations 4.21a-b). Table 4.10

gives the resulting relations.

[XZ_ ,xi+J® X, (4.21a)
X3 ® X, (4.21b)
R(A.B,) R(A;B,)
< <
as {<.=}
du {<,=>}
af { =, >}
> >

Table4.10: The scae reduction of the type IPPP maps the relations of point B with

respect to interval A onto the relations between points.
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4.5.7 Collapsing a Point and an Interval into a Pair of Points

In the case PIPP, the reference object’s projection continues to be a point, while target
object’s interval projection collapses into a point (Equations 4.22a-b). Table 4.11 gives

possible relations after this change.

XA ® X (4.22q)
[xg_ ,xg+J® X, (4.22b)
R:(A,.B) R(A;B,)
< <
fa {<=}
co {<,=>}
sa {=>}
> >

Table4.11: The scale reduction of the type PIPP maps the relations of interval B with
respect to point A onto the relations between points.

45.8 Compatible Directionsat Smaller Scales

The relations between projections at a smaller scale are compatible with the relations at a
larger scale in the 1IPP case of scale reduction (Section 4.5.3). Similar reasoning applies
to the other four cases; therefore, the relations between the projections of objects on an
axis, after a significant scale reduction, are compatible with the relations before zooming
out. The region reference grid has nine direction partitions and sixteen boundary parts,
which make 25 parts of space. Similarly, reference grids for a horizonta line and a
vertical line have 15 parts of the space, and the reference grid for a point has 9 parts of
gpace. We analyze the change of direction due to a significant scale reduction in a

reference frame part by part.

The intersection of each part of space with a target object can have more than one
separation (Figure 3.9). We call such a separation a target component. The union of all
the target components yields the target object. The projection of a target component onto
an axis can be a point or an interval. A significant scale reduction collapses at least one

projection from all the target components and the reference object. A change in the type
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of a pair of projections of the reference object and a target component on an axis due to
zooming out falls in one of the five cases. For these cases, relations after a scale reduction
on an axis are compatible with the relations before scale reduction. Combining all parts,
we infer that the direction recorded by the deep direction-relation matrix at a smaller

scale is compatible with, if not equal to, the direction recorded at a larger scale.

For example, at scale S the target object B is aregion (Figure 4.18a), and at scale S
it collapses into a line (Figure 4.18b), while the reference object A continues to remain a
region. The target object B has five components B,, B,, Bs, B, and Bs. At scale S, the
components By, B, and Bs are regions, and B, and B, are lines. The components B; and
Bs intersect with the west partition, Bs intersects with the northwest partition, and B, and
B, intersect with the west-northwest line. At scale S, the object B becomes a line. The

components B, Bs, and Bs collapse into lines and B, and B, collapse into points.

We analyze the relation of each component’s x-axis projections with the reference
object’s x-axis projection for this example (Table 4.12). The changes in the types of
projections occur for the components B, and B4 only, and both the changes are of the
same type I11P. The values of relations for the projections of B, and B, with respect to A's
projection after scale reduction is obtained from Table 4.9. The anaysis for the y-axis
projections can be performed similarly, but there is no change in the types of projections
of the reference object and the target components on the y-axis in this example. At both
scales, the directions of B with respect to A are recorded as the same value (Equation
4.23). The relations for each component’s projections with respect to the reference
projections at scale S; are compatible with the relations at Sy, therefore, the direction at
scale S, in this example is compatible with the direction at scale S,
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(a)

(b)

Figure4.18: (a) The region-region pair at scae § and (b) region-line pair at scale S

after azooming-out operation.

Atscae § Atscale S
n P2 (A) P3(B) | RI(AB,) | PL(A P.(B) | R(AB,)
1 interval interval < interval interval <
2 interval interval < interval point <
3 interval interval < interva interval <
4 interval interval < interval point <
5 interval interval < interva interval <

Table4.12: The projections of the reference object A and the components of the target

object B onto the x-axis, and their relations, where n is the component

number.

dir(A B) =

B 0
o O O

o

o
[« oY e e el

(4.23)

The directions between a pair of objects recorded at two different scales may not

always be equal, however. If they were aways equal, the models of directions between

points would be sufficient, and there would be no need for models of directions between

extended objects. The study in this section shows that the deep direction-relation matrices

record directions that are compatible with the directions recorded at larger scales, which

makes this model useful for direction-based queries at multiple scales.



4.6 Analysisof the Deep Direction M odel

The deep direction-relation matrix uses nine elements, and each element records
information in nine bits; therefore, a deep direction-relation matrix needs 81 bits. Thisis
224% more than 25 bits in a 5x5 matrix. In the exchange of the larger number of bits, the
deep direction-relation matrix has the following advantages over a 5x5 matrix: (1) it
records nine elements, regardiess of the types of the objects, (2) al elements across the
matrix have the same structure, and (3) it facilitates the assessment of compatibility of
directions at multiple scales (Section 4.5).

4.6.1 Cognitively Plausible Values of Dir ections

The examples in this section illustrate that the deep direction-relation matrix records the
same value for equivaent directions, irrespective of the dimensions of objects. The
directions of object B with respect to object A in Figures 4.19a, 4.20a, and 4.21a are
equivalent, and in all these cases the value of recorded directions dir(A, B) is the same
(Equation 4.24a). Similarly, the directions of B with respect to A in Figures 4.19b and
4.20b are equivaent, and they are captured as the same value using neighbor codes
(Equation 4.24b). The direction dir(A, B) in Figures 4.20c and 4.21b are equivaent and
recorded as the same value (Equation 4.24c). These examples illustrate that the deep
direction-relation matrix is capable of capturing directions for point, line, and polygon
target objectsin a consistent and cognitively plausible way.

dir(AB)=% 0 ol (4.243)

dir(AB) =% o oY (4.24b)

ou (4.240)
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(a (b)
Figure 4.19: Pairs of region objects. (a) Object B is north of object A and (b) object Bis
north of A and intersects with the north-northeast line (N-NeL).

» = :
o
(@) (b) (©)

Figure 4.20: Region reference and line target. (a) object B is north of A (b) B is north of
A and intersects with the N-NeL, and (c) object B completely lies on the N-

NeL.
B B
€Y (b)

Figure 4.21: Region reference and point target. (a) object B is north of Aand (b) object B
completely lies on the N-NeL.

4.6.2 Advantages of the Deep Direction Model Over Existing Models

This section compares the deep direction-relation matrix with the MBR-based model
(Section 2.4.6) and the coarse direction-relation matrix (Section 3.1). The MBR-based

model is adequate only for recording directions between rectangles, and the coarse
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direction-relation matrix is adequate only for recording directions between regions. In the
projection-based direction partitions there are four different types of objects (Figure 4.2).
These four types of objects can be reference as well as target objects, which gives sixteen

different types of reference-object pairs (Figure 4.22).

‘larget object type
Belorence
object type Paint Vertical- l-_lurizunl.al- Region or
line lins olher lnes
Pomt % - [ _‘ *
Vertical- S A E—
line 1 -
Harizontal- I
Ime
Rogon ar —
other lines 1 —

Figure 4.22: Sixteen different types of object pairs.

Out of these sixteen types, the model based on MBRs and the coarse direction-
relation matrix apply to only one type of pair (i.e., pair of regions). They do not apply to
the remaining fifteen types of pairs. For example, if a horizontal line target object
coincides with a grid line with respect to a region reference object, none of the 169 MBR
relations can record this direction (Figure 2.15). Similarly, none of the 218 coarse
direction-relation matrices can record this direction (Figure 3.6). The deep direction
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relation matrix, however, provides a unified framework to represent directions for all

Sixteen pairs.

4.7 Summary

This chapter extended the model based on the coarse direction-relation matrices to
include information about the intersections of the target object with the boundaries of
direction partitions. The new model is capable of recording directions between arbitrary
pairs of point, line, and polygon objects. The deep direction-relation matrix always has
nine elements, regardless of the dimensions of the objects. We demonstrated that deep
direction-relation matrices record directions that are compatible with the directions
recorded at larger scales, which makes the deep direction model useful for direction
based queries in multi-resolution spatial databases. Examples in this chapter showed that
the deep direction-relation matrix records cognitively plausible values of directions,

therefore, the deep direction model frees the user from pondering about the dimension of

the objects.
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Chapter 5

Similarity Between Cardinal Directions

People casually assess similarity between spatia scenes in their routine activities.
Likewise, users of a pictorial database are often interested in retrieving scenes that are
similar to a given scene, and ranking them according to degrees of their match. For
example, a town architect would like to query a database for the towns that have a
landscape similar to the landscape of the site of a planned town. Similarity is an intuitive
and subjective judgment. It displays no strict mathematical models (Tversky 1977).
Bruns and Egenhofer (1996) use spatia relations between objects for the assessment of
scene similarity. Spatial relations are also used for similarity assessment in image
databases (Chu et al. 1994; Bimbo et al. 1995; Bimbo and Pala 1997; Chu et al. 1998),
multimedia databases (Al-Khatib et al. 1999; Y oshitaka and Ichikawa 1999), and video
databases (Jiang and Elmagarmid 1998; Pissinou et al. 1998; Adandogan and Yu 1999).
In order to use spatia relations for similarity assessment, we need methods to assess

similarity between spatial relations.

Cardinal directions can be used for defining the results of queries in spatia
databases. For example, the query scene (Figure 5.1a) and scenes in the database (Figures
5.1b-d) contain objects A and B, and the value of the topological relations between
objects Aand Bin al these scenesisdigjoint. All scenesin this database are topologically
equivalent to the query scene. However, when considering the cardinal direction as an
additional search criterion, one can determine that Scene O is the most similar to the
query scene. In order to make the direction-relation matrix applicable for assessing
gpatial similarity between scenes, this chapter develops a method to assess similarity
between cardinal directions. The similarity assessment uses the detailed direction-relation

matrix, which for simplicity isreferred as direction-relation matrix in this chapter.
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Figure 5.1: (a) The query scene and (b)-(d) Scenes 0-2 in a database.

We determine the similarity between two directions by actualy assessing the
dissmilarity between them, which depends on the distance between these directions.
Section 5.1 discusses the distance computation, and converts it into a problem of
transforming a direction-relation matrix into another direction-relation matrix. Section
5.2 describes a method to compute the minimum cost for this transformation using the
transportation agorithm. Section 5.3 describes the method to convert the minimum cost

into asimilarity value. Section 5.4 summarizes the results of this chapter.

5.1 TheDistance between Two Cardinal Directions

As a quantitative measure for direction similarity, we introduce a distance measure
between two cardinal directions, such that (1) a zero value implies that both directions are
identical and (2) distance(Do, D;) > distance(Do, D,) means Dy is more similar to D, than
Do to D;. The symbol D, denotes the direction of object B with respect to object Ain
Scene 0.

A direction-relation matrix must have at least one element with a non-zero value. If a
direction-relation matrix has exactly one non-zero element, we cal it a single-element
direction-relation matrix. A direction that corresponds to a single-element direction-
relation matrix is called a single-element direction. There are nine single-element
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directions corresponding to nine cardina directions, which are also called mutually
exclusive directions. A direction-relation matrix with more than one non-zero element is
called a multi-element direction-relation matrix. A direction that corresponds to a multi-
element direction-relation matrix is referred as a multi-element direction. The distance
measures are needed for al direction-relation matrices. We develop first a method to
compute distance between single-element directions (Section 5.1.1), and extend it
subsequently to multi-element directions (Section 5.1.2).

5.1.1 Distance Between Two Single-Element Direction-Relation

M atrices

A conceptua neighborhood graph, for a set of mutually exclusive spatial relations, serves
as the basis for computing distances between the relations in this set. Conceptual
neighborhood graphs have been used for deriving distance measures between 1-D
interval relations (Freksa 1992a), topological relations (Egenhofer and Al-Taha 1992;
Egenhofer and Mark 1995a), and minimum bounding rectangle relations (Papadias and
Dellis 1997). A continuously changing relation follows a path aong the conceptua
neighborhood graph. For example, if a target object B moves eastward from the
northwest tile (Figure 5.2a) it cannot move directly to the northeast tile (Figure 5.2¢). It
must go through the direction tile(s) that connect the northwest and northeast tiles. The
shortest path would lead through the north tile (Figure 5.2b), athough other connected

paths are possible as well, e.g., through west, same, and east tiles.

In order to compute the distance between cardinal directions, we construct a
conceptual neighborhood graph for the nine cardinal directions using the 4-neighborhood
of the nine tiles. This graph has a vertex for each cardinal direction and an edge for each
pair of cardinal directions that are horizontally or vertically adjacent (Figure 5.3). The
distance between two cardinal directions is the length of the shortest path between two
directions in the conceptual neighborhood graph (Figure 5.4). The distance between two
identical directions is zero, which is the shortest of all distances. The distance between

the cardina directions northwest and southeast is four, which is the maximum. The only

91



other pair with the maximum distance is northeast and southwest. The distance function
abides by the axioms of a distance, that is, positivity, symmetry, and triangle inequality.

Q- a-

(a) ib) {c}

Figure5.2: The shortest path to move the target object B from the northwest ile to the
northeast tile is through the north tile, while considering only single-

element directions.

Figure5.3: The conceptua neighborhood graph for nine cardina directions based on
the 4-neighborhood between tiles.

The distance between the directions of B with respect to A aong the conceptual
neighborhood graph in Figures 5.2a and 5.2b is 1, and the distance between the directions
in Figures 5.2a and 5.2c is 2. Based on these distances, we infer that the direction of B
with respect to A in Figure 5.2a is more similar to the direction in Figure 5.2b than the
direction in Figure 5.2a to the direction in Figure 5.2c. Qualitative changes of direction
relations for an ordered pair of regions follow a 4-conceptual neighborhood graph. Such
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changes can occur due to increasing or decreasing sizes of objects, movement of objects,
or rotation of objects. The distance between single element direction-relation matrices

serves as the basis for the distance between multi -element direction-rel ation matrices.
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Figure 5.4: Four-neighbor distances between cardinal directions for regions.

5.1.2 Distance Between Two Multi-Element Direction-Relation

M atrices

In this section, we extend the method of computing the distance between cardind
directions from single-element direction-relation matrices to multi-element direction-
relation matrices. If the target object B moves eastward from the northwest tile (Figure
5.5a) to the northeast tile (Figure 5.5¢), it will have the following direction relations with
respect to A on its trgectory: (1) northwest and north (Figure 5.5b), (2) north (Figure
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5.5¢), and (3) north and northeast (Figure 5.5d). The directions in Figures 5.5b and 5.5d
require multi-element direction-relation matrices for their representation.

@ @
o

(a) {b} {) 1)) (&)

Figure5.5: The target object moves across single as well as multi-element cardina
directions from (&) northwest through (b) northwest and north, (c) north, (d)
north and northeast, to (€) northeast.

There are 218 coarse direction-relation matrices (Figure 3.6), out of which only nine
directions are represented by single-element direction-relation matrices. The remaining
209 directions are represented by multi-element direction-relation matrices. A conceptual
neighborhood graph for al 218 directions can be constructed, assuming a uniform
distribution of the target object in non-zero direction tiles. For example, a target object
that intersects with the north and northeast tiles can be assumed to have 50% of its areain
each of these tiles; however, such an assumption will mostly give values of direction
relation matrices that are different from the actua vaues. Instead of making such
assumptions, we develop a computational method for determining the distance between
two arbitrary multi-element direction-relation matrices. This method is based on the

conceptua neighborhood graph for nine cardinal directions (Figure 5.3).

Definition 5.1: The distance between two direction-relation matrices, D° and D', is the
minimum cost for transforming matrix D° into D* by moving the non-zero elements of D°
from their locations to the locations of the non-zero elements of D' aong the conceptual

neighborhood graph.
The cost of this transformation is the weighted sum of the distances adong the

neighborhood graph between the source and destination direction tiles, where a source

refers to a cardina direction from where a non-zero element is moved and a destination
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refers to a cardinal direction where the element is moved to. The weighting of a distance
between a source and a destination is done by the element values moved between them.
For example, transforming matrix D° (Equation 5.1a) into D* (Equation 5.1b) requires the
movement of the value 0.4 from northwest to northeast, and the value 0.6 from north to
northeast. The cost of this transformation is 0.4 x distance(NW, NE) + 0.6 x distance(N,
NE), whichis0.4x 2+ 0.6 x 1=1.4.

€04 06 0O
p°=80 o o (5.1a)

g0 0 Of

€ 0 1u
0 0f (5.1b)
0 Of

D'=

WS

The remainder of this section introduces consistency constraints and properties of
intermediate matrices, which are needed to develop the method for distance computation

between arbitrary direction-relation matrices.

Definition 5.2: The sum of a matrix P is defined as the sum of the values of it e ements
(Equation 5.2).

)

sum(P):=3 4 R,
R (5.2)

Definition 5.3: The commondlity C™ between two direction-relation matrices, D° and D,
is a 3x3 matrix defined as the minimum of each pair of corresponding element values
(Equation 5.3).

"i,j: CYh=min(Dy,D;) (5.3)
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The values of dementsin C* lie in the interval [0, 1]. The value of sum(C™) also
liesintheinterval [0, 1]. It isOif all the corresponding pairs of elements have at least one
0. It would be 1 if the distribution of the target objects in both D° and D' is identical.
Since the minimum of a st of numbers is unique and does not depend on their order, the
calculation of the commonality is commutative (Equation 5.4).

Col = L (5.4)
For example, the commonality matrices C™ and C™ for directions of B with respect

to A in Scene 0 and Scene 1 (Figure 5.6) have the same values (Equation 5.5.). This

scenario is used as a running example throughout this chapter.

Scene 1
€ 084 0.100 €© 0 0u
Dozgo 0.06 og Dlzgo 0.21 0.013
@ 0 04§ g 072 0.06f

Figure5.6. A direction comparison example Scene 0 and Scene 1 with identica

objects, but different directions D° and D*, respectively.

® 0 0
c°1:01°:go 0.06 og (5.5)
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Definition 5.4: The asymmetric difference R™* between two direction-relation matrices,
D° and D!, is defined as the difference of the direction-relation matrix D° and the

commonality (Equation 5.6a), and has a corresponding value for R* (Equation 5.6b).

R™:=D%- c* (5.6a)
RY:=D'-Cc® (5.6b)

We use the term non-zero part of a matrix for a non-zero element or a fraction of a
non-zero eement. The asymmetric difference R has the distinct non-zero parts of D°
that are not in D. Conversaly R (Equation 5.6b) has the distinct non-zero parts of D*
that are not in D°. For example, the asymmetric difference matrix R™* (Equation 5.7a) for
scenes in Figure 5.6 has no non-zero parts that arein D*, while R™ (Equation 5.7b) has no

non-zero parts that arein D°.

0.84 0.100
0 o0 3 (5.73)
0 04§

ROl =

0 0u
0.15 0.013 (5.7b)
0.72 0.06§

RlO =

BRPE B S

The vaues of dementsin R and R liein the closed interval [0, 1]. The values of
sum(R™) and sum(R™) also liein theinterval [0, 1]. The value 0 for sum(R™) means there
is no difference between matrices Dy and D;, whereas the value 1 means there is no
commonality between matrices Dy and D;.

Definition 5.5: The direction-difference (D”) between two direction-relation matrices,
D° and D', is defined as the difference of the two relations asymmetric differences
(Equation 5.8).

%= R*- RY (59)
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The values of the dements in D™ lies in the interval [-1, 1]. In order to express the
direction-difference in terms of direction-relation matrices, we substitute the value of R™
and RY (Equations 5.6a and 5.6b) in Equation 5.8, and obtain Equation 5.9, as
commonalty matrices C** and C™ cancel each other. For example, Equation 5.10 gives

the direction-difference matrices D™ for the scenes in Figure 5.6.

D" =D°- D* (5.9)
€O 084 0100

o = go - 015 - 0.013 (5.10)
@ -072 -006§

Theorem 5.1.1:

The sum of the dementsin R equals the sum of the elementsin RY.

Proof:

The sum of the elements of a detailed direction-relation matrix is 1 (Equation 5.11).

sum(D°) =sum(D%) =1 (5.11)

The addition operation (+) follows the associative law; therefore, we can express the

asymmetric difference matrices (Equations 5.6a-b) in the sum form (Equations 5.12a-b).

sum(R*) = sum(D°) - sum(C*) (5.12a)

sum(R™) = sum(D") - sum(C™) (5.12b)

Let us assume the value of sum(C™) is x, which equals sum(C™); substituting x for
these sums in Equation 5.12a-b and combining them with Equation 5.11, we obtain
expressions for the sum of asymmetric difference matrices in terms of x (Equations
5.13a-b).

sum(R™) =1- x (5.131)
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SJm(RlO) =1- X (513b)

The right hand sides of both asymmetric difference matrices sums are identica
(Equations 5.13a-b), which proves the theorem (Equation 5.14).

sum(R*) =sum(R™) (5.14)

U
For example, the sum of dementsin R” (Equation 5.7a) is 0.94, which equals the

sum of eementsin R* (Equation 5.7b).

Corollary 5.1.2:

The sum of the elementsin adirection-difference matrix isO.

Proof:

We can express the direction-difference matrix (Equation 5.8) in the sum form (Equation
5.16). The vaues of the sums of asymmetric difference matrices elements is identical,

(Equation 5.14), which proves this corollary (Equation 5.16).

sum(D™) := sum(R™) - sum(R™) (5.15)
sum(D™) =0 (5.16)
O

For example, the sum of dements of D™ in Equation 5.10 is zero. Non-zero elements
of the commonality matrix C* capture the common non-zero parts of the matrices D° and
D% therefore, the non-zero parts that correspond to non-zero parts of C* must not be
moved while transforming D° into D! (Definition 5.1). Moving them would increase the
cost of this transformation, such that the computed cost for this transformation would not
be the minimum value. Only those non-zero parts of D° should be moved that are zero in
D*, which means only non-zero elements of R™ must be moved to obtain R™.
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Definition 6: The distance between two matrices D° and D* is the minimum cost incurred

in transforming R into R™.

Theorem 5.2.1:

The maximum 4-neighbor distance (distance;..,) between two direction-relation matrices
is4.

Proof:

The maximum cost is incurred when the maximum possible value of sum(R™) is moved
by the maximum possble distance. The maximum vaue of sum(R™) is 1 and the

maximum 4-neighbor distance between two cardina directions is 4 (Figure 5.4);

therefore, the value of digance;,,is4x1=4. O

The maximum distance between two directionrelation matrices can occur only
between single-element direction-relation matrices that have nonzero vaues for the
farthest direction tiles. For example, the value of 4-neighbor distance between two single-
element direction-relation matrices with non-zero values in the southwest and northeast

tilesis 4.

In the direction-difference D™, non-zero elements that correspond to non-zero
elements of R are of positive polarity, while non-zero elements that correspond to non-
zero elements of RY are of negative polarity (Equation 5.8). The sum of the elements of
the matrix D™ is zero (Corollary 5.1.2). The matrix D™ has all the necessary information
to compute the minimum cost of transforming D° into D, which is the same as the
minimum cost of transforming R™ into RY. Section 5.2 uses D™ for computing the

distance between two multi-element direction-relation matrices.

52 The Minimum Cost Solution for the Transformation

Problem

The problem of determining the minimum cost for transforming matrix R” into

matrix R™® can be formulated as a balanced transportation problem (Murty 1976; Strayer
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1989) or a minimum-cost maximum-flow problem across a flow-network (Ford and
Fulkerson 1962). Both the transportation problem and the network flow problem are
special cases of the linear programming problem (Dantzig 1963; Dantzig and Thapa
1997). This section formulates the problem of transforming R into R as a balanced

transportation problem and describes a method to solve the transportation problem.

A transportation problem is graphically represented by a transportation tableau
(Figure 5.7), which records the supplies of all the warehouses, the demands of al the
markets, and the unit costs for al the pairs of the warehouses and the markets. Let us
assume there are n negative and p positive eements in the direction difference matrix D™.
Each positive element in D™ corresponds to a warehouse, and each negative element
corresponds to a market in the transportation tableau for D™. The supply of the ith
warehouse W, is s, which equals the magnitude of the corresponding element in D™.
Similarly, the demand of the jth market M; is dj, which also equals the magnitude of the
corresponding element in D™. We identify the markets and warehouses in the
transportation tableau by the names of corresponding direction tiles. The cost c; for
moving aunit supply from W to M; is distance(W, M;).

VL. M. M,
W c. Cps C,, 5
W €y Cys Cay 5z
Wl G & L
4 d d
i‘-“f - idj
= =

Figure 5.7: The balanced transportation tableau.
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The sum(R™) equals the sum(R™) (Theorem 5.1.1); therefore, the sum of the supplies
of all warehouses equals the sum of the demands of al markets. Due to this equdity, this
transportation problem is a balanced transportation problem. Let us assume the number of
units to be shipped from the warehouse W to the market M; is x; in the final solution. The
transportation problem is to determine the values of x such that the total cost (2) is
minimum (Equation 5.17) and the warehouse and market constraints are satisfied
(Equations 5.18a-b).

d d
z=Q a ;X (5.17)
i=1 j=1
" ién X; =§ (5.18q)
j=1
&
“ja x; =d, (5.18b)

For example, the problem of transforming D into D* in Figure 5.6 is formulated as a
transportation problem (Figure 5.8) from Equation 5.10. The distance between the
markets and the warehouses is obtained from the table of 4-neighbor distances (Figure
5.4). The transportation problem is to determine a set of x vaues that gives the minimum
value of z (Equation 5.19), such that it satisfies warehouse and market constraints
(Equation 5.20a-f).

Z=3X11+ 2X15+2X13+X14+2X01+ 3XooH KXozt 2X 04 (5.19)
X1+ Xpo+X3+X 4= 0.84 (5.20a)

Xo1F X0+ Xoz+Xos= 0.10 (5.20b)
X11+X21=0.06 (5.20c)

X1o+X2,=0.72 (5.20d)

X13+X23=0.01 (5.20e)

X14+X24=0.15 (5.20f)
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Figure5.8: The transportation tableau for the direction difference matrix of the

example.

The transportation problem is solved in two phases. (1) finding a basic feasible
solution and (2) improving the basic feasible solution iteratively, until an optimal solution
is obtained. A basic feasible solution is a set of x values that satisfy the market and
warehouse constraints, but it may not give the minimum vaue of z. There can be more
than one set of x values that yield the minimum value of z. Section 5.2.1 describes a
method to obtain a basic feasible solution and Section 5.2.2 describes an algorithm for

optimizing a basic feasible solution.

5.2.1 A Basic Feasible Solution

A basic feasible solution can be obtained with the northwest corner method (Strayer
1989). The term northwest corner corresponds to the top-left cost value, that is, first row
and first column, in the transportation tableau. Alternatives to the northwest corner
method are the minimum entry method and Vogel’s advanced stat method (Strayer
1989). We use here the northwest corner method.

The Northwest-Corner Method (Strayer 1989, p. 180)
(0) Given an initia balanced transportation tableau.

(1) Use the northwest-most cost in the tableau to empty a warehouse or
completely fill a market demand. The northwest-most cost is the cost
in the top-left position of the tableau. Circle the cost used and write
above the circle the amount of goods shipped by that route. Reduce the
supply and demand in the row and column containing the cost used.
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(2) Delete the row or column corresponding to the emptied warehouse or
fully supplied market; if both happens smultaneoudy, delete the row
unless that row is the only row remaining in which case delete the

column.

(3) If all tableau entries are deleted, STOP; otherwise go to (1).

For example, when we apply the northwest corner method to the transportation
problem in Figure 5.8, we obtain a basic feasible solution (Figure 5.9). A circle on a cost
implies that the value of x for this path is non-zero, that is, this path is used for
transferring the element values. These non-zero values of x are written at the top of the

circles. Thevalue of zfor the solution in Figure 5.9 is 1.89 (Equations 5.21a-c).

SE 5 ) Same
0.06 0.72 0.01 0.05
NI B @ @ Q) |os
0.10
NF 2 3 1 @ 0.10
0.06 0.72 0.01 015 |,=1.89

Figure5.9: A basic feasible solution of the transportation problem in the example using

the northwest corner method.

z=3*0.06+2*0.72+2*0.01+1*0.05+2*0.10 (5.219)
7z=0.18+1.44+0.02+0.05+0.20 (5.21b)
z=1.89 (5.21c)
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5.2.2 Optimizing a Basic Feasible Solution

A basic feasible solution may not be an optimum solution; therefore, it must be tested for
the optimality and optimized, if necessary. This section describes the transportation
algorithm (Strayer 1989), which is used for optimizing a basic feasible solution. The
transportation agorithm uses the term cycle (C), which is a subset of cells of the
transportation tableau (T) such that each row and each column of T contains exactly zero
or two cellsof C (Strayer 1989, p. 151).

TheTransportation Algorithm (Strayer 1989, p. 153)
(0) Given an initia balanced transportation tableau.

(1) Obtain a basic feasible solution and a corresponding basis using a

method such as northwest corner method.

(2) Let b =0. Determine ay, a,,---,a,, b,b,,---,b, uniquely such that

a +b, =c;for al basiscells c;.
(3) Replace ¢; by c; - & - b;; these are the new cells c;.

(4) If c;3 0 foraliandj, STOP; replace al cellswith their original costs

from (0); the basic feasible solution given by the current basis cell is

optimal. Otherwise, continue.

(5) Choose c; <0. Usualy, the most appropriate choice is the most

negative c;. Label this cell as a “getter” cell (+). By convention this
cell is distinguished by squaring it instead of circling it. Find the
unique cycle C in the tableau determined by this (squared) cell and
basis cells. Label the cells in C alternately as “giver” cells () and
“getter” cells (+). Choose the “giver” cell associated with the smallest
amount of goods. If there is a tie among certain “giver” cells for the
smallest amount of goods, choose any such cell.
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(6) Add the sguared cell of (5) to the basis, that is, circle it in a new
tableau. Remove the chosen “giver” cell of (5) from the basis, that is,
do not encircle it in a new tableau. Add the amount of goods given up
by this “giver” cell to al amounts of “getter” cells in C; subtract the
amount of goods given by this “giver” cell from al amounts of goods
of “giver” cellsin C. Go to (2).

The following example demonstrates the optimization process (Figure 5.10) using

the transportation algorithm on the basic feasible solution in Figure 5.9.

b, O b b, b, 0 -] 1
0.06 . 006 072 0.01

5 2

072 .01 g5 1]

SNc e N NRONEEING' Q)
L0 10

a, 2 3 1 é 4 2 3 1 é

0.01 ,
, . @ ém

(e)
Figure 5.10: Aniteration of the transportation algorithm for the example.

According to step 2 in the transportation algorithm, we put the value of b; as O
(Figure 5.10a). The values of a;, a,, by, bs, and b, are computed according to this step
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(Figure 5.10b). We compute new values of ¢; according to step 3, and replace the old

values of c; by the new values of c; in the tableau (Figure 5.10c). There are two cells
with negative values of ¢ in the first and third columns of the second row (Figure 5.10c).
The vaues of the new c; in these cells are the same; therefore, we arbitrarily choose the
cell in the third column and put a square on it (Figure 5.10d). This cell becomes a getter
cell, and we form a cycle by marking the getter cells as “+” and giver cells as “-”
aternately. The chosen giver cell isthe céll in the first row and third column, as it has the

least value of x; (0.01) among the giver cells. The values of the giver cells (x;) are
reduced by 0.01 and the values of the getter cells (x;) are increased by 0.01. The chosen

giver cell leaves the basis, the squared cell joins the basis, and the original value of c; are
replaced back in the tableau (Figure 5.10e). The second and last iteration of the

optimization process for this example is performed similarly (Figure 5.11).
b,—0 b b, b, 0 -1 -3 -2

.06 072 LY {06 072 (1111
TNoNNe ol B ANCNC NN

a, 2 3 @0'0] @0)'09 + 2 3 @0.01 @09

-3

0.1

20 @ ®

(c)
\ @0,72 , @I 2
0.06 0.01 0.03
®©) 3
(e)

Figure 5.11: The second and last iteration of the transportation algorithm for the example.
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The minimum cost of the transformation from the obtained optimum solution (Figure
5.11e) is 1.75 (Equations 5.22a-c). Thisvaue of z is the 4-neighbor distance between the

directions D° and D*in Figure 5.6.

7=2*0.72+1*0.12+2%0.06+1* 0.01+2*0.03 (5.22a)
7=1.44+0.12+0.12+0.01+0.06 (5.22b)
z=1.75 (5.22¢)

5.3 The Similarity Value

Tversky (1977) describes a set-theoretical approach using common and distinct features
of two objects to assess the similarity between them. If we compare an object and a
direction-relation matrix, an element value in a direction-relation matrix is analogous to
an object feature. The commonality C™* corresponds to common features, and asymmetric
differences R and R correspond to distinct features. The commonadlity contributes to
similarity (s) and distinct features contribute to dissimilarity (d). The result of adding
sum(C”) and sum(R™) is always a constant (i.e., 1); therefore, the result of adding a
similarity value and a corresponding dissimilarity value should also be a constant, we use
1.0 for this constant (Equation 5.23).

s(D° D')+d(D° D')=1.0 (5.23)

The distance between two directions lies in the interval [0, disty.. We normalize
this distance into a dissimilarity value in the closed interval [0, 1.0] (Equation 5.24). The
similarity value is complimentary to the dissmilarity value (Equation 5.25).

d(D°, pt)= dii?;;i(z’ ') (5.24)

] distance(DO, Dl)
digance,,

s(D° D)=1.0 (5.25)
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A value 1.0 for the similarity between the direction-relation matrices D° and D*
implies that the matrices are identical, whereas a similarity value of 0 implies that
matrices D° and D' are single-element direction-relation matrices and their non-zero
elements are located in the farthest direction tiles. Using the computed distance (Equation
5.22c), the value of similarity for the directions of object B with respect to object Ain
Scene 0 and Scene 1 in Figure 5.6 is 1.0-1.75/4 = 0.5625.

Applying the smilarity assessment method to the query scene in Figure 5.1a and
Scenes 0-2 in the database (Figures 5.1b-d), the similarities values are s(D% D° = 0.92,
s(DY D% = 0.56, and s(D% D? = 0.04. From these values, we can infer that the direction
in the query scene is most similar to the direction in Scene O, followed by Scene 1, and

Scene 2, asthe similarity is decreasing in this order.

5.4 Summary

This chapter presented a method to assess smilarity between cardina directions. The
scheme to assess similarity needs a distance measure between cardinal directions. We
presented a method to compute distance between cardinal directions based on their
conceptual neighborhood graph. The distance between two direction-relation matrices is
the minimum cost to transform a matrix into another matrix, which can be computed
using the transportation agorithm. We use this distance to compute the similarity
between two direction-relation matrices. The similarity value between two directions lies
in the range 0 to 1.0. The method presented in this chapter for similarity assessment
between cardinal directions is useful for the assessment of spatial similarity between
scenes. The method developed in this chapter is systematically evaluated in the next
chapter.
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Chapter 6

Evaluation of the Smilarity Assessment M ethod

The three levels of the direction-relation matrix%s coarse, detailed, and deep form a
flexible framework for modeling direction relations. So far, however, the assessment of
the direction-relation matrix and its compliance with an expected behavior have been
purely theoretical. This chapter provides an empirical evauation of the direction-relation
matrix by testing a set of scenarios with the help of a software prototype.

The prototype called Disha, a Sanskrit word for direction uses the coarse direction
relation matrix to check consistency of directions, and the detailed direction-relation
matrix to assess similarity between cardinal directions. It has a graphical user interface,
which alows a user to draw the outlines of the objects for which directions are compared.
After a user has drawn the outlines of two ordered pairs of objects, Disha computes and
displays the similarity value between the directions in each ordered pair. Disha allows a
user to choose a conceptua neighborhood graph, either the 4-neighbor graph (Figure 5.3)
or the 8-neighbor graph (Figure 6.22). It has been developed using an object-oriented
development methodology (Sommerville 1996), and has been implemented in Visual
C++ 6.0 (Horton 1998; Prosise 1999) under Windows 98 running on a Pentium PC.

Section 6.1 describes the architecture of Disha. Section 6.2 discusses implementation
issues, such as handling of the rounding errors. Section 6.3 describes user interface
components of the system. In Section 6.4, we evaluate the method of similarity
assessment.  Section 6.5 introduces the 8-neighbor graph an dternated to the 4-
neighborhood graph. To test the hypothesis of this thesis, Section 6.6 compares the
mappings provided by the 4-neighbor and 8 neighbor graphs. Section 6.7 summarizes the

results of this chapter.
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6.1 Disha’ s Architecture

Disha is designed for the maximum reuse of the code; therefore, the project is divided
into two parts. platform independent reusable classes in C++ and platform dependent

classes for interfacing with MS Windows (Figure 6.1).

Disha
Platform
%’lalf orm dependent Microsoft
independent |4 classes for |« Windows
classes inlerfacing

Figure 6.1: Architecture of the prototype Disha.

The prototype is divided into different types of objects, each implemented in an
object class having data members and methods. In this chapter, we specify the complete
name of a method by appending the class name by the scope resolution operator (::) and
the method name. For example, the Draw method of the CPolygon class is written as
CPolygon::Draw. The prototype has two major types of classes. the classes without
components of the user interface are the platform-independent classes (Section 6.1.1) and
the classes with user interface components are platform-dependent classes (Section
6.1.2). This separation enables portability such that the code can be transferred to other

platforms with minimal modifications.

6.1.1 Platform-Independent Classes

The computational parts of the prototype are implemented in platform-independent
classes in C++. These classes are for polygons, direction-relation matrices, and the
transportation tableau. The class HDPolygon (Paiva 1998) is used for the polygon object.
The method HDPolygon::DirectionMatrix computes the detailed direction-relation
matrix for the direction of the polygon passed as an argument with respect to the calling
polygon. The class CDrm (Figure 6.2a) implements the direction-relation matrix, which
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is computed using the method HDPolygon::DirectionMatrix. The class CDrm has
methods for checking the consistency of the detailed direction-relation matrix.

The class CDrmGraph (Figure 6.3) constructs a graph from a direction-relation
matrix to check the 4-connectedness and 8-connectedness of the non-zero elements. The
class CDrmGraph has the class CVertex as its data members to represent information
about vertices. Each non-empty element in a direction-relation matrix has a vertex in the
graph. The method CountDisjointSets computes the number of digoint sets in this graph.
If there is only one digoint set, the graph is connected (Cormen et al. 1990). If there is
more than one digoint set, the graph is disconnected. The class CDeltaMatrix (Figure
6.2b) implements the direction difference D* (Equation 5.10), which is constructed using

two direction-relation matrices.

Flement( ansistent

SumConsistent

' ™ e ™
CDrmn CIDeltaMatrix
m_CoarseValue m_Clem
m_DelatledValue
- SctEleinent
Setblement
GalElement Gietl{lement

Clement Consigient

SurnCansistenl

FomrConsistent N J

EightConsistent

@ (b)
Figure 6.2: The object classes for (a) the direction-relation matrix and (b) the direction-
difference matrix.

The trangportation tableau for the distance computation problem is implemented in
the class CBTTableau (Figure 6.4). This class is constructed from the data obtained from
the CDeltaMatrix class. It has a method to compute the cost of transforming the matrix
D% into D'. The transportation problem is a special case of the standard linear

programming problem (Dantzig and Thapa 1997). Due to the wide application of linear
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programming problems in engineering and management problems, libraries for solving
linear programming problems are commercialy available (LINDO 1999). A linear

programming problem is solved in two phases, similar to the phases for solving a
transportation problem (Section 5.2).
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Figure 6.3: The aggregation hierarchy for the classes CDrmGraph and CVertex.
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Figure 6.4: The class CBTTableau for the balanced transportation tableau.
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Disha uses the transportation tableau to visualize the cost computation problem and
the LINDO library to compute the solution of the corresponding linear programming
problem. The method CBTTableau::UseLindoToComputeCost uses LINDO functions to

compute the minimum cost.

6.1.2 Platform-Dependent Classes for the User Interface

This part of the prototype is tailored to Microsoft Windows, using the Microsoft
Foundation Class (MFC) library. All classes in the MFC library are derived from the
CObject class. The CObject class has a virtual function Draw for drawing on the screen.
We implemented the CElement class for geometric elements, which is derived from the
CObject class (Figure 6.5). The CElement class inherits the Draw function from the
CObject class. The CLine, CCurve, and CPolygon classes are derived from the CElement
class. These classes inherit data members and methods of the CElement class and define
additional data members according to their requirements. The virtual function Draw in
these classes is used for drawing these geometric elements on the screen. Similarly, the

virtual function Serialize is used to read and write e ementsin afile on disk.

The class CDishaApp is derived from the class CWinApp, which creates the Disha
application. We derive the class CDishaView from the MFC class CView. The class
CDishaView captures messages from the mouse while drawing the outlines of the
extended spatial objects. We also derive the class CDishaDoc from the MFC class
CDocument, which stores al the objects and matrices. The elements in a Disha document
are stored in the m_ElementList, which is alist of CELement type. When a user creates a
geometry, the geometry is created in the current type, for instance, a user can create a
CPolygon type object. After creating this geometric element, it is cast as a CElement type
object and inserted into the m_ElementList. Whenever the document is to be drawn, the
m_ElementList is traversed and al the elements are drawn using the virtua function
Draw. To draw a direction-relation matrix on the screen, we define the class CObDrm,

which is derived from the classes CDrmand CObject (Figure 6.6).
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Figure 6.5: Inheritance hierarchy for the classes corresponding to geometric elements.

The class CObDrm inherits all data members and functions of the class CDrm and
implements the virtual function Draw. It has an additiona data member m_Name to store
the name of a matrix and methods SetName and GetName for setting and getting the
name of a CObDrm object. Similarly, we derive the class CObDeltaMatrix from the
classes CDeltaMatrix and CObject (Figure 6.7a), and the class CObTableau from the
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classes CBTTableau and CObject (Figure 6.7b).
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We use the methods CObDrm::Draw and CObDeltaMatrix::Draw to draw the
matrices at the screen. The methods DrawTransportationSetup,
DrawS mplexSetupAndSolution, and DrawTransportationSolution of the CObTableau
class are used to draw the problem and solution of the transportation problem and the
linear programming problem. The methods DrawMinimumCostLine and
DrawSmilarityLine of the CObTableau class display the results on the screen.

6.2 Implementation Issues

The detailed direction-relation matrix records the portion of the target region in a
direction tile. The value (x) of an dement must satisfy Of x£1. The sum of all eementsin
a detailed direction-relation matrix must be 1. In Disha, there are two methods for
creating a direction-relation matrix: (1) drawing the polygonal outline of the objects and
computing it using the method HDPolygon::DirectionMatrix and (2) entering the values
of eements directly. In the case of graphica sketching, the sum of elements may not be
exactly 1 due to the rounding of the values of the elements. In the case of directly
entering values, the user may enter element values beyond the range or may not do his or
her math right. In both cases, Disha checks the consistency of each element and the
consistency of the sum of elements. Disha alows a minor tolerance so that the sum may
deviate from 1.0. To make a matrix sum-consistent, the difference between 1 and the sum
of the elements is distributed proportionately over the non-zero e ements. For example, if
the tolerance value is 4%, the sum in the range of 0.96 to 1.04 is accepted. A 4%
tolerance value is very high for most practical situations; this high value is used here for
illustration purpose only. If there are only two non-zero elements with values 0.72 and
0.24 (Figure 6.8), the difference 1-(0.72+0.24) = 0.04 is distributed over he non-zero
elements to yield the values 0.75 and 0.25, respectively. This distribution of difference
over non-zero elements has the following features. (1) it leaves zero elements as zero,
therefore, does not ater qualitative information and (2) it distributes the difference
proportionately among norn-zero elements. A sum-consistent detailed direction-relation

matrix is an essential prerequisite for the similarity computation.
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Figure 6.8: Making a detailed direction-relation matrix sum-consi stent.

To have a uniform resolution of the values of a detailed direction-relation matrix
between O and 1, the values of detailed direction-relation matrices are internally
represented as integer values. We multiply the values of the detailed elements obtained
from the method HDPolygon::DirectionMatrix by 100 and round off to yield integer
values and apply sum-consistency over the matrix. This in turn gives integer vaues for
warehouse supplies and market demands, however, these values are displayed on the
screen as decimal values.

6.3 Disha’s Features

Disha has a number of user interface components that use the classes described in Section
6.1. Some of these components are discussed in Sections 6.3.1-6.3.4.

6.3.1 Checking Consistency for Direction-Relation Matrices

Disha checks the consistency of matrices before using them in similarity computations.
To illustrate the consistency checking of matrices, we have implemented the coarse
matrix input dialog (Figure 6.9) and the detailed matrix input dialog (Figure 6.8) for
coarse and detailed direction-relation matrices, respectively. The coarse input dialog
allows a user to enter a coarse direction-relation matrix by clicking the checkboxes
corresponding to each element. A checked box selects a non-empty dement and an

unchecked box corresponds to an empty element.
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Figure6.9: The coarse matrix input diadog for checking the consistency of a coarse

direction-relation matrix.

Once a matrix is entered, it can be checked for 4-consistency, 8-consistency, and
point-consistency, which apply to region, line, and point target objects, respectively. A
matrix is point-consistent if it has only one non-empty element. In order to check the
point-consstency, we count the number of non-empty eements. Four-consistency and
eight-consistency checks are based on the respective type of connectedness of non-empty
elements. For example, a matrix having only two diagonal non-empty elements is not 4

consistent (Figure 6.9a) but it is 8-consistent (Figure 6.9b).

In the case of detailed direction-relation matrices, there are additional constraints. (1)
the value of an dement must be between 0 and 1, and (2) the sum of all elements must be
1. The detailed matrix input dialog (Figure 6.8) allows a user to enter a detailed direction-
relation matrix and offers buttons to check the following consistencies. point-consistency,
4-consistency, 8-consistency, and sum-consistency. The sum-consistency also checks the
element consistency for al elements. Additionaly, it has a button with which a user can

make a matrix sum consistent.

6.3.2 Determining the Number of Consistent Configurations

The prototype implementation was aso used to confirm the number of consistent
configurations (Section 3.2.2). For a 3x3 direction-relation matrix, there are 512 possible
configurations, but not al of these configurations are consistent. To count the number of
consistent configurations for a 3x3 matrix, Disha loops through al 512 matrices and
checks whether this corfiguration is consistent or not for the considered types of
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consistency (Figure 6.10). Out of these 512, there are only 218 four-consistent matrices,
388 eight-consistent matrices, and 9 point-consi stent matrices.
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Figure 6.10: Counting consistent configurations.

6.3.3 Direction-Similarity from a Direction-Difference Matrix

To compute the distance between two directionrelation matrices from a direction
difference, Disha has a delta matrix input dialog (Figure 6.11). It allows a user to enter
the values of elements in a direction-difference matrix and checks the consistency of the
difference matrix. For a direction-difference, there are two consistency constraints: (1)
each element’s value (X) must satisfy -1£ x £1 and (2) the sum of al elements must be O.
A user can select either the 4-neighborhood or the 8-neighborhood graph by pressing the
respective radio button in the dialog box. Disha computes the similarity using the method
described in Chapter 5 and displays the results in the textbox of the dialog. Disha displays

the values of dissimilarity and similarity in the range of [0, 100].
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Figure 6.11: Computing the distance from a direction-difference matrix.
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6.3.4 Direction-Similarity between Two Ordered Pairs of Extended
Objects

Disha has a graphical user interface, which allows a user to draw the outlines of two pairs
of extended objects (Figure 6.12). The user can trandate, scale, and rotate these objects
using the tools provided in Disha. To compute the similarity value between directions, it
computes detailed direction-relation matrices and the direction-difference (Figure 6.13a).
The transportation tableau (Figure 6.13b) is constructed from this direction-difference.
Since we are using the LINDO libraries to determine the minimum cost of transforming a
matrix D into D', we generate a linear programming problem from this transportation
problem (Figure 6.14). The LINDO libraries compute an optimum solution for the
problem (Figure 6.15), which is the solution of the transportation problem (Figure 6.16).
From this solution, Disha computes the minimum cost and the values for dissmilarity
and similarity (Figure 6.17).
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Figure 6.12: A snapshot of Disha with two pairs of objects and their direction-relation

matrices.
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Figure6.13: (a) The direction difference matrix and (b) the transportation tableau using

the 4-neighbor graph.

Number of constraints = 6

Number of variables = 8
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Figure 6.14: The linear programming problem for the transportation problem in Figure
6.13D.
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Figure 6.15: A solution for the linear programming problem in Figure 6.14 using LINDO
(1999).
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Figure 6.16: A solution of the transportation problem in Figure 6.13b.

Minimum cost = 1x0.15 + 2x0.69 + 1x0.01 + 3x0.03 + 2x0.06
=0.15+1.38 +0.01 +0.09 +0.12

Minimum cost = 1.75

Dissimilarity = 43.75

4-Neighbor Similarity = 56.25

Figure: 6.17: Computing the similarity value from the transportation problem solution in
Figure 6.16.

6.4 Systematic Evaluation of the M ethod

Similarity assessment is the estimation of deviation from equivaence (Bruns and
Egenhofer 1996). The dissimilarity value between two direction relations records the
magnitude of deviation from equivalence, and the similarity vaue is the complement of

the dissmilarity value (Chapter 5).

To evaluate systematically the method for similarity assessment, we start with a
guery scene containing a pair of reference and target objects, and generate database
scenes by gradually changing the target object. The variations in the target object change
the direction of the target object with respect to the reference object. We study the
changes in similarity between the direction in the query scene and the directions in

database scenes. We consider two types of changes in the target object: (1) movement
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(Section 6.4.1) and (2) rotation (Section 6.4.2) of target object with respect to reference
object. These types of changes were selected because they establish a clear baseline for
the expected similarity value. A cognitively plausible similarity assessment method is
expected to give the highest similarity value (100) of similarity to the scene without any

change and decreasing values of similarity with increasing changes.

6.4.1 Movingthe Target Object Over the Reference Object

The target object B in the query scene (Figure 6.18) is to the northeast of the reference
object A. Scene O isidentical to the query scene, and Scenes 1-7 are generated by moving
object B diagonally from the northeast to the southwest tile. The number of a scene is
subscripted to the objects labels in the scene, and the values of 4neighbor similarity
between the direction in the query scene and the direction in a scene is written under the

respective database scene.
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Figure 6.18: Scenes generated by moving the target object over the reference object.
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The similarity between the direction in the query scene and directions in Scenes 0-7
decreases as the degree of change gets larger, which is as expected (Figure 6.19). If
object B in Scene 7 were moved further southwest, no further decrease in direction
similarity could be detected. To distinguish such scenarios, metric properties would need
to be employed, much like the enhancement of topological properties with metric
(Egenhofer and Shariff 1998).

Similarity variation

100

80 -
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40 A

Similarity value

20 A

0 1 2 3 4 5 6 7

Scene number

Figure 6.19: The pattern of similarity values for Scenes 0-7 in Figure 6.18.

6.4.2 Rotating the Target Object Around the Reference Object

In another case of similarity assessment we compute the similarity between the direction
in the query scene and directions in Scenes 0-16 that are generated by rotating the target
object around the reference object (Figure 6.20). This clockwise rotation starts in the
northwest title, goes for a full circle so that it ends again in the northwest tile. The
similarity between the direction in the query scene and the database scenes decreases
from Scene O to Scene 8 as the rotation takes object B to the tile that is farthest from the
northwest tile (Figure 6.21). The similarity value is O in Scene 8, as the southeast tile is
the farthest tile from the northwest tile. As object B moves further clockwise, the
similarity value increases, because object B gets closer to the northwest tile. The
similarity value becomes 100 when object B is back in the northwest tile (Scene 16). To
reach the value 100 for similarity, object B in Scene 16 need not be exactly at the same

location as object B in Scene 0, but in the same direction tile. This pattern of similarity
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values is cognitively plausible, because it matches the expected behavior of a full circle

rotation.

Figure 6.20: Scenes generated by moving the target object around the reference object.
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Figure 6.21: The pattern of similarity values for Scenes 0-16 in Figure 6.20.

6.5 Eight-Neighbor Conceptual Graph

In Chapter 5, we described the 4neighbor conceptual neighborhood graph (Figure 5.3).
Another aternate is the 8-neighbor conceptua neighborhood graph, which has additional
edges for diagonally adjacent pairs of tiles (Figure 6.22).

Figure 6.22: The conceptual neighborhood graph for nine cardinal directions based on
the 8-neighborhood between tiles.
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The maximum 8-neighbor distance between two directions is 2 (Figure 6.23);
therefore, the range of the distance using 8-neighbor graph is 0-2. The next section

compares the soundness of the similarity assessment provided by both the graphs.
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Figure 6.23: Eight-neighbor distances between cardinal directions for regions.

6.6 Comparison of the Soundness of the Mappings Provided
by Four-Neighbor and Eight-Neighbor Graphs

There are two types of neighborhood graphs that can be used to compute distances
between cardinal directions. the 4-neighborhood and 8-neighborhood graphs. A sound
mapping would give decreasing similarity values for increasing larger direction changes.
This section compares the soundness of the mappings from direction changes onto the
similarity values provided by these graphs. The hypothesis (Section 1.4.2) of thisthesisis
about the soundness of mappings provided by these graphs. The hypothesisis:
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“The four-neighborhood and eight-neighborhood graphs provide equally sound

mappings of direction changes onto similarity values.”

To test the hypothesis, we study the similarity profiles and compare the rankings
provided by both the 4-neighborhood and 8-neighborhood graphs. We consider nine
different scenarios of gradual changes in the target object and compute the values of 4
neighbor and 8-neighbor similarities between the query scene and the scenes generated
by the gradua changes (Sections 6.6.1-9). The neighborhood graph that has higher
number of monotonic similarity profiles provides a sounder mapping. Section 6.6.10

discusses the results of this comparison and summarizes the test of hypothesis.

6.6.1 Curved Movement of a Digoint Target Object

In this scenario, the target object is digoint with respect to the reference object, and we
generate database scenes by rotating the target object around the reference object (Figure
6.24). This clockwise rotation starts in the northwest tile, and ends in the southeast tile.
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Figure 6.24: The scenes generated by curved movement of the digoint target object.
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The 8neighbor similarity is identical for Scenes 37 (Table 6.1; Figure 6.25). We
can rank these scenes for their similarity with the query scene such that the most similar

scene is at rank 1. The 8neighbor graph will give the Scenes 0-2 ranks 1-3, and Scenes

3-7 will be placed at rank 4; however, the 4-neighbor graph will give Scenes 0-7 ranks 1-

8, respectively. The similarity values in this scenario reveal the following characteristics

of the graphs. (1) the 4-neighbor graph and the 8-neighbor graph can detect small

changes, (2) the 4-neighbor graph continues to distinguish between large changes, and (3)

the 8-neighbor graph fails to distinguish between large changes. Therefore, in this

scenario, the 4-neighborhood provides a somewhat sounder mapping than the 8-

neighborhood graph.
Scene 4-neighbor 8-neighbor
similarity rank similarity rank
0 100 1 100 1
1 86 2 72 2
2 70 3 40 3
3 50 4 0 4
4 44 5 0 4
5 25 6 0 4
6 15 7 0 4
7 0 8 0 4

Table 6.1: Similarities and ranks of Scenes0-7 in Figure 6.24.
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Figure 6.25: The pattern of similarity values for Scenes 0-7 in Figure 6.24.
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6.6.2 Curved Movement of an Overlapping Target Object

In this scenario, the target object overlaps with the reference object, and we generate
database scenes by rotating the target object around the reference object (Figure 6.26).

The rotation is clockwise and starts from the northwest tile and ends at the southeast tile.
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Figure 6.26: The scenes generated by curved movement of the overlapping target object.

In this scenario, the value for the 4-neighbor similarity of Scene 0-7 decreases
monotonically (Table 6.2; Figure 6.27), which is expected from a cognitively plausible

graph.

Scene 4-neighbor 8-neighbor
similarity rank similarity rank
0 98 1 98 1
1 83 2 72 2
2 71 3 46 3
3 53 4 22 6
4 45 5 24 5
5 42 6 21 7
6 39 7 21 7
7 38 8 37 4

Table 6.2: Similarities and ranks of Scenes0-7 in Figure 6.26.
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The values of 8-neighbor similarity, however, decrease from Scene 0 to Sene 3;
then Scene 4 has a similarity value that is higher than the similarity value for Scene 3;
Scenes 5 and 6 have the same similarity value; and the similarity value for Scene 7 is
more that the similarity value for Scene 6. The pattern of the 8-neighbor similarity values
for Scenes 4-7 does not match with human intuition. Additionaly, the 8-neighbor
similarity for Scene 7 is higher than the similarity for Scenes 3-6, which is counter

intuitive.
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Figure 6.27: The pattern of similarity values for Scenes 0-7 in Figure 6.26.

6.6.3 Diagonal Movement of a Larger Target Object

In this scenario, the target object B is larger than the reference object A, and the database
scenes are generated by moving B diagonally from the northwest tile to the southeast tile
(Figure 6.28). Both the 4neighbor graph and 8neighbror graph rank Scenes 0-4 in the
same order (Table 6.3; Figure 6.29); therefore, these mappings are equally sound.
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Figure 6.28: The scenes generated by diagonal movement of the larger target object.

Scene 4-neighbor 8-neighbor
similarity rank similarity rank
0 100 1 100 1
1 74 2 60 2
2 51 3 46 3
3 24 4 10 4
4 0 5 0 5

Table 6.3: Similarities and ranks of Scenes 0-4 in Figure 6.28.
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Figure 6.29: The pattern of similarity values for Scenes 0-4 in Figure 6.28.
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6.6.4 Diagonal Movement of a Smaller Target Object

In this scenario, the target object B is smaller than the reference object A (Figure 6.30).
We generate database scenes by moving object B diagonaly from the northwest tile to
the southeast tile. In this scenario also both the 4-neighborhood and 8-neighborhood

graphs rank Scenes 0-4 in the same order (Table 6.4; Figure 6.31).
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Figure 6.30: The scenes generated by diagonal movement of the smaller target object.

Scene 4-neighbor 8-neighbor
similarity rank similarity ran
0 100 1 100 1
1 74 2 59 2
2 50 3 50 3
3 36 4 25 4
4 0 5 0 5

Table 6.4: Similarities and ranks of Scenes 0-4 in Figure 6.30.
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Figure 6.31: The pattern of similarity values for Scenes 0-4 in Figure 6.30.

6.6.5 Vertical Movement of a Larger Target Object

In this scenario, the target object B islarger than the reference object A, and the database

scenes are generated by moving object B vertically from the north tile to the south tile

(Figure 6.32).
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Figure 6.32: The scenes generated by vertical movement of the larger target object.

In this case, both graphs rank Scenes 0-4 in the same order (Table 6.5; Figure 6.33).
For Scene 4, however, the value of the 8neighbor similarity is O while the value of 4

neighbor similarity is 48. The value 48 in the case of 4-neighbor graph implies that there
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is more room for distinguishing additional changes, which is not the case for 8-neighbor
graph.

Scene 4-neighbor 8-neighbor
Similarity rank similarity rank
0 100 1 100 1
1 93 2 87 2
2 73 3 52 3
3 55 4 15 4
4 48 5 0 5

Table 6.5: Similarities and ranks of Scenes 0-4 in Figure 6.32
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Figure 6.33: The pattern of similarity values for Scenes 0-4 in Figure 6.32.

6.6.6 Vertical Movement of a Smaller Target Object

In this scenario, the target object B is smaller than the reference object A, and we generate
the database scenes by moving object B verticaly from the north tile to the south tile
(Figure 6.34). In this case, the ranking of the scenes using both the 4neighbor and 8
neighbor graphsisidentical (Table 6.6; Figure 6.35).
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Figure 6.34: The scenes generated by vertical movement of the smaller target object.

Scene 4-neighbor 8-neighbor
similarity rank similarity ran
0 100 1 100 1
1 88 2 76 2
2 75 3 50 3
3 56 4 12 4
4 50 5 0 5

Table 6.6: Similarities and ranks of Scenes 0-4 in Figure 6.34.
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Figure 6.35: The pattern of similarity values for Scenes 0-4 in Figure 6.34.
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6.6.7 Scaling up the Target Object in the Northwest Tile

In this scenario, the target object B is in the northwest tile and we enlarge it such that it
expands up to the southeast tile (Figure 6.36). In this case, the ranking of the scenes is
identical (Table 6.7; Figure 6.37) for both the 4-neighbor and the 8-neighbor graphs.
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Figure 6.36: The scenes generated by enlarging the target object in the northwest tile.

Scene 4-neighbor 8-neighbor
similarity rank similarity rank
0 100 1 100 1
1 83 2 71 2
2 72 3 56 3
3 64 4 43 4
4 56 5 33 5

Table 6.7: Similarities and ranks of Scenes 0-4 in Figure 6.36.
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Figure 6.37: The pattern of similarity values for Scenes 0-4 in Figure 6.36.

6.6.8 Scaling up the Target Object in the North Tile

In this scenario, the target object B is in the north tile, and we enlarge it such that it
expands up to the south tile (Figure 6.38). In this case, the rankings of the scenes using 4-

neighbor similarities and 8-neighbor similarities are identical (Table 6.8; Figure 6.39).

Query scene
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Figure 6.38: The scenes generated by enlarging the target object in the north tile.
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Scene 4-neighbor 8-neighbor
similarity rank similarity rank
0 100 1 100 1
1 95 2 89 2
2 84 3 70 3
3 73 4 60 4
4 65 5 50 5

Table 6.8: Similarities and ranks of Scenes 0-4 in Figure 6.38.
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Figure 6.39: The pattern of similarity values for Scenes 0-4 in Figure 6.38.

6.6.9 Rotation of the Target Object

In this scenario, the target object B is in the northwest tile, and it is rotated clockwise
with respect to its southeast extreme (Figure 6.40). The similarity value in the case of 4-
neighbor graph decrease monotonically from Scene O to Scene 4 and increase
monotonicaly from Scene 4 to Scene 7 (Table 6.9; Figure 6.41); however, in the case of
8-neighbor graph it decrease from Scene 0 to Scene 3, increase from Scene 3 to Scene 4,
decreases from Scene 4 to Scene 5, and increases from Scene 5 to Scene 7 again. The
similarity profile in the case of 4-neighbor graph reflects a sounder mapping of direction

changes onto similarity values than the 8-neighbor graph.
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Figure 6.40: The scenes generated by rotating the target object.

Scene 4-neighbor 8-neighbor
similarity rank similarity ank
0 100 1 100 1
1 96 3 92 3
2 85 4 70 4
3 66 7 46 8
4 52 8 49 6
5 72 6 48 7
6 81 5 63 5
7 98 2 95 2

Table 6.9: Similarities and ranks of Scenes 0-7 in Figure 6.40.
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Figure 6.41: The pattern of similarity values for Scenes 0-7 in Figure 6.40.

6.6.10 Discussion

Out of nine scenarios considered, the 4-neighbor graph gives more sound rankings in
three scenarios (Sections 6.6.1, 6.6.2, and 6.6.9), while in the remaining six scenarios
both graphs give identical rankings. The 8neighbor graph is able to distinguish between
small changes, but cannot distinguish between large changes. The 4-neighbor graph,
however, is capable of distinguishing not only between small changes, but also between
large changes. In two of these scenarios (Sections 6.6.2 and 6.6.9), the 8-neighborhood
graph gives similarity values that are non-monotonic, that is, it provides less sound

mappings than the 4-neighnorhood graph.

This insight refutes the hypothesis of this thesis, such that the four-neighborhood and
eight-neighborhood graphs do not provide equally sound mappings of direction changes
onto similarity values. The efforts in computing 4-neighbor and 8neighbor similarities
are the same; therefore, the 4neighbor graph is preferred over the 8-neighbor graph for

similarity assessments of cardinal directions using the model developed in thisthesis.

6.7 Summary

This chapter described the implementation of Disha, a direction comparison system, and
used it to computationally test the hypothesis. The study showed that the similarity values
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obtained using the method developed in the previous chapter are cognitively plausible.
We compared the mappings provided by the 4-neighbor and 8-neighbor graphs from
direction changes to similarity values, and found that the former provides a sounder
mapping than the latter.
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Chapter 7

Conclugions

Qualitative spatial relations are essential components of questions that people would like
to ask a Geographic Information System (GIS). To give plausible answers to the
guestions that involve spatia relations, GISs need to employ effective models of spatial
relations. This thesis focused on cardinal directions, a type of spatial relation that
captures the information about relative placement of objects in an extrinsic reference
frame. Current models of cardinal directions approximate objects by points or minimum
bounding rectangles (MBRS). To record exact directions, including the influence of the
shape of objects on cardinal directions, we developed a model of cardinal directions
based on direction-relation matrices. This chapter, summarizes the thesis (Section 7.1),
describes results and major findings (Section 7.2), and highlights future work made
possible by this research (Section 7.3).

7.1 Summary of the Thesis

Cardinal directions are used in spatial databases for answering queries about the
directions between objects and inferring unknown directions between the objects from
the known directions. They are also employed for retrieving spatialy similar datasets
from a digital library of geographic datasets. Keeping these applications in mind, we
established five requirements for a direction model: formal, inferential, shape-sensitive,
dimension-neutral, and comparable. This thesis evaluated existing models of cardina
directions to test whether or not these models possess the desired properties. No model
was found that has all the properties, because existing models approximate the geometry

of the extended objects either by points or by minimum bounding rectangles.
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This thesis developed a model of cardina direction using the coarse direction
relation matrix, which divides the space into nine tiles, each corresponding to a cardinal
direction with respect to the reference object, and records with which tiles the target
object intersects. An element in a coarse direction-relation matrix is empty if the target
object does not intersect with the corresponding tile, and non-empty if it intersects. The
thesis studied the effects of the objects shapes and sizes and dstance between them on
the recorded direction-relation matrix. It compared the direction-relation matrix with the
model based on minimum bounding rectangles, and developed detailed direction-relation
matrix to record more details about directions, such as the ratio of target object and
number of target object separationsin atile.

While the coarse direction model is powerful enough to capture directions between
regions, it does not immediately apply to other types of geographic representation, such
as lines and points; therefore, this thesis extended it to a deep direction model, which is
capable of recording directions between arbitrary pairs of points, lines, and regions. The
deep direction model uses deep direction-relation matrices, which additionally record the
neighbor codes, if necessary. The neighbor code is information about the intersections of
the target object with the boundaries of direction partitions. This thesis analyzed the
patterns of neighbor code for various types of reference and target objects and showed
that the directions recorded with the deep direction-relation matrices at smaller scales are
compatible with the directions recorded at larger scales. It demonstrated that the deep
direction-relation matrix records equal values of directions for cognitively equivalent

directions.

Based on the conceptual neighborhood of cardinal directions, this thesis developed a
method for assessing similarity between cardina directions. The similarity between two
directions is complimentary to the dissimilarity, which is proportional to the distance
between two directions. To compute the distance between two directions, we calculate
the cost of transforming a direction-relation matrix into another by moving non-zero
elements along the conceptual neighborhood graph. Direction-relation matrices that have

more than one non-zero elements can have multiple possibilities of transforming a matrix
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into another. To compute the minimum cogt, this thess employed the transportation
algorithm in linear programmi ng.

Since different conceptual neighborhood graphs may be designed, possibly yielding
different similarity values for a given pair of directions, we compared the soundness of
mappings provided by the four- and eight-neighborhood graphs. For this purpose, we
developed a software prototype of a direction-comparison system that uses the model
developed in this thesis. Through a systematic evaluation of the similarity assessment
method, we experimentally established that the four-neighborhood conceptual graph
provides more sound mapping than the eight-neighborhood graph.

7.2 Resultsand Major Findings

The major results of thisthesis are:

The direction-relation matrix is an exact model, which does not approximate the

objects' shapes.
The shape of objects influences the cardinal directions between them. Earlier models of
directions approximated the objects shapes, therefore, they are not able to capture the
effect of shape on cardinal directions, and often record miseading directions. The
computational model based on direction-relation matrices records exact directions
without approximating shapes; therefore, it applies alike to objects that are concave or
convex; regularly or irregularly shaped; and intertwined or clearly separate. This
characteristic of the model can significantly improve the results of database queries and

results of spatial reasoning over directions.

Direction-relation matrices provide a knowledge structure that can record multiple
directions.
A target object can be in multiple directions with respect to a reference object. Most
models of cardinal directions were designed to determine from the objects geometries
whether or not a target object exists in a particular direction with respect to a reference

object. The direction-relation matrix provides a knowledge structure to encode multiple
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directions, such that al questions regarding directions can be answered from a direction-
relation matrix that is computed once and stored as a spatial data-object. The similarity
assessment and spatial reasoning operations make the spatia data-object useful for

geographic databases and geographic datasets.

Direction-relation matrices allow recording of multiple levels of detail in the same

framework.
A particular feature of the model based on direction-relation matrices is its ability to
describe direction relations at multiple levels of detail. At a coarse level, the direction-
relation matrix records into which tiles around the reference object the region target
object fals. At afiner level, it captures how much of the target object falls into each tile,
and an even more detailed view is given if the direction-relation matrix records properties
of the components in each tile. This multi-resolution model has significant implications
for spatial query processing when a user, for instance, sketches the objects of interest.
The coarse direction-relation may then act as a filter to quickly retrieve candidates,
whereas the more detailed direction-relation matrices can be used to prioritize the

candidates for a similarity assessment.

The model based on direction-relation matrices applies to points, lines, and regions
alike.
The deep direction model records directions in deep direction-relation matrices, which
are based on coarse direction-relation matrices and additionally record the intersection of
the target objects with the boundaries of the partitions, if necessary. This model yields
equal vaues for cognitively equivalent directions regardliess of the dimensions of the
objects, and frees the user from pondering about the dimension of the objects while

making queriesin aGIS.

The directions recorded at smaller scales using the deep direction model are
compatible with the directions recorded at larger scales.
This thesis demonstrated that directions recorded with the deep direction model at smaller

scales are compatible with the directions recorded at larger scales. The compatibility
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makes this model useful for querying spatial databases at multiple scales, as it ensures the
consistency in the results of the direction queries.

The model based on direction-relation matrices provides a solid foundation for
gpatial reasoning.
The correct and multiple directions recorded with direction-relation matrices make this
model very useful for exact spatial reasoning. Deep direction-relation matrices can be
used for spatial reasoning for directions between arbitrary pairs of points, lines, and

regions.

The model is useful for retrieving spatially similar scenes.
Retrieval of similar scenes is a common task in most domains including geographic data.
The method of similarity assessment makes this model useful for retrieving spatially
similar scenes in image databases, video databases, multimedia databases, and web-
databases.

The model based on direction-relation matrices can be used to detect and predict
changes.
Direction-relation matrices and similarity assessment method capable of detecting and
quantifying changes between snapshots of varying scene, such as changes in the
landscape of the city over a period or a video clip of afast change. The changesin objects
are primarily movement, rotation, and enlargement. Using the conceptual neighborhood

graph and the trend of change, one can predict the state of objectsin future.

The regjection of the hypothesis reveals that the 4-neighborhood graph provides a
sounder mapping than the 8-neighborhood graph.
We investigated the 4-neighborhood and 8-neighborhood graphs as the basis for the
direction-similarity assessment. A comparative study shows that the 4-neighborhood

graph provides a sounder mapping than the 8-neighborhood graph.
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The direction-relation matrix meets all five requirements for a cardinal-direction

model.
This thesis analyzed the requirements of a direction model before developing it. The
desired properties are formal, inferential, shape-sensitive, dimension-neutral, and
comparable. The model applies to al objects alike; therefore, it is formal. It forms a
strong foundation for spatia reasoning; therefore, it is inferential. It does not approximate
the shapes of objects; therefore, it is shape-sensitive. It applies to objects of different
dimensions (i.e., points, lines, and regions) and records compatible directions; therefore,
it is dimension-neutral. The method for similarity assessment makes the directions

comparable.

7.3 FutureWork

This thesis presented a cardina direction model that is computationally sound and has the
properties established before developing the model. Although this thesis has presented
significant results of the research pursued while designing this direction model, this
research also uncovered avenues for further research, which are closely related to this
thesis.

7.3.1 Direction Reasoning using Direction-Relation Matrix

The deep direction-relation matrices (Chapter 4) are capable of representing directions
between objects of different dimensions. A method for direction reasoning using this
model can be developed by performing reasoning on the x- and y-axes and combining
results by performing a cross product. There are four types of pairs of projections of
reference and target objects on an axis: (1) a pair of points (PP), (2) a pair of a point and

aninterval (Pl), (3) apair of aninterval and apoint (IP), and (4) apair of intervals (I1).

In order to obtain the composition of relations along an axis, we will need
composition tables for eight possible pairs on an axis (Table 7.1). The composition tables
for the case PP-PP is trivia. The composition table for the case IlI-Il is available for
interval relations (Allen 1983). For other six cases, composition table must be generated.
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Case Type of Type of Type of Pair code for
projection for A | projectionfor B | projectionfor C dir(A C)

PP-PP point point point PP
PP-PI point point interval Pl
PP-IP point interval point PP
PP-11 point interval interval Pl
IP-PP interval point point IP

IP-PI interval point interval [l

l-1P interval interval point IP

-1 interval interval interval I

Table7.1: The types of projections of objects A, B, and C aong an axis and the
composition types. The codes P and | stand for point and interval types of
projections, respectively.

For a converse operations there are four types of pairs: PP, PI, IP, and 1. Computing
the converse for the case PP is trivial and the method for computing the converse for the
case Il is available (Allen 1983). For the cases IP and PI, methods for computing
converse relations must be derived, for instance, from Figures 4.15a-b.

The deep direction-relation matrices, however, do not record the information about
their types of projections, they just record the intersection with partitions and neighbor
codes, if necessary. A method will be needed that can extract the projection information

from the deep direction-relation matrices and use it for spatial reasoning operations.

7.3.2 Deep Detailed Direction-Relation Matrix

The detailed direction-relation matrix is used for assessing similarity between cardina
directions for regions. Simlarly, a deep detailed direction-relation matrix for arbitrary
pairs of points, lines, and regions will be useful for similarity assessment between
directions across different dimensions of objects. Detailed directions can be recorded for
line and region targets only, as a point has no extent; therefore, there is no detail to record
for a point target. In the case of a line target object, the length ratio in each partition can
be recorded. The primary challenge lies in recording details about the intersection of a
region with lines and points and the intersection of a line with lines and points. For
example, if the reference object is a point and the target object is a region, north, south,

east, and west directions are lines, and the same direction is a point.
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7.3.3 Cognitive Evaluations

The direction model and the similarity assessment techniques were targeted for spatia
guerying in databases; therefore, they are forma and computationally elegant. In order to
use this model for natura language queries, however, the model must be tested for its

cognitive plausibility. The following areas would need such testing:

7.3.3.1 Cognitive Plausibility of the Direction-Relation Matrix

The direction-relation matrix partitions the space in rectangular partitions corresponding
to cardinal directions. Cognitive studies about the directions in an intrinsic reference
frame show that people parse space into unequal and overlapping cones (Franklin et al.
1995). Similar cognitive studies to learn how people perceive cardinal directions between
extended objects can be conducted. Using the results of the studies, one can evaluate how
well the direction-relation matrix adheres to peopl€e’ s intuition.

7.3.3.2 Distances between Single-Element Direction-Relation M atrices

The distance between two single-element matrices is the distance between their non-zero
elements along a conceptual neighborhood graph. We have computed distances between
single-element direction-relation matrices based on the 4-neighborhood (Figures 5.4) and
8-neighborhood (Figures 6.22) conceptual neighborhood graphs. The 4-neighborhood
distances give cognitively more plausible rankings of the scenes than the 8-neighbor
distances, however, the values of distances that conform to peopl€e’ s perception should be
determined by performing human subject testing. The method for similarity assessment is
flexible enough to accommodate these distances.

7.3.3.3 Similarity Assessment

The systematic evaluation of the smilarity assessment method showed that the values of
similarity adhered to our expectations. A study involving human subject testing for the
similarity values can reveal how well these values conform to people’s perception of

similarity.

151



7.3.4 Mapping of Natural Language Direction Terms onto Direction-

Relation Matrices

In order © make spatial queries such as “Find all towns that are north of Bangor in the
state of Maing” the natural-language direction terms should be mapped onto a
corresponding direction-relation matrix. For example, some people may consider the area
of acceptance for north as the north tile, while some others may consider it as the union
of the northwest, north, and northeast tiles. Shariff (1996) presented the correspondence
between topological relations and their metric parameters for relations between a region
and aline. A similar effort for direction terms will be useful for natural-language queries
using directions. We feel that al the necessary intersections are recorded in deep
direction-relation matrices, therefore, the direction terms can be defined in terms of the

values of these matrices.

7.3.5 Detecting and Quantifying Change

The change in the directions can be detected from an ordered sequence of direction
relation matrices. For instance, if one monitors objects by extracting the direction-relation
matrices from digital imagery, one obtains a higher-level description of the spatial
configuration. Of particular interest for us is inferring automatically what qualitative
changes have occurred, and what changes are expected. The conceptual neighborhood
graphs can be used to infer new relations over the period. The similarity measure can be

used to quantify the degree of change.

7.3.6 Inferring the Type of Change from the Profile of Similarity

Values

The graphs of similarity values for various changes (Chapter 6) exhibit a degree of
correlation between the profile of similarity values and the type of change. An
investigation can be conducted to determine whether or not there is sufficient correlation
in the profiles of similarity values and the types of change: curved movement, diagonal
movement, horizontal movement, verticd movement, enlargement in a direction,
enlargement in al directions, and rotation with respect to its own extreme. If there is
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sufficient correlation, the profile could be used to infer the type of change and, therefore,
abstract change to a high-level concept.

7.3.7 Extension to 3-Dimensional Space

The model of directions in 2-D using direction-relation matrices can be extended to 3-D.
the minimum enclosing box for the 3-D reference object will be central to the reference
grid and will consgtitute the same volume. The reference grid with 125 parts of the space
will have 27 volumes, 6*9=54 areas, 12*3 = 36 lines, and 8 points. If the point, lines, and
areas are considered to have no extent for directions between volumes, a 3-D matrix with
27 element that is analogous to coarse direction-relation matrix in 2-D is adequate.
Similarly, detailed and deep direction-relation matrices can also be developed for

directionsin 3-D space, forming the foundation for direction reasoning in 3-D.

7.3.8 Similarity between Raster Templates Using the Conceptual
Neighborhood Graph

In pattern recognition (Schalkoff 1992, p. 330-331), the metrics my and m, are used for
matching templates f and g (Equations 7.1a-b), where R is the extent over which a match
occurs. Other methods for comparing image templates are Fourier descriptors (Persoon
and Fu 1977), least square matching (Agouris and Gruen 1994), and modified least
sguare matching (Carswell 2000).

ml=é|f - g| (7.1a)
R

m, =g (f - g)° (7.1b)

R

The coarse and detailed direction-relation matrix can alternately be visualized as
3" 3 binary and gray raster templates. The method developed for similarity assessment
(Chapter 5) compares 3 3 templates, where the sum of the gray (detailed) values of each
template is 1. This method of similarity assessment can be extended to assess similarity

between n" n raster templates. Such an extension has the potentia of giving better
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measures than m, and m,. This extension may be applicable for comparison of well-
defined objects such as brain tumors, where the exact shape of the artifacts are of great

importance, and scale and orientation of the objects are fixed.
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