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Abstract: The purposes of this paper are twofold, namely first to present general criteria for
the design of spatial data types that are necessary and valid for the modeling of spatial objects
regardless whether we consider objects with sharp or undetermined boundaries, and second to
show how the concepts of a type system for spatial objects with sharp boundaries can be suitably
transferred and extended to the modeling of spatial objects with undetermined boundaries. The
most relevant design criteria of such a type system comprise generality, closure properties, rig-
orous definition, finite resolution, numerical robustness, topological correctness, geometric con-
sistency, extensibility and data model independence of spatial data types. The Realm/ROSE
approach allows for these design criteria and offers an appropriate definition of a type system
for spatial objects with sharp boundaries. An extension of the Realm/ROSE model is proposed
that shows how general region objects with undetermined boundaries can be derived from this
model which have nice closure properties and which obey the design criteria. The idea is to con-
sider determined zones surrounding the undetermined borders of the object and expressing its
minimal and maximal extension.
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1 Introduction

The diversity of geometric applications has led to a lot of proposals both for the modeling of
spatial data and for the design of new data models and query languages integrating traditional
alphanumeric data as well as geometric data. In literature by now the general opinion prevails
that special data types are necessary to model geometry and to enable geometric data to be effi-
ciently represented in database systems. These data types are commonly denoted asspatial or
geometric data types (SDT), such as, for example,point, line, or region. We speak ofspatial
objects as occurrences of spatial data types. Thus, we take an entity-oriented view of spatial phe-
nomena. The definition of spatial data types and operations expressing the spatial semantics vis-
ible at the user level and the mechanisms for providing them to the user are to a high degree
responsible for the design of a spatial data model and the performance of a spatial database sys-
tem being the basis of GIS and have a great influence on the expressiveness of spatial query lan-
guages. This is true regardless whether we consider spatial objects with sharp or undetermined
boundaries and whether a DBMS uses a relational, complex object, object-oriented, or some
other data model.Hence, the definition and implementation of spatial data types is probably the
most fundamental issue in the development of spatial database systems.

Spatial data types modeling objects with sharp boundaries are used routinely in the description
of spatial query languages (e.g. [Eg89, Gü88, JC88, LN87, SH91]) and have been implemented
in some prototype systems (e.g. [Gü89, OM88, RFS88]) even if only a few formal definitions
have been given for them [Gü88, GS93, GS95, GNT91, SV89]. For spatial objects with unde-
termined boundaries analogous approaches, especially formal ones, are unknown to the author.

The treatment of spatial objects with undetermined, vague, and blurred boundaries is especially
problematic for computer scientists who are confronted with the difficulties how to model such
objects in their database systems, how to finitely represent them in a computer format, how to
develop spatial index structures for them, and how to draw them. They are accustomed to the
abstraction process of simplifying spatial phenomena of the real world to simply-structured,
manageable, and sharply-bounded objects of Euclidian geometry like points, lines, and regions.
On the other hand this abstraction process itself mapping reality onto a mathematical model in-
troduces a certain kind of vagueness and imprecision.

Spatial objects with undetermined boundaries are difficult to model and so far rarely or not sup-
ported in spatial database systems. Two categories of vagueness and indeterminacy concerning
spatial objects can be distinguished.Uncertainty relates either to a lack of knowledge about the
position and shape of an object with an existing, real border or to the inability of measuring such
an object precisely. Fuzziness describes the vagueness of objects which certainly have an exten-
sion but which inherently do not have a precisely definable border.

At least three alternatives are conceivable as general design methods for the modeling of spatial
objects with undetermined boundaries: (a) fuzzy models [Ba93, Du91, HB93, LGL92, LL93],
(b) probabilistic models [Fi93], and (c) transfer and extension of data models, methods, and con-
cepts for spatial objects with sharp boundaries to spatial objects without clear boundaries. In this
paper we pursue the third approach and extend the Realm/ROSE model [GS93, GS95] as an al-
gebraic model for handling spatial objects with sharp boundaries to a model for spatial objects
with undetermined boundaries which contemporaneously obeys general criteria for the design
of spatial data types and which preserves the properties of the Realm/ROSE model. The idea is
to consider determined zones surrounding the undetermined borders of the object and express-
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ing its minimal and maximal extension. The zones serve as a description and separation of the
space that certainly belongs to the region object and the space that is certainly outside. Similar
approaches have been pursued in [CF94] and in [CG94] which both presuppose some kind of
zone concept for the modeling of vague spatial objects. But in contrast to this paper they are
mainly interested in classifications of topological relationships between vague spatial objects
and not in a precise formal modeling of the objects themselves.

Section 2 introduces general criteria for the design of spatial data types regardless of the deter-
minacy or indeterminacy of its objects. Section 3 informally sketches the Realm/ROSE model,
and section 4 shows how this concept can be used to formally model general region objects with
undetermined boundaries having nice closure properties.

2 General Criteria for the Design of Spatial Data Types

General design criteria for spatial data types are stated which are considered to be relevant for
the modeling of spatial objects and which are valid regardless whether we consider objects with
sharp or undetermined boundaries. The current modeling approaches for spatial objects with de-
termined boundaries only partially follow these criteria. Within the framework of the Realm/
ROSE model we have attempted to take all these criteria into account and to offer a satisfactory
solution in a single model. The design criteria are in detail:

• Generality. It should be feasible to model spatial objects being the occurrences of SDTs
as general as possible. A line object should be able to model the ramification of the Nile
delta. A region object should be able to represent a collection of disjoint areas each of
which may have holes. This allows, for instance, to model the German state of Nieder-
sachsen enclosing the state of Bremen and having offshore islands in the North Sea as
one object.

• Closure properties. The domains of spatial data types likepoint, line, andregion must
be closed under union, intersection, and difference of their underlying point sets. This
allows the definition of powerful data type operations with nice closure properties.
When observing this criterion geometric anomalies are avoided which can occur when
for instance conventional operations in set theory and point set topology are carried
out, a problem which for this case has been solved by regularized operations [Ti80].

• Rigorous definition. The semantics of SDTs, that is, the possible values for the types
and the functions associated with the operations, require aformal, clear, and unique
definition to avoid ambiguities both for the user and the implementor.

• Finite resolution, numerical robustness, and topological correctness. The formal def-
initions must take into accountthe finite representations available in computers. This
has so far been neglected in definitions of SDTs. It is left to the programmer to close
the gap between theory and practice which leads rather inevitably not only to numerical
but also to topological errors.

• Geometric consistency. Distinct spatial objects may be related through geometric con-
sistency constraints (e.g. adjacent regions have a common boundary, or two lines meet
in a point). The definition of SDTs must offer facilities to enforce such consistency.
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• Extensibility. Even though the designer of a spatial database system may provide a
good collection of spatial data types and operations, there will always be applications
requiring further operations on existing types or requiring new types with new opera-
tions. A type system should therefore be extensible for new data types.

• Data model independence. Spatial data types as such are rather useless; they need to
be integrated into a DBMS data model and query language. However, a definition of
SDTs should be valid regardless of a particular DBMS data model and therefore not
depend on it. Instead, the SDT definition should be based on a general abstract inter-
face to the DBMS data model.

These design criteria have to be transferred to and realized at the implementation level when
constructing spatial database systems.

3 The Realm/ROSE Model : An Informal Overview

In this section we present a short, intuitive and informal overview of the realm concept and the
ROSE (RObust Spatial Extension) algebra which both support an entity-oriented view of spatial
reality and which were originally only planned for spatial objects with sharp boundaries. Any
formal definitions are omitted here, and the reader interested in details is referred to [GS93,
GS95].

A realm used as a basis for spatial data types is essentially a finite set of points and non-inter-
secting line segments over a discrete domain (Figure 1) and can from a graph-theoretical point
of view be viewed as a planar graph over a finite resolution grid. Intuitively, it describes the

complete underlying geometry of an application. All spatial objects like points, lines and re-
gions can be defined in terms of points and line segments present in the realm. In fact, in such
a database spatial objects are never created directly but only by suitably selecting some realm
objects and composing them to spatial objects. They are never updated directly. Instead, updates
are performed on the realm and from there propagated to the dependent spatial objects. Hence,
all spatial objects occuring in a database are realm-based.

Figure 2 shows some spatial objects definable over the realm of Figure 1. The realm-based spa-
tial data types are called points, lines, and regions and are the sorts (types) of the ROSE algebra.

Figure 1
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Hence, A and B representregions objects, C is alines object, and D apoints object. One can
imagine A and B to belong to two adjacent countries, C to represent a river, and D a city.

The underlying grid of a realm arises simply from the fact that numbers have a finite represen-
tation in computer memory. In practice, these representations will be of fixed length and corre-
spond to INTEGER or REAL data types available in programming languages. Of course, the
resolution selected for a concrete application will be much finer than could be shown in
Figure1.

The realm concept as a basis of spatial data types serves the following purposes:

• It guarantees niceclosure properties for the computation with spatial data types above
the realm. The algebraic operations for the spatial data types are defined in a way to
construct only spatial objects that are realm-based as well. For example, the intersec-
tion of region B with line C (the part of river C lying within country B) is also a realm-
basedlines object. So the spatial algebra is closed with respect to a given realm. This
means in particular that no two objects of spatial data types occurring in geometric
computation have “proper” intersections of line segments. Instead, two initially inter-
secting segments have already been split at the intersection point when they were en-
tered into the realm. One could say that any two intersecting SDT objects “have
become acquainted” already when they were entered into the realm. This is a crucial
property for the correct and efficient implementation of geometric operations.

• It shields geometric computation in query processing from numeric correctness and ro-
bustness problems. This is because such problems arise essentially from the computa-
tion of intersection points of line segments which normally do not lie on the grid2. With
realm-based SDTs, there arenever any new intersection points computed in query pro-
cessing. Instead, the numeric problems are treatedbelow and within the realm level,
namely, whenever updates are made to a realm.

2 The methods for the treatment of numeric correctness problems below and within the realm level and especially
the important problem of mapping an application’s set of intersecting line segments into a realm’s set of non-
intersecting line segments are an interesting and complex problem but out of the scope of this paper (see [GS93]).

A B

C

D

Figure 2
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• It provides the programmer with a precise specification on all levels of the model that
directly lends itself to a correct implementation. This particularly means that the spatial
algebra obeys algebraic laws precisely in theory as well as in practice.

• It enforcesgeometric consistency of related spatial objects. For example, the common
part of the borders of countries A and B is exactly the same for both objects.

Certain structures can be constructed in a realm that serve as a basis for the definition of SDTs.
Let us view a realm as a planar graph. Then anR-cycle is a cycle of this graph. AnR-face is an
R-cycle possibly enclosing some other disjointR-cycles corresponding to a region with holes.
An R-unit is a minimalR-face. These three notions support the definition of aregions data type.
An R-block is a maximal connected component of the realm graph; it supports the definition of
a lines data type. For all of theserealm-based structures predicates are defined to describe their
possible topological relationships.

The ROSE algebra contains very general data typespoints, lines, andregions (Figure 3). LetR
be a realm. Then apoints object is a set ofR-points. There are two alternative views oflines and
regions. The first “flat” view is that alines object is a set ofR-segments and aregions object a
set ofR-units. The other “structured” view is equivalent but “semantically richer”: Alines ob-
ject is a set of disjointR-blocks and aregions object a set of (edge-) disjointR-faces. For exam-
ple, it is now possible to represent the whole area of a state including islands or separate land
areas in a singleregions object, or a complete highway network in a singlelines object. Espe-
cially, the modeling of “regions with holes” is now possible.

The definition of these data types guarantees very nice closure properties. They are closed under
the geometric operationsunion, intersection, anddifference with regard to the same realm. That
is, the result of such an operation is a realm-based object as well and corresponds to the defini-
tions of the spatial data types informally given above. The validity of the closure properties is
based on the reduction of the geometric operations to the corresponding set-theoretic ones.

The spatial operations of the ROSE algebra [GS95] are divided into four classes. Note that the
last group of operations manipulates not only spatial objects but also the geographical objects
they are associated with. The classes are:

• spatial predicates expressing topological relationships (e.g.inside, adjacent, disjoint)
• operations returning atomic spatial objects (e.g.intersection, contour, plus, minus)
• operations returning numbers (e.g.length, dist, diameter, area)
• operations on sets of geographical objects (e.g.overlay, fusion, closest, decompose).

a points object a lines object a regions object

Figure 3
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4 Using the Realm/ROSE Approach for Modeling Spatial Objects with Un-
determined Boundaries

An extension of the Realm/ROSE model to spatial objects with undetermined boundaries leads
to very general data typesvpoints, vlines, andvregions where the prefix “v” stands for the term
“vague” unifying the two categories of uncertain and fuzzy spatial objects. These vague objects
are to be defined by “sharp” means using some concepts and definitions of the Realm/ROSE
model. Within the framework of this paper we confine ourselves to the formal treatment of gen-
eralregions with undetermined boundaries or vague regions with possibly existingvague holes
and to the treatment of their closure properties.

The central idea is to approximate each of the undetermined boundaries of a region object, that
is, its outer boundary line and the boundary lines of each of its possibly existing holes, byzones
modeling a kind of “irregular spatial intervals” which we callborder zone andhole zone, respec-
tively (Figure 4). A border zone is modeled by two or more simple cycles, one representing its
outer border and one or more representing itsinner border(s). A hole zone is modeled by two
simple cycles representing itsinner border and itsouter border. Matching inner and outer bor-
ders surround the undetermined borders of the outer boundary line and the holes on both sides
so that for a vague region border zone and hole zones express the vagueness of the real, unde-
termined boundary lines which lie somewhere between the outer border and the inner border(s)
of the zones. For a zone the area of its inner border(s) (the “safe” area) is always contained in

the area of its outer border. All the zones together serve as a description and separation of the
space that certainly belongs to the vague region and the space that is certainly outside. Hence,
the maximal extension of a vague region is given by the outer border of its outer boundary line
and the inner borders of its holes. The minimal extension is given by the inner border(s) of its
outer boundary line and the outer borders of its holes.

As an example, we can consider a lake which has a minimal water level in dry and a maximal
water level in rainy periods. Dry periods can entail puddles where is no water. Small islands in
the lake which are less flooded by water in dry and more flooded in rainy periods can then be
modeled as vague holes. Even in rainy periods an island is never flooded completely. The ex-

(a) (b)

Figure 4: (a) A vague region with a vague hole and the corresponding zones.
(b) Note that the inner border of a border or hole zone may have common
segments and common points with its outer border and that there can be
more than one inner border for border zones.

border zone
(unsafe area)

hole zone
(unsafe area)

safe
areas
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ample underpins that this modeling approach is suitable for describing vague regions and that it
corresponds to the user’s conceptual view and intuition of spatial vagueness.

We now take a more formal view of vague regions and use concepts of the Realm/ROSE model.
Let N = {0, ..., n − 1} ⊆ N. An N-point is defined as a pair (x, y) ∈ N × N. An N-segment is a
pair of distinct N-points (p, q). PN denotes the set of all N-points and SN the set of all
N-segments. Two N-segments meet if they have exactly one end point in common.

An R-cycle c is a cycle in the graph interpretation of a realm, defined by a set of R-segments
S(c) = {s0, ..., sm-1}, such that

(i) ∀ i ∈ {0, ..., m-1} : si meets s(i+1) mod m

(ii) No more than two segments from S(c) meet in any point p.

Cycle c partitions the set PN into three subsets Pin(c), Pon(c), and Pout(c) of R-points lying in-
side, on, and outside c. Let P(c) := Pon(c) ∪ Pin(c). Cycles are interesting because they are the
basic entities over realms for the definition of objects with a spatial extension. The relationships
that may be distinguished between two R-cycles c1 and c2 are shown in Figure 5.

The following terminology is used for these configurations: c2 is (area-)inside (i, ii, iii), edge-
inside (ii, iii), or vertex-inside (iii) c2. c1 and c2 are area-disjoint (iv, v, vi), edge-disjoint (v, vi),
or (vertex-)disjoint (vi).

The meaning is that (i) c2 is (w.r.t. area) inside c1, (ii) additionally has no common edges with
c1, (iii) has not even common vertices with c1. Similarly (iv) c2 is disjoint w.r.t. area with c1,
(v) additionally has no common edges with c1, (vi) additionally has not even common vertices
with c1. area-inside is the standard interpretation of the term inside, vertex-disjoint the standard
interpretation of the term disjoint. Formally these predicates are defined as follows:

c1 (area-)inside c2 :⇔ P(c1) ⊆ P(c2)

c1 edge-inside c2 :⇔ c1 area-inside c2 ∧ S(c1) ∩ S(c2) = ∅
c1 vertex-inside c2 :⇔ c1 edge-inside c2 ∧ Pon(c1) ∩ Pon(c2) = ∅
c1 and c2 are area-disjoint :⇔ Pin(c1) ∩ P(c2) = ∅ ∧ Pin(c2) ∩ P(c1) = ∅
c1 and c2 are edge-disjoint :⇔ c1 and c2 are area-disjoint ∧ S(c1) ∩ S(c2) = ∅
c1 and c2 are (vertex-)disjoint :⇔ c1 and c2 are edge-disjoint ∧ Pon(c1) ∩ Pon(c2) = ∅

Based on the concept of R-cycles, the notions R-face and R-unit are introduced which describe
regions from two different perspectives and which are used equivalently. Both of them essen-
tially define polygonal regions with holes. An R-unit is a “minimal” R-face in the sense that any

(iii)

(ii)

(i)
(iv)

(v)

(vi)

Figure 5

c1

c2
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R-face within the R-unit is equal to the R-unit. Hence R-units are the smallest region entities that
exist over a realm.

An R-face f is a pair (c, H) where c is an R-cycle and H = {h1, ..., hm} is a (possibly empty) set
of R-cycles such that the following conditions hold (let S(f) denote the set of segments of all
cycles of f):

(i) ∀ i ∈ {1, ..., m} : hi edge-inside c

(ii) ∀ i, j ∈ {1, ..., m}, i ≠ j : hi and hj are edge-disjoint

(iii) Each cycle in S(f) is either equal to c or to one of the cycles in H (no other cycle can be
formed from the segments of f)

The last condition ensures uniqueness of representation, that is, there are no two different inter-
pretations of a set of segments as sets of faces. The grid points belonging to an R-face f are de-
fined as P(f) := P(c) \ .

Let F(R) denote the set of all possible R-faces and U(R) denote the set of all R-units for a realm
R. In [GS93] the equivalence of two representations of a region over a realm is formally estab-
lished, namely, as a set of (pairwise) edge-disjoint R-faces, and as a set of area-disjoint R-units.
Operations called faces and units are defined to convert between the two formal representations.
Hence the equivalence can be expressed as: ∀ F ⊆ F(R): faces(units(F)) = F. The operation units
is defined as units(F) := {u ∈ U(R) | ∃ f ∈ F: u area-inside f}. The operation faces basically
works as follows: From a given set of area-disjoint R-units, its multiset of boundary segments
is formed. Then, all segments occurring twice are removed. The remaining set of segments de-
fines uniquely a set of edge-disjoint R-faces.

Now we are able to formally define vague regions. Two equivalent definitions are conceivable
expressing slightly different conceptual views. The first definition supports the zone concept
whereas the second definition emphasizes the maximal and minimal extension of a vague re-
gion.

Let C = (cout, Cin) denote a pair of a single R-cycle cout and a non-empty set of R-cycles Cin =
{c1

in, ..., cn
in}, and let H = (Hout, Hin) denote a pair of (possibly empty) sets of R-cycles Hout =

{h1
out, ..., hm

out} and Hin = {h1
in, ..., hm

in}. Then a vague region vr is a pair (C, H) so that the
following conditions are satisfied:

(i) ∀ i ∈ {1, ..., n} : ci
in area-inside cout

(ii) ∀ k, l ∈ {1, ..., n}, k ≠ l : ck
in edge-disjoint cl

in

(iii) ∀ k ∈ {1, ..., m} ∃ l ∈ {1, ..., n} : hk
out edge-inside cl

in

(iv) ∀ k, l ∈ {1, ..., m}, k ≠ l : hk
out edge-disjoint hl

out

(v) There exist two bijective functions f : {1, ..., m} → Hout and g : {1, ..., m} → Hin such that
∀ i ∈ {1, ..., m} : g(i) area-inside f(i)

These conditions reflect the informal zone model of a vague region presented above. C models
the unsafe border zone consisting of the outer border cout and a non-empty set Cin of inner bor-
ders. H models the unsafe hole zones consisting of a set Hout of outer borders and a correspond-
ing set Hin of inner borders. The conditions describe the inclusion relationships between the four
kinds of cycles that occur in unsafe border and hole zones, the disjointedness relationship be-
tween each pair of inner borders of the unsafe border zone, and the disjointedness relationship

Pin hi( )
i 1=

m∪
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between each pair of outer borders of the unsafe hole zones. Condition (v) requires that exactly
one inner border of Hin lies inside exactly one outer border of Hout. Note that f and g are total
functions, since domain and codomain of each function have the same cardinality. All condi-
tions together prevent a proper intersection of borders (cycles).

Based on these five conditions, an equivalent definition for vr as a pair of regions objects (Rout,
Rin) can be given. The first component of this pair is defined as Rout := {(cout, Hin)} which de-
scribes a set with a single R-face. Rout is a regions object, since all inner borders hi

in of unsafe
hole zones are edge-inside to the outer border cout of the unsafe border zone (follows from con-
ditions (v), (iii), and (i)) and since they are pairwise edge-disjoint (follows from conditions (v)
and (iv)). Rin represents a set of edge-disjoint R-faces and is defined as Rin := {(ci

in, Hi
out) | i ∈

{1, ..., n}} with Hi
out := {h ∈ Hout | h edge-inside ci

in}. Rin is a regions object, since all inner
borders of the unsafe border zone are pairwise edge-disjoint (follows from condition (ii)) and
since for an inner border ci

in all cycles of Hi
out are pairwise edge-disjoint (follows from condi-

tion (iv)). It is obvious that Hi
out = Hout and that ∀ k, l ∈ {1, ..., n}, k ≠ l : Hk

out ∩ Hl
out = ∅.

Intuitively, Rout represents the maximal and Rin the minimal extent of vr. We will assume this
latter definition as the formal definition of a vague region.

Let us now define what it means that two vague regions vr1 = (R1
out, R1

in) and vr2 = (R2
out,

R2
in) are edge-disjoint (for the definition of the predicate edge-disjoint between regions objects/

R-faces see [GS93]):

vr1 edge-disjoint vr2 :⇔ R1
out edge-disjoint R2

out

The realm-based structure of a vague region forms the basis for the definition of the spatial data
type vregions.

For a given realm R, a value of type vregions is a set of pairwise edge-disjoint vague
regions.

We now have to show the closure properties of the data type vregions, that is, it must be closed
under the geometric operations union, intersection, and difference with regard to the same
realm. Let w.l.o.g. VR1 = {(R1

out, R1
in)} and VR2 = {(R2

out, R2
in)} be two (one-component)

vregions objects. Then

union (VR1, VR2) := decompose(union(R1
out, R2

out), union(R1
in, R2

in)).

For intersection and difference the definitions are analogous. Since each of the three geometric
operations when applied to the regions objects R1

out and R2
out normally leads to a regions ob-

ject, say Rout, with more than one edge-disjoint R-face, Rout must be decomposed into its R-fac-
es, and the uniquely matching set of edge-disjoint R-faces from the same geometric operation
applied to R1

in and R2
in must be assigned to each such R-face in order to form a set of edge-

disjoint vague regions. This is the task of the operation decompose whose formal definition is
omitted here. The definitions of the geometric operations can be simply generalized to many-
component vregions objects. Due to the underlying realms, these operations both in theory and
in practice obey the usual algebraic laws, for instance, commutative, associative, and distribu-
tive laws.

i 1=

n∪
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5 Conclusions

The first part of the paper enumerated relevant design criteria for the modeling of spatial data
types that are valid regardless whether we consider objects with sharp or undetermined bound-
aries. The second part showed how general vague region objects with nice closure properties
can be defined on the basis of the Realm/ROSE approach, an algebraic model for constructing
sharply-bounded spatial objects. Using and extending a “sharp” model can lead to success and
meet the user’s conceptual view and intuition of spatial vagueness.

Future work will have to relate to the formal definition of the data typesvpoints andvlines and
to the formal definition of vague spatial operations like vague topological relationships.
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