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Abstract

Spatial relations often are desired answers that a geographic information system (GIS) should
generate in response to a user’s query. Current GISs provide only rudimentary support for
processing and interpreting natural-language-like spatial relations, because their models and
representations are primarily quantitative, while natural-language spatial relations are usually
dominated by qualitative properties. Studies of the use of spatial relations in natural language
showed that topology accounts for a significant portion of the geometric properties. This paper
develops a formal model that captures metric details for the description of natural-language spatial
relations. The metric details are expressed as refinements of the categories identified by the 9-
intersection, a model for topological spatial relations, and provide a more precise measure than
does topology alone as to whether a geometric configuration matches with a spatial term or not.
Similarly, these measures help in identifying the spatial term that describes a particular
configuration. Two groups of metric details are derived: splitting ratios as the normalized values of
lengths and areas of intersections; and closeness measures as the normalized distances between
disjoint object parts. The resulting model of topological and metric properties was calibrated for
sixty-four spatial terms in English, providing values for the best fit as well as value ranges for the
significant parameters of each term. Three examples demonstrate how the framework and its
calibrated values are used to determine the best spatial term for a relationship between two
geometric objects.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—query
languages; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—

* This work was partially supported by the National Science Foundation (NSF) under grant number SBR-8810917
for the National Center for Geographic Information and Analysis, the Scientific and Environmental Affairs Division
of the North Atlantic Treaty Organization, and a Massive Digital Data Systems contract sponsored by the Advanced
Research and Development Committee of the Community Management Staff and administered by the Office of
Research and Development. Max Egenhofer’s work is further supported by NSF grants IRI-9309230, IRI-9613646,
SBR-9600465, and BDI-9723873; and grants from Rome Laboratory under grant number F30602-95-1-0042 and the
National Aeronautics and Space Administration under grant number COE/97-0015. Rashid Shariff was partially
supported by a fellowship from the Malaysian Government.

† Max J. Egenhofer, National Center for Geographic Information and Analysis, 5711 Boardman Hall, University of
Maine, Orono, ME 04469-5711, U.S.A.; email: max@spatial.maine.edu.

‡ Current address: Rashid Shariff, Department of Survey and Mapping Malaysia, Jalan Semarak, 50578 Kuala
Lumpur, Malaysia.

1



query formulation; search process; selection process; I.2.1 [Artificial Intelligence]:
Applications and Expert Systems—cartography; I.2.7 [Artificial Intelligence]: Natural
Language Processing—language parsing and understanding; I.5.1 [Pattern Recognition]:
Models—geometric

General Terms: Design, Human Factors

Additional Keywords and Phrases: Spatial relations, topological relations, metric refinements,
geographic information systems, GIS

1 Introduction

The interaction between users and a geographic information system (GIS) has recently received
increased attention (Mark and Frank 1992; Medyckyj-Scott and Hearnshaw 1993; Nyerges et al.
1995). It is often argued that GISs that better capture human behavior would be easier to use. The
mode of interaction with which people are most familiar with is natural language, but GIS user
interfaces with natural-language components are found rarely (Mark and Gould 1991). Current
GISs only inadequately address spatial queries that are based on human intuition, as the main focus
of today’s implementations is on queries that are based on a quantitative representation. Such GISs
are useful in answering metric-based queries, which involve precise angular and distance
measures, but they cannot handle the way people communicate and interact through a qualitative
language. For example, people only rarely give directions in precise details as in, “the grocery
shop is 34.95 meters due east,” but rather provide these instructions qualitatively as in, “the
grocery shop is two blocks down the road, on the right” (Hernández 1994). GISs that are flexible
enough to accommodate such human interpretation are expected to find a wider audience and user
community than current systems that generally require a GIS specialist as a user.

This paper is concerned with the formalization of people’s use of spatial relations in natural
language. Formalizations of the semantics of natural-language spatial relations such that they can
be represented within a GIS, are necessary to allow for qualitative spatial queries. In that respect,
this research lies at the heart of Naive Geography, the field of study that is concerned with formal
models of the common-sense geographic world (Egenhofer and Mark 1995b). Formal models
currently used in commercial GISs lack the parameters to accommodate the flexibility that natural
language has in partitioning space. Knowledge about the parameters that play a significant role in
the selection of spatial predicates by people in describing spatial relations will allow us to develop
appropriate formal models and to calibrate them to fit human intuition.

In the past, the semantics of spatial relations have received attention primarily in the arena of
linguistics and artificial intelligence. Clark (1973) suggested a strong correspondence between
perceptual space (P-Space), which humans use to perceive the space around them, and linguistic
space (L-Space), which is used by language to represent the perceived space. This correspondence
has been widely used in subsequent research for eliciting natural language descriptors of scenes.
Talmy’s (1983) seminal paper, “How Language Structures Space” establishes the link between
prototypical spatial configurations and the use of natural language predicates. A variety of
properties may contribute to the choice of a particular spatial term, such as the natural language
(English vs. Spanish), the culture, the semantics of the spatial objects involved, the tasks users
envision, the context in which the objects are presented, the pictorial presentation (a sketch vs. a
topographic map), and the objects’ geometries (Mark et al. 1995). We concentrate here on the
geometric aspects, giving preference to metric properties (such as length and area measures) and
topological properties of spatial relations (such as coincidence and containment) over explicit
influences of cardinal directions (such as angles) and shapes.
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The approach taken here is a refinement of the 9-intersection (Egenhofer and Herring 1991) to
accommodate more semantics of natural-language spatial relations. It builds on strong evidence that
among those spatial relations, topological properties are most fundamental (Piaget and Inhelder
1967; Lynch 1960; Kuipers 1978; Riesbeck 1980; Mark and Egenhofer 1994a; Regier 1995), and
that metric properties are appropriate refinements of certain topological configurations. For
instance, for a road to enter a park, it was found that it is critical that the road crosses the park’s
boundary (Mark and Egenhofer 1994b); however, additional metric properties, such as the portion
of the road that is inside the park, may also matter, particularly if it is very small, in which case a
better term to describe the relation would be the road leads to the park. According to Talmy (1983),
at the fine-structural level of conceptual organization, language shows greater affinity with
topology than with metric spaces; however, metric details occasionally overwrite topological
properties, particularly in situations where small metric modifications imply topological changes.
The importance of metric properties in people’s mental maps is well-known (Cadwallader 1976;
Cadwallader 1979; McNamara et al. 1994; McNamara and LeSueur 1989; Montello 1991; Montello
1992). Computational models that consider approximate distances either transform them into a
Cartesian coordinate system to perform inferences (Davis 1986), or choose separate models for
distances and directions (Frank 1992; Hernández et al. 1995; Hong et al. 1995) or distances and
topological relations (Hernández 1994). Following the premise that topology matters, metric
refines (Egenhofer and Mark 1995b), we develop here a two-tier model for the analysis of natural-
language spatial relations:

(1) Capturing the topology of the configuration, and

(2) analyzing the topological configuration according to a set of metric properties.

This approach is different from related investigations into the semantics of spatial relations and
spatial predicates. Work on how humans conceptualize spatial relations (Grimaud 1988; Japkowicz
and Wiebe 1991) is fundamental to the study of human cognition of spatial relations; however, we
do not explicitly use these ideas of conceptualization in our work, because our formalism is
concerned with semantics that can be captured from the geometric configuration of spatial relations.
Our focus is on the geometry of configurations and not the conceptualization of the spatial
configuration. Positive results obtained from earlier work with human subject testing (Mark and
Egenhofer 1994b) justify our assumption for taking this approach. Our study also relates to
Rosch’s (1973; 1978) general theory of human categorization whereby prototypical cases are used
and objects are specified in terms of their distances from these prototypes. We are however dealing
with spatial relations and not objects. In this respect, we are building on Herskovits’s (1986)
work, which used Rosch’s method of prototypical categorization and applied it to spatial relations.
Our goal is similar to that of the Visual Translator VITRA, which aims at translating from a visual
into a linguistic mode (Herzog and Wazinski 1994). VITRA’s computation algorithms for the basic
meanings of topological relations use the distance between the located and reference objects, while
for the computation of projective relations, the deviation angle of the located object from the
canonical direction implied by the relation is also used. Our approach differs as it uses metric
determination only as a secondary measure to refine the primary measure of topology.

The scope of this paper are binary relations between spatial objects that people conceptualize as
a line and a region. Examples are the path of a hurricane with respect to a continent and a road’s
relation to a park. The critical components for line-region relations are the regions’ interiors,
boundaries, and exteriors and the lines’ interiors and boundaries. When a region’s interior,
boundary, or exterior interacts with either the boundary or interior of a line, certain metric
properties can be captured about this interaction. For instance, the interior of a line can share parts
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with the boundary of a region, and one could measure the length of the common stretch. A purely
quantitative measure would record an absolute value, for instance the length of the common
boundary in inches. Such an approach would be insufficient as it does not take into consideration
the relation to the objects to which it belongs; therefore, under such operations as scaling of the
entire scene, a different value would be obtained and stronger values would be obtained when a
smaller reference object was chosen. Following Talmy’s (1983) observation that the objects’ sizes
are irrelavant for the choice of their spatial relation term, we design a model for metric concepts that
normalizes metric values for line-region relations with respect to the region’s area, the line’s
length, and the region’s perimeter. To describe details about topological relations, we consider two
metric concepts:

(1) the splitting, which determines how the region’s and line’s interiors, boundaries, and
exteriors are cut; and

(2) the closeness, which determines how far apart are the region’s boundary and the parts of
the line.

Alternative models for spatial relations have been proposed, most notably symbolic projections
(Chang and Jungert 1996) and the region-connection calculus (Randell et al. 1992). Symbolic
projections model spatial relations based on directions captured independently along the coordinate
axes. Unlike the 9-intersection, however, they refer to the objects’ minimum bounding rectangles,
rather than to their actual shapes, which provides an approximation that depends on the objects’
orientations. The region-connection calculus, based on the part-whole theory of mereology
(Simons 1987) and Clarke’s (1981) calculus of individuals, identifies for region-region
configurations the same set of binary relations as the 9-intersection; however, it has not been
developed for relations involving line-like objects.

The remainder of this paper presents the topological and metric models used to specify the
geometry of spatial relations and demonstrates how this analysis helps to select appropriate natural-
language terms. Section 2 summarizes the topological measures for line-region relations. Section 3
and 4 respectively introduce splitting ratios and closeness measures, the two classes of metric
measures for spatial relations. Section 5 demonstrates how the topological and metric measures are
used in spatial query processing as well as in generating a natural-language term to describe a
spatial configuration. Section 6 closes with conclusions.

2 Measures for Topology

The 9-intersection is a comprehensive model for binary topological spatial relations and applies to
objects of type area, line, and point (Egenhofer and Herring 1991). It characterizes the topological
relation t  between two point sets, A  and B , by the set intersections of A ’s interior ( A° ),
boundary ( ∂A), and exterior ( A

_
) with the interior, boundary, and exterior of B , called the 9-

intersection (Eq. 1).

I A,B( ) =
A°∩ B° A°∩∂B A°∩ B
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With each of these nine intersections being empty (∅ ) or non-empty (¬∅ ), the model has 512
possible topological relations between two point sets, some of which cannot be realized, depending
on the dimensions of the objects, and the dimensions of their embedding space (Egenhofer and
Herring 1991). For two simple regions without holes embedded in R2, the categorization shows
eight distinct topological relations. Interior, boundary, and exterior of a line are defined according
to algebraic topology (Spanier 1966): the boundary of a simple line comprises the two end points,
the interior is the closure of the line minus the boundary, and the exterior is the complement of the
closure. For two simple lines (non-branching, no self-intersections) embedded in R2, 33 different
topological relations can be realized with the 9-intersection, and for a line and a region, 19 different
situations are found (Figure 1), which are the focus of this paper. More detailed distinctions are
possible if further criteria are employed to evaluate the non-empty intersections.
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LR1 LR2 LR3 LR4 LR5

LR6 LR7 LR8 LR9 LR10

LR11 LR12 LR13 LR14 LR15

LR16 LR17 LR18 LR19

Figure 1: Geometric interpretations of the 19 line-region relations that can be realized from the
9-intersection (Egenhofer and Herring 1991).

The only other topological invariant used here is the concept of the number of component. A
component is a separation of any of the nine intersections (Egenhofer and Franzosa 1995). The
number of components of an intersection is denoted by #( A ∩ B). For example, for line-region
relation LR 14, #( L°∩∂R) ≥ 2, whereas for LR 10, #(∂L ∩ ∂R) =1.

The 19 line-region relations can be arranged according to their topological neighborhoods
(Egenhofer and Mark 1995a) based on the knowledge of the deformations that may change a
topological relation by pulling or pushing the line’s boundary or interior (Figure 2). The
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topological neighborhoods establish similarities that were shown to correspond to groupings
people frequently make when using a particular natural-language term (Mark and Egenhofer
1994b). For example, the term crosses was found to correspond to the five relations located in the
diagonal from the lower left to the upper right of the conceptual neighborhood diagram (LR 8 to
LR 14 in Figure 2). Such groupings of the 9-intersection relations in the conceptual neighborhood
diagram may serve as a high-level measure to define the meaning of natural-language spatial
relations. However, topology per se may be insufficient as the only measure, particularly in
border-line cases where small metric changes have a significant influence on topology.

LR1

LR2

LR3

LR5

LR14

LR4LR8

LR10

LR9

LR12

LR17
LR18

LR13

LR19 LR16

LR7

LR6LR11

LR15

Figure 2: The conceptual neighborhood graph of the nineteen line-region relations (Egenhofer
and Mark 1995a).

The following sections define two metric concepts—splitting and nearness—that apply to
topological relations and may enhance each of the nineteen topological relations to distinguish more
details.

3 Splitting

Splitting determines how a region’s interior, boundary, and exterior are divided by a line’s interior
and boundary, and vice versa. To describe the degree of a splitting, the metric concepts of the
length of a line and the area of a region are used. In the context of topological relations between
lines and regions, length applies to the line’s interior, any non-empty intersection with a line’s
interior, or their components; and to region boundaries, any non-empty intersection between a
region’s boundary and a line’s exterior, or their components. Area applies to the interior or
regions, the intersections between a line’s exterior and a region’s interior or exterior, and their
components. Among the entries of the 9-intersection for a line and a region, there are seven
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intersection that can be evaluated with a length or an area (Table 1). Only the three intersections
between the line’s boundary cannot be evaluated with a length or area measure, because these
intersections are 0-dimensional (i.e., points).

R° ∂R R−

L° length(L°∩ R° ) length(L°∩∂R) length(L°∩ R− )

∂L — — —

L− area(L− ∩ R° ) length(L− ∩ ∂R) area(L− ∩ R− )

 Table 1: Area and length measures applied to the nine intersections of the line’s interior
( L° ), boundary ( ∂L ), and exterior ( L− ) with the region’s interior ( R° ), boundary
(∂R), and exterior (R− ).

To normalize these lengths and areas, each of them is put into perspective with the line and the
region: The two area intersections are compared with the area of the region, resulting in two
splitting measures. Another ten splitting measures are obtained by comparing the four length
intersections with the length of the line, and the length of the region’s perimeter.

3.1 Inner Area Splitting

Inner area splitting describes how the line’s interior divides the region’s interior. With this
separation a one-dimensional object splits a two-dimensional object into two (or more) parts such
that parts of the region’s interior are on one side of the line, and others are located on the opposite
side of the line (Figure 3). Inner area splitting only applies to a subset of the 19 region-line
relations. Those relations for which the line’s interior intersects with the region’s interior
( L°∩ R°= ¬∅), but the line’s boundaries is outside of the region’s interior (∂L ∩ R°= ∅ ),
always have a value for inner area splitting. In addition, inner area splitting may apply if the line’s
interior intersects with the region’s boundary and interior ( L°∩ R°= ¬∅ and L°∩∂R =¬∅ )
and the line’s boundary intersects with the region’s interior (∂L ∩ R°= ¬∅). In such situations it
is necessary that there are more components in the interior-interior intersection than there are
components of the intersection between the line’s boundary and the region’s interior, i.e.,
#( L°∩ R° ) > #( ∂L ∩ R° ) .
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Figure 3: Inner area splitting: the line’s interior divides the region’s interior into parts on two
opposite sides (more complex configurations may have multiple separations on
either side of the line).

A normalized measure of this property is the inner area splitting ratio (IAS) as the smaller sum
of the areas on either side of the line—left and right are chosen arbitrarily and their choice does not
influence the measure—over the total area of the region (Eq. 2). The range of IAS is
0 < IAS ≤ 0.5 . It would reach 0 if the interior-interior intersection between the line and the region
was empty, and is 0.5 if the line separates the region’s interior into areas that total the same size on
the left-hand side and the right-hand size.

IAS =
min(area(leftComponents(L− ∩ R° )), area(rightComponents(L− ∩ R° )))

area(R)
(2)

3.2 Outer Area Splitting

Outer area splitting occurs if the line’s interior interacts with the exterior of the region such that it
produces separations of the exterior between the interior of the line and the boundary of the region.
This involves a one-dimensional object that splits a two-dimensional object (the region’s exterior)
into two (or more) two-dimensional parts: (1) parts of the region’s exterior that are bounded
because they are completely surrounded by the line’s interior and the region’s boundary, and (2)
parts of the region’s exterior that are unbounded (Figure 4).

Figure 4: Outer area splitting: the line’s interior divides the region’s exterior into bounded and
unbounded areas (more complex configurations may have multiple areas that are
bounded by the same line).
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Outer area splitting requires that the line’s interior intersects with the region’s exterior
( L°∩ R− = ¬∅ ) and that the line’s boundary is located in the region (∂L ∩ R− = ∅). Outer area
splitting also may apply to configurations for which line interiors intersect with both the region’s
interior and boundary ( L°∩∂R =¬∅ and L°∩R− = ¬∅) and whose line boundaries intersect
with the region’s exterior ( ∂L ∩ R− = ¬∅ ). For these situations, it is necessary that the region’s
exterior contains more components of the line’s interior than of the line’s boundary
(#( L°∩ R− ) > #(∂L ∩ R−) ). A normalized measure of outer area splitting is the outer area splitting
ratio (OAS) as the ratio of the sum of the region’s area and the bounded exterior, which is the part
of the exterior that is enclosed by the line’s interior and the region’s boundary, over the region’s
area (Eq. 3). It is greater than zero such that the larger the bounded area, the larger the splitting
ratio. It would reach 0 if the bounded area was non-existent (i.e., either an empty intersection
between the line’s interior and the region’s exterior, or an insufficient number of components in the
intersection between the line’s interior and the region’s exterior.

OAS =
area(boundedComponents(L− ∩ R− )

area(R)
(3)

3.3 Inner Traversal Splitting

The region’s interior separates the line’s interior into inner and outer line segments. This involves a
two-dimensional object splitting a one-dimensional object into two one-dimensional parts (or sets
of parts): line parts that are inside the closure of the region, and line parts outside of the region
(Figure 5).

 

Figure 5: Inner traversal splitting: the region’s interior divides the line into parts of inner and
outer segments (more complex configurations may have multiple inner and outer
segments for a line).

Inner traversal splitting applies to relations in which the line’s interior is located at least partially
in the region’s interior ( L°∩ R°= ¬∅). A normalized measure for the traversal is the inner
traversal splitting ratio (ITS) between the length of the inner parts of the line and the length of the
total line (Eq. 4). Its range is 0 < ITS ≤1. ITS would be 0 if the interior-interior intersection
between the line and the region was empty. The greatest value is reached if the line’s interior is
completely contained in the region’s interior.

ITS =
length(L°∩ R° )

length(L)
(4)
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3.4 Entrance Splitting

While the inner traversal splitting normalizes the common interiors with respect to the line’s length,
the entrance splitting compares the length of the common interiors to the length of the region’s
boundary. It applies under the same conditions as the inner traversal splitting. Its measure, called
the entrance splitting ratio (ENS), captures how far the line enters into the region (Eq. 5). All
values of the entrance splitting ratio are greater than zero, but no upper bound exists.

ENS =
length(L°∩ R°)

length(∂R)
(5)

3.5 Outer Traversal Splitting

While the inner traversal splitting describes how much of the line is in the region’s interior, the
outer traversal splitting refers to the part of the line that is in the region’s exterior. Outer traversal
splitting applies to relations in which the line’s interior is located at least partially in the regions’
exterior ( L°∩ R− = ¬∅ ). A normalized measure for the traversal is the outer traversal splitting
ratio (OTS) between the length of the outer parts of the line and the length of the total line (Eq. 6).

OTS =
length(L°∩ R− )

length(L)
(6)

3.6 Exit Splitting

Analog to the pair of inner traversal splitting and entrance splitting, the outer traversal splitting has
a dual, the exit splitting. It captures how far the line exits the region, and applies under the same
conditions as the outer traversal splitting. The exit splitting ratio (EXS) normalizes the length of the
line’s interior that lays in the region’s exterior with respect to the length of the region’s boundary
(Eq. 7). It is greater than 0 and has no upper bound.

EXS =
length(L°∩ R− )

length(∂R)
(7)

3.7 Line Alongness

The region’s boundary interacts with the line’s interior such that it separates the line into two sets
of line parts: line segments that are outside of the region’s boundary (i.e., either in the region’s
interior or exterior), and line segments that are contained in the boundary. This separation makes a
one-dimensional object splitting another one-dimensional object into two or more one-dimensional
parts (Figure 6).
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Figure 6: Line alongness: the region’s boundary separates the line’s interior into parts of
outer and inner segments (more complex configurations may have multiple
components in the intersection between the region’s boundary and the line’s
interior).

In order to consider line alongness, the line’s interior must intersect with the region’s boundary
( L°∩∂R =¬∅ ). As the measure for the separation, we introduce the notion and concept line
alongness ratio (LA) as the ratio between the length of all line parts contained in the boundary, and
the total length of the line (Eq. 8). The range of the line alongness ratio is 0 ≤ LA ≤1. LA  is 0 if
the line intersects the region’s boundary exclusively in 0-dimensional components, and it reaches 1
if L°⊂ ∂R .

LA =
length(L°∩∂R)

length(L)
(8)

3.8 Perimeter Alongness

The line’s interior separates the region’s boundary into two sets of objects, one that coincides whit
the line’s interior, and another that is disjoint from the line’s interior. The separation is such that a
one-dimensional object splits another one-dimensional object into two (or more) one-dimensional
objects. The perimeter alongness can be measured for relations in which the line’s interior
intersects with the region’s boundary ( L°∩∂R =¬∅ ). The perimeter alongness is measured by
the ratio between the length of coinciding parts between the line’s interior and the region’s
boundary and the perimeter, called the perimeter alongness ratio (PA) (Eq. 9). The range of the
perimeter alongness ratio is 0 ≤ PA < 1. PA is 0 if the interior-boundary intersection between the
line and the region consists exclusively of disconnected 0-dimensional components. PA would
reach the maximum of 1 if cycles were permitted as lines and such a cycle would coincide with the
region’s boundary.

PA =
length(L°∩ ∂R)

length(∂R)
(9)

3.9 Perimeter Splitting

Perimeter splitting occurs if the line splits the region’s boundary into two or more parts. This
involves two (or more) zero-dimensional or one-dimensional objects—the line’s boundary or
interior—cutting another one-dimensional object (the region’s boundary) (Figure 7).
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Figure 7: Perimeter splitting: the line separates the region’s boundary into segments (more
complex configurations may create multiple segments in the region’s boundary).

Perimeter splitting requires that the line intersects the region’s boundary
( L°∩∂R =¬∅ or ∂L ∩ ∂R = ¬∅ ) such that the region’s boundary is split into at least two
components (#(∂R − L) ≥ 2 ). The perimeter splitting ratio (PS) is the ratio between the longest of
these components and the region’s perimeter (Eq. 10). Its range is 0 < PS < 1.

PS =
max(length(components(L− ∩ ∂R)))

length(∂R)
(10)

3.10 Length Splitting
While the perimeter splitting compares the length of the longest perimeter component with the total
length of the perimeter, the length splitting compares it with the length of the line. The metric
measure is the line splitting ratio (LS) (Eq. 11), which is great than 0 without an upper bound.

LS =
max(length(components(L− ∩ ∂R)))

length(L)
(11)

3.11 Comparison of the Splitting Ratios
Each splitting ratio applies to several different topological relations. Figure 8 shows how the
criteria for the ten splitting ratios map onto the conceptual neighborhood graph of the line-region
relations (Egenhofer et al. 1993). Each constraint covers a contiguous area.
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ITS and ENSIAS

OAS OTS and EXS

LA and PA

LS and PS

Figure 8: The relations that qualify for inner area splitting (IAS), outer area splitting (OAS),
inner traversal splitting (ITS), entrance splitting (ENS), outer traversal splitting
(OTS), exit splitting (EXS), line alongness (LA), perimeter alongness (PA), line
splitting (LS), and perimeter splitting (PS). Black, gray, and white indicate that the
metric measure applies always, sometimes, and never, respectively.

4 Closeness

Unlike splitting, which requires coincidence and describes how much is in common between two
objects, closeness describes how far apart disjoint parts are. The object parts involved are the
boundary and the interior of the line, and the boundary of the region. There is no need to consider
the region’s interior, since it is delineated by its boundary, and therefore no additional information
in R2 could be found by considering it in addition to the region’s boundary.

Closeness involves considerations of distances among points and lines. For the configurations
considered, there are four types of closeness measures of interest (the metric axioms for distances
apply, i.e., there is a null element, distances are symmetric, and the triangle inequality holds):

(1) the distance between a line’s boundary and the region’s boundary if the line’s boundary is
located in the exterior of the region;

(2) the distance between a line’s boundary and the region’s boundary if the line’s boundary is
located in the interior of the region;

(3) the distance of the shortest path between a line’s interior and the region’s boundary if the
line’s interior is located in the exterior of the region; and

(4) the distance of the shortest path between a line’s interior and the region’s boundary if the
line’s interior is located in the interior of the region.

The closeness measures are not completely orthogonal, since depending on the shape of the
line or the region, they may have the same values. For instance, for the configuration in Figure 9a,
the distance from the region’s boundary to the line’s boundary (i.e., its two endpoints as defined in
Section 2) is the same as the distance from the region’s boundary to the line’s interior, since the
line’s boundary is the line’s closest part to the region’s boundary; however, in Figure 9b, the same
parameters have different values because the line’s interior is closer to the region’s boundary than
the line’s boundary.
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(a) (b)

Figure 9: Two configurations with (a) identical and (b) different values for the distance
measures from the line’s boundary and interior to the region’s boundary.

Distances are commonly defined between points; however, the closeness measures require
distance measures between a point and a line, or between two lines.

Definition 1: The distance between a point p and the boundary of a region (∂R) is defined as
the length of the shortest path from p to ∂R (Eq. 12).

dist( p,∂R) = dist(p,r ∈∂R) ⇒

/∃ q ∈∂R | dist( p,q) < dist( p,r)
(12)

 Therefore, there is no other point on the region’s boundary that would be closer to p

Definition 2: The distance between the interior of a line ( L° ) and the boundary of a region
(∂R) is defined as the length of the shortest path from L  to ∂R (Eq. 13).

dist(L°, ∂R) = dist(l ∈L°, r ∈∂R) ⇒

/∃ ( p ∈L°,q ∈∂R) | dist( p,q) < d(l,r)
(13)

Therefore, there are no other parts in the line’s interior that would be closer to any point on the
region’s boundary

4.1 Outer Closeness

The outer closeness describes the remoteness of the region’s boundary ∂R from p, a boundary
point of a line located in the exterior of the region (Figure 10a). Outer closeness only applies to
those line-region relations with at least one point of the line’s boundary being located in the
region’s exterior (∂L ∩ R

−
= ¬∅ ). A purely quantitative measure for the remoteness would be the

distance between the region’s boundary and the line’s boundary point(s) in the region’s exterior
(Figure 10b). It is the shortest connections between the line’s boundary and the region, i.e., there
exists no other point in the region’s boundary that would be closer to the line’s boundary (Eq. 14).
Since this measure is only applicable if ∂L ∩ R– = ¬∅ , it can never be 0.
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∆BE

BE

BE

(a) (b) (c)

Figure 10: Outer closeness: (a) the line’s boundary in the region’s exterior, (b) the remoteness
measure BE  from the region’s boundary to the line’s boundary, and (c) the
region’s outer buffer zone as an equi-distant enlargement of the region.

BE = min(dist ( p,∂R)) | p ∈(∂L ∩ R− ) (14)

While the actual distance between the two boundaries is a precise measure, it varies
significantly with the scale of the representation. For instance, a scaling by a factor of 2 would
make any two objects be twice as much remote. A variety of dimension-independent measures
could be thought of, such as the proportion by which the line would have to be extended, or
shrunken, so that its boundary coincides with the region’s boundary. We selected two outer
closeness measures: (1) the outer line closeness as the ratio between the distance from the line’s
boundary to the region’s boundary, and the line’s length (Figure 10b), and the outer area closeness
as the ratio between the area made up by an equi-distant enlargement of the region—also known as
a buffer zone (Laurini and Thompson 1992)—and the actual area (Figure 10c).

We define the outer area closeness measure (OAC) in terms of the area of the region R and the
area made up by the buffer zone, denoted by ∆ BE (R). It is of width BE and extends into the
region’s exterior (Eq. 15). OAC is greater than 0 with no upper bound, and would be 0 if BE
were 0. The normalization area(∆ BE (R))/(area (∆ BE (R))+area (R)) would produce values between
0 and 1, however, the distribution would be non linear, particularly for area(R) « area(∆ BE (R) ).

OAC =
area(∆BE (R))

area(R)
(15)

The outer line closeness measure (OLC) is defined in terms of BE , the distance from the line’s
boundary to the region’s boundary, and the line’s length (Eq. 16). Its values are greater than 0
without an upper bound. It would be 0 if BE  were 0.

OLC =
BE

length(L)
(16)

4.2 Inner Closeness

Analogous to the outer closeness, the inner closeness captures the remoteness of the line’s
boundary, located in the interior of the region (criterion: ∂L ∩ R°= ¬∅ ), from the region’s
boundary (Figure 11a). The mere distance between the boundaries of the region and the line are
captured by a quantitative measure BI  (Eq. 17). This distance is greater than 0, because the line’s
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boundary must be located in the region’s interior. If both boundary points of the line are inside R ,
then BI is the distance of that boundary point closest to the region’s boundary.

BI

∆BI

BI

(a) (b)

Figure 11: Inner closeness: (a) the line’s boundary in the region’s interior and (b) the region’s
inner buffer zone as an equi-distant reduction of the region.

BI = min(dist ( p,∂R)) | p ∈(∂L ∩ R° ) (17)

The inner area closeness (IAC) is then defined as the ratio between the area made up by an
equi-distant reduction of the region and the actual area (Figure 11b). The buffer zone ∆ BI (R) has
the width b and is taken from the region’s boundary into the region’s interior (Eq. 18). Its rage is
0 < IAC < 1.

IAC =
∆ BI (R)

area(R)
(18)

The inner line closeness (ILC) refers to the relative amount the line has to be extended or
shortened to coincide with the region’s boundary. The increment is normalized with respect to the
line’s actual length (Eq. 19).

ILC =
BI

length(L)
(19)

4.3 Outer Nearness

The outer nearness describes how far the line’s interior is from the region’s boundary (Figure
12a). It only applies to one line-region relation, namely the one with the line’s boundary and
interior completely contained in the region’s exterior ( L ⊂ R− ). The quantitative measure for outer
nearness is the length of the shortest connection between the line and the region (Figure 12b). It is
always greater than zero, because L must be completely contained in R’s exterior (Eq. 20).
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(a) (b) (c)

∆IE

IE

Figure 12: Outer nearness: (a) the line is completely contained in the region’s exterior, (b) the
remoteness measure IE from the region’s boundary to the line’s interior, and (c) the
region’s outer buffer zone as an equi-distant enlargement of the region.

IE = dist(L°,∂R) | L ⊂ R− (20)

The outer area nearness (OAN) is then defined as the ratio between the area made up of an
equi-distant reduction of the region of width IE, denoted by ∆ II (R) , and the actual area of the
region R (Eq. 21). OAN’s values are greater than 0, with no upper bound. OAN  would be 0 if IE
were 0.

OAN =
area(∆ IE (R))

area(R)
(21)

The outer line nearness (OLN) normalizes the length by which the line would have to be
extended or shortened such that its boundary would coincide with the region’s boundary, with
respect to the length of the initial line (Eq. 22). The values of the outer line nearness are greater
than 0 and increase linearly with the length of IE.

OLN =
IE

length(L)
(22)

4.4 Inner Nearness

Complementary to the outer nearness, the inner nearness describes how far the line’s interior,
located in the interior of the region (criterion: L ⊂ R° ), is from the region’s boundary (Figure 13a)
This distance is greater than zero, because the line must be completely contained in the region’s
interior (Eq. 23).
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II
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Figure 13: Inner nearness: (a) the line completely contained in the region’s interior and (b) the
region’s inner buffer zone as an equi-distance reduction of the region.

II = dist(L°,∂R) | L ⊂ R° (23)

The inner area nearness (IAN) is then defined as the ratio between the area made up by a buffer
zone of width II, denoted by ∆ II (R) , that extends from the boundary into the region’s interior
(Figure 13b). Its range is 0 < IAN <1 (Eq. 24).

IAN =
area(∆ II (R))

area(R)
(24)

The inner line nearness (ILN) captures by how much the line would have to be extended in
order to intersect with the region’s boundary. It is measured as the ratio between the distance to the
region’s boundary and the length of the line (Eq. 25). The values of the inner line nearness must be
greater than zero.

ILN =
II

length(L)
(25)

4.5 Comparison of the Closeness Measures

From the criteria for the closeness measures, one can derive which topological relations may be
refined by the corresponding measures (Figure 14). Except for the six topological relations in the
bottom triangle of the neighborhood graph, all relations have at least one closeness measure. Those
six relations without a closeness measure are such that both line boundaries coincide with the
region’s boundary, therefore, the distances from the line’s parts to the boundaries region are all
zero and no refinements can be made to these relations.

5 Parsing and Translating a Graphical Relation into a Verbal
Expression

With the two sets of parameters we can perform a detailed analysis of a simple spatial configuration
with a line and a region, capturing the configuration’s topology and analyzing it according to its
metric properties. This per se would provide the basis for a computational comparison of two or
more spatial configurations for similarity (Bruns and Egenhofer 1996). Here we pursue a different
path by mapping the parsed configuration onto a natural-language term that would best describe the
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spatial relation between the two geometric objects. For the time being, any semantic or
presentational aspects (Mark et al. 1995) are ignored in this mapping.

The mappings from the topological and metric measures onto corresponding natural-language
terms are based on results from human-subject experiments (Shariff 1996). A total of sixty-four
English-language terms were tested, for which subjects sketched a road with respect to a given
outline of a park such that the sketch would match the corresponding natural-language term that
describes the spatial relation. By analyzing the sketches’ topological relations and their splitting and
closeness measures, we obtained the mappings from the geometry of a configuration onto the
corresponding, significant parameters and their values. Significant parameters were distinguished
from non-significant ones through a cluster analysis (Shariff 1996). The criterion for a parameter
to be considered significant for a specific spatial term was that its standard score was greater than
one (i.e., the mean of such a parameter is at least one standard deviation higher than the mean of
the entire data set). To demonstrate how the model developed here can be used for such
translations, we give three examples in which the spatial relation of a geometric configuration is
translated into a natural-language spatial term.

5.1 Example 1

Figure 15 shows a configuration in which a line (e.g., a road) crosses the boundary of a region
(e.g., a park). Based on the topology (LR 18), the applicable metric parameters for splitting and
closeness are found in Figures 8 and 14, respectively.

OAC and OLC OAN and OLN

IAC and ILC IAN and ILN

Figure 14: The relations that qualify for inner area closeness (IAC), inner line closeness (ILC),
outer area closeness (OAC), outer line closeness (OLC), inner area nearness (IAN),
inner line nearness (ILN), outer area nearness (OAN), and outer line nearness
(OLN).

The human-subject tests found that only a subset of these parameters—inner traversal splitting,
outer traversal splitting, inner area closeness, and outer area closeness—are significant for the
terms that are represented by LR 18. Table 2 shows a sample of eight terms—ends at, ends in,
ends just inside, ends outside, enters, goes into, goes out, and goes to—that apply to LR 18,
together with the significant parameters. For each parameter, the mean value (i.e., the best fit) and
the range of values is given. The value range of a metric parameter refers to the minimum and
maximum value obtained from the subjects’ sketches. The goal is now to determine which of these
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terms are a better match for the particular configuration, and which do not convey the meaning the
meaning of the configuration.

Topological Spatial Term ITS ETS IAC OAC

Relation mean range mean range mean range mean range

LR 18 ends at 0.24 0.02–0.65 0.76 0.36–0.98 0.79 0.19–0.98 7.69 2.09–20.73

LR 18 ends in 0.51 0.17–0.91 0.49 0.09–0.83 0.81 0.18–0.99 3.66 0.59–9.94

LR 18 ends just inside 0.16 0.05–0.71 0.84 0.29–0.95 0.55 0.05–0.89 3.95 0.86–10.27

LR 18 ends outside 0.67 0.47–0.90 0.33 0.10–0.53 0.59 0.07–0.90 1.83 0.63–6.79

LR 18 enters 0.46 0.18–0.83 0.54 0.17–0.82 0.86 0.42–0.99 2.47 1.06–9.50

LR 18 goes into 0.40 0.18–0.76 0.60 0.24–0.82 0.81 0.29–0.99 3.78 1.25–9.29

LR 18 goes out 0.48 0.18–0.75 0.52 0.25–0.82 0.80 0.38–0.99 2.22 0.64–10.86

LR 18 goes to 0.20 0.04–0.57 0.81 0.44–0.96 0.75 0.18–0.99 7.37 1.63–12.04

Table 2: Spatial terms of topological relation LR 18, with means and value ranges of their
significant parameters for splitting and closeness measures.

Table 3 summarizes for the four parameters how they are calculated and provides the values
obtained for the configuration in Figure 15.

inner traversal
splitting ITS =

length(LI )

length(L)
LE

R
LI

ITS = 0.07

outer traversal
splitting OTS =

length(LE )

length(L)
R

LI

LE OTS = 0.93

outer area
closeness OAC =

area(∆BE )

area(R)
BE

BE
∆

L

R

OAC = 2.87

inner area
closeness IAC =

area(∆BI )

area(R)
L

BI
∆

R

BI

IAC = 0.28

Table 3: Calculating the inner traversal splitting, the outer traversal splitting, the outer area
closeness, and the inner area closeness for the configuration displayed in Figure 15.
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By comparing these values with the calibrated model, the terms are ranked according to best fit.
The terms ends in, ends outside, enters, goes into, and goes out fall outside of the value ranges of
at least two parameters (Table 2) and, therefore, these terms are not considered for this
configuration. Among the remaining three terms, ends just inside is the best fit for three
parameters; goes to is the second best for three parameters, and ends at ranks third in three out of
four times. Therefore, the sentence, “The road ends just inside the park” would be selected as the
best fit, while valid alternatives would be, “The road goes to the park” or “The road ends at the
park.”

L

R

Figure 15: Does the line enter or end just inside the region?

5.2 Example 2

Figure 16 shows a configuration in which a line intersects a region such that it is close to the
region’s boundary from the inside and farther from the region’s boundary in the exterior. A sample
of terms that may fit this description are crosses, cuts through, goes through, runs into, and splits.

L

R

Figure 16: Does the line cross or cut through the region?

For the configuration’s topological relation, LR 14, the human-subject tests found two metric
parameters to be significant: inner area splitting and outer area closeness. Table 4 displays the mean
and the value range for each parameter.

Topological Spatial Term IAS OAC
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Relation mean range mean range

LR 14 crosses 0.37 0.03–0.50 1.63 0.29–8.62

LR 14 cuts through 0.32 0.01–0.50 1.75 0.41–6.04

LR 14 goes through 0.40 0.03–0.50 2.17 0.70–8.21

LR 14 runs into 0.13 0.09–0.44 3.42 0.54–11.96

LR 14 splits 0.41 0.02–0.50 1.62 0.42–6.90

Table 4: Spatial terms of topological relation LR 14, with means and value ranges of their
significant parameters for splitting and closeness measures.

For the configuration in Figure 16, the term runs into does not qualify, because the
configuration is not located within the range of the inner area splitting. From among the remaining
four spatial terms, splits comes closest to the mean values of inner area splitting and outer area
closeness; therefore, it is selected as the term to describe the configuration. The ranking of the
terms in between is more difficult, because they are subject to more subtle differences. Certainly,
crosses would be better to describe the scene than cuts through, since both parameters have values
that are closer to the mean of crosses than to the mean of cuts through. The term goes through ,
however, has a better match with the inner area closeness than both crosses and goes through
have, however, it ranks considerably lower in the outer area closeness.

inner area
splitting IAS =

min(area(R1),area(R2)

area(R1) + area(R2)

L

R2R1

IAS = 0.49

outer area
closeness OAC =

area(∆BE )

area(R)
R

L

∆ΒΕ

BE

OAC = 1.47

 Table 5: Calculating the inner area splitting and the outer area closeness for the configuration
displayed in Figure 16.

5.3 Example 3

The following characteristics describe the configuration in Figure 17, in which a line is outside of
the region, but follows the shape of the region. Candidate terms to describe this configuration are
bypasses, goes up to, and runs along (Table 6).
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R

L

Figure 17: Does the line run along or bypass the region?

Topological Spatial Term OAN OAC

Relation mean range mean range

LR 1 bypasses 0.76 0.28–1.36 4.01 0.67–18.31

LR 1 goes up to 0.33 0.03–0.75 0.39 0.03–4.79

LR 1 runs along 0.33 0.16–1.29 1.06 0.30–7.13

Table 6: Spatial terms of topological relation LR 1, with means and value ranges of their
significant parameters for splitting and closeness measures.

Based on the topological relation, LR 1, the significant parameters are outer area closeness and
outer area nearness. The term bypasses does not fall within the ranges of outer area nearness or
outer area closeness (Table 7), and is therefore not considered. Both terms goes up to and runs
along have the same values for outer area nearness, but since runs along has a significantly lower
value for the outer area closeness, it is chosen as the better term to describe the configuration than
goes up to.

outer area
closeness OAC =

area(∆BE )

area(R)

BE

BE∆

L

R

OAC = 2.87

outer area
nearness OAN =

area(∆ IE )

area(R) IE

IE∆

L

R

OAN = 0.24

Table 7: Calculating the outer area closeness and the outer area nearness for the
configuration displayed in Figure 17.
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6 Conclusions

This paper developed a computational model to describe the semantics of natural-language spatial
terms based on their geometry. The model is based on the 9-intersection topological model and
refines is with metric details in the form of splitting and closeness ratios. Splitting ratios describe
the proportion of an intersection with respect to the interior or boundary of the two objects. Their
normalized values all fall within the interval between 0 and 1 and grow linearly with the size of the
intersection. Closeness ratios specify distances between boundaries and interiors. For inclusion or
containment relations, the (inner) closeness ratios are normalized to range between 0 and 1, while
closeness ratios for disjoint relations are greater than zero with no upper limit. While this may
appear to be an inconsistency in the model, it is necessary to obtain measures that grow linearly
with the distance between the parts. The model was only developed for relations between a region
and a line, however, the concepts generalize to relations between other geometric types, such as
two regions or two lines.

Splitting and closeness measures can be implemented with standard GIS software. A prototype
implementation with the Arc/Info GIS, however, requires the separation of the two objects into
different layers (Shariff 1996). A method for computing the intersections necessary to determine
the topological relation, using the “Identity” command, was described by Mark and Xia (1994). In
order to determine the metric parameters, AMLs were written to compute intersections, lengths,
and areas. Although this method demonstrated the feasibility of implementing the required
operators with a commercial GIS, it was cumbersome, because Arc/Info does not support an object
concept, and performance was slow. The use of GIS data structures that support an object model,
and the integration of algorithms that are tailored to the operations necessary for efficient
implementations of the 9-intersection and the metric refinements, are subjects for future
investigations.

The model developed applies to a number of applications in the area of spatial reasoning, such
as similarity retrieval and intelligent spatial query languages. We demonstrated how to use the
model to generate natural-languages terms for simple spatial configurations. Based on a calibration
of the 9-intersection with splitting ratios and closeness ratios, using human-subjects experiments
for sixty-four English-language (Shariff 1996), we showed how a geometric configuration with a
linear and an areal object can be analyzed to determine the pertinent features of their spatial
relations. Values obtained from this method lead to the selection of appropriate natural-language
spatial terms for such spatial scenes.

While the splitting and closeness ratios as refinements of topology cover much of the critical
properties of the spatial relations, there are other parameters left that may make additional
contributions to better choices of natural-language terms. Further investigations—both
formalizations and human-subject tests—are necessary to develop a comprehensive and robust set
of definitions of the semantics of natural-languages spatial relations. Some of these considerations
were outlined in a larger-scale research plan (Mark et al., 1995). The most obvious aspect to study
is the influence of the meanings of the objects on the choice of the spatial terms. Whether the
objects or concern are roads and parks vs. hurricanes and islands, may lead to different mappings
from topology and metric refinements onto the same spatial terms. With respect to geometry, the
current model abstracts away all influences of orientation. This is a valid approach for modeling all
those concepts and terms that are independent of orientation (such as those based primarily on
containment, neighborhood, and closeness; however, orientation, is another parameter that may be
critical for those relations expressing information about direction. For example, orientation may be
important to distinguish north from south (or above from underneath) Orientations are invariant
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under translations and scaling, but they may change under rotation. The orientation of the objects
can be assessed in several different ways: (1) the global cardinal relation between two objects, i.e.,
a relation with respect to a fixed orientation framework; (2) the orientation of an individual object,
i.e., the cardinal relation between the object’s major axis and a global reference frame; and (3) a
local relation, i.e., the cardinal direction with respect to the framework established by one of the
two objects’ orientations. Similar to the metric properties, one could consider purely quantitative
measures, e.g., in the form of degrees. Since people usually do not make such a fine distinction,
coarser, qualitative models are necessary to formalize the properties of the three orientation
concepts.
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