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High-level topological information about spatial objects can be described in terms of a set of binary
topological relations between the objects, also called a scene description. The objects of interest are

, which are bounded objects that have a distinct identity and are homeomorphic to a
2-disk. The consistent integration of topological information relies inherently on the algebraic prop-
erties of the relations between the objects. Properties such as the converseness of pairs of relations
and the composition of relations must be fulfilled for any combination of relations in order to guar-
antee that a scene description is free of internal topological contradictions so that it can be realized
in IR . A rigorous computational method has been designed to reason about binary topological re-
lations between spatial regions and to infer the consistency of complete and incomplete topological
information. As a side-product, the method can be also used to refine incomplete observations. The
method applies immediately in spatial query processing in geographic information systems to detect
unsolvable queries prior to query execution and in data fusion to integrate independently collected
information.

The growing interest in scientific investigations of global climate change or the spread of AIDS
across the world has dramatically increased the demand for systems that are capable of maintain-
ing very large geographic data collections and making them available to scientists. State-of-the-art
software systems for managing geographic data collections severely impede the timely evaluation
and analysis of important data collections (French , 1990, Smith and Frank, 1990), as most
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prominently exemplified by the delayed discovery of the “ozone hole.” In order to analyze data with
respect to the earth and its population, scientists need better access to many scientific data collec-
tions with large amounts of spatial data. The systems that manage the storage and retrieval of large
geographic data sets must include mechanisms to deal with complex spatial concepts for
data selection and data integration, i.e., computational methods that exploit spatial knowledge, rather
than manipulate particular values of spatial data.

While many spatial inferences may appear trivial to humans—we handle them in our everyday
life so frequently that we sometimes do not even recognize them as something special—they are
extremely difficult to formalize in such a way that they could be implemented on a computer sys-
tem (McCarthy, 1977, Bobrow , 1986). Among the most serious deficiencies scientists face
with today’s database management systems is the lack of appropriate operators for manipulating
the kinds of data encountered in scientific applications (French , 1990). In geo-sciences, these
operations are fundamentally spatial. The investigation of better suited spatial operators is germane
to geographic analysis, because these operators are crucial when searching for data in a large spa-
tial database, a task critical to the success of any scientific investigation, as demonstrated by the
following two examples:

Scientists who request access to specific subparts of remotely sensed images base their se-
lections on , such as requests to find all scenes that cover islands in
tropical seas with cliffs along the shore lines or scenes containing atolls. Such queries can be
processed if additional data is integrated as metadata with the remotely sensed data, e.g., in-
formation about topography, political boundaries, and terrain, and if capabilities are available
to reason about geographic space with some geographic common sense.

Biologists’ collections of herbarium specimens contain narrative descriptions of the sites where
each specimen was found. Spatial analyses, e.g., about endangered species or the relations to
soil types and climate, are severely hampered by the lack of automated methods to integrate the
individual natural language descriptions of geographic spaces, e.g., by mapping the locations
so that the among them can be compared (McGranaghan and Wester, 1988,
Futch , 1992).

This paper addresses a particular problem within the realm of analyzing data collections based
on complex spatial conditions. Conditions among spatial data are commonly expressed in terms of

(Frank and Mark, 1991) or (Herskovits, 1986). Examples are
, , and (Freeman, 1975, Peuquet, 1986). Such spatial relations are binary predicates,

i.e., each relation holds between two objects, though, there are more complex ones, such as
which holds among three objects. The focus is here on . Topological
relations are preserved under groups of transformations such as scaling, rotation, and translation and
describe concepts of adjacency, containment, and intersection. Other kinds of spatial relations, not
considered in this paper, are distance and direction relations (Peuquet and Ci-Xiang, 1987, Frank,
1992) and order relations (Kainz , 1993).

The present investigations are part of a larger effort, the formalization and development of a
comprehensive spatial reasoning system, similar to a human expert. Such formal systems will have
multiple applications, e.g., to detect inconsistencies in spatial data collections, to design query op-
timizers for queries over multiple spatial conditions (Egenhofer and Sharma, 1992), as a starting
point to investigate when two pairs of spatial objects have the same, or a similar, spatial relation,
and as a base for extending common sense rule bases (Lenat , 1990) with geographic knowl-
edge. Related research efforts in spatial reasoning about geographic space include investigations
about humans’ cognitive maps (Gärling, 1989, Hirtle and Jonides, 1985) and how they acquire spa-
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tial knowledge (Kuipers, 1978). Complementary investigations focus on graphical applications such
as reasoning about objects on raster images (Chang , 1989, Lee and Hsu, 1992).

The scope of this paper is the evaluation of (symbolic) scene descriptions of spatial objects for
topological consistency. A consists of a set of spatial objects and their binary topo-
logical relations. The spatial objects may be geographic features, such as lakes, census districts, or
market areas, that are bounded and have an identity. This model for geographic data is distinct from

(Goodchild, 1992, Couclelis 1992). Topological consistency of a scene description means that
there is no internal contradiction among the individual relations due to their properties. Topolog-
ical consistency in geographic information systems (GISs) is usually dealt with at the conceptual
level of nodes, lines, and areas (Corbett, 1979, White, 1984, Herring, 1987, Egenhofer , 1989).
It ensures that their interrelationships are complete, for instance, that an area is bounded by a set
of closed sequences of non-intersecting lines. These issues are critical for consistent implementa-
tions of geometry in GISs (Frank and Kuhn, 1986, Herring, 1991). This paper considers topological
consistency at a higher level, independent of the way spatial objects are encoded. The

of the topological consistency of a scene description is seemingly straightforward—one tries to
draw a corresponding configuration and, if successful, this showed that the topological description
was consistent. Obviously, such an interpretation is influenced by the observer’s subjectiveness and
many different graphical representations may be depicted for the same topological relation so that it
becomes increasingly difficult to analyze and compare scene descriptions with many objects. Since
visual analysis is informal, it does not lead to immediate implementations in a computer. This paper
uses an alternative approach to visual inspection. It is based on a mathematical model for binary
topological relations so that the evaluation of the consistency of a scene description becomes a com-
putational process; therefore, this model can be implemented as a computer program. We build on
previous work that focused on a mathematical formalism for point-set topological relations between
spatial regions (Egenhofer and Franzosa, 1991), a definition of the composition of binary topolog-
ical relations (Egenhofer, 1991b), and initial studies on the use of the composition to reason about
topological relations (Egenhofer and Sharma, 1992, Smith and Park, 1992).

The computational evaluation of the topological consistency of a scene description may be
straightforward if all topological relations are related by some standard properties such as transi-
tivity. For example, the description “ , and , and , and

” is obviously inconsistent because, by the transitive property of contains, must ,
which contradicts with the statement that . More difficult are such evaluations if a larger
set of objects is involved or not only transitive relations occur. This paper makes use of such prop-
erties of the binary topological relations as symmetry, transitivity, converseness, and composition
to formalize the inference of new spatial information in a general setting. The following example
demonstrates how the composition and other properties of topological relations can be used to infer
unknown topological information. Given a scene description with three 2-dimensional objects, ,

, and , and the binary topological relations and . The first inference is
that all objects must be to themselves. Second, transitivity of the containment relation implies
that as well. Finally, the fact that implies the converse relation that is

of —with corresponding inferences for the other relations. Thus the two topological rela-
tions and are sufficient to describe uniquely this configuration of three
objects and no other relations are required. Such conclusions depend on the particular relations—for
example, there is no unique geometric interpretation for the description “ and

”—and other combinations of relations may require different inference modes than just transitivity
and converseness. For any scene description, the set of binary topological relations between the

objects is redundant since some of these topological relations are always implied by others. The
result has multiple applications in geographic analysis and spatial data handling such as (1) detecting
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2 BINARY TOPOLOGICAL RELATIONS BETWEEN SPATIAL REGIONS
BASED ON THE 4-INTERSECTION

inconsistencies in spatial data collections, (2) optimizing spatial queries over topological relations,
and (3) serving as a means to determine if two scene descriptions have the same or similar spatial
relations.

Figure 1: The 4-intersections for the eight topological relations between two spatial regions without
holes and their geometric interpretations.

The remainder of the paper is structured as follows: Section 2 briefly describes the 4-intersection,
a mathematical model for binary topological relations between spatial regions, and analyzes the
properties of these relations and their composition. Section 3 presents a model for the representation
of the topology of a scene, for which topological consistency constraints are formalized (Section 4).
Subsequently, an algorithm is developed to evaluate the topological consistency of a completely
observed scene description (Section 5). These concepts are generalized in Section 6, where scene
descriptions with incomplete topological information are analyzed. Section 7 summarizes the results
and discusses ongoing efforts that build on them.

The usual concepts of point set topology with open and closed sets are assumed (Alexandroff,
1961, Spanier, 1966). The interior of a set , denoted by , is the union of all open sets in .
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The closure of , denoted by , is the intersection of all closed sets of . The exterior of with
respect to the embedding space IR , denoted by , is the set of all points of IR not contained in

. The boundary of , denoted by , is the intersection of the closure of and the closure of the
exterior of . The objects of concern in this paper are , which are defined as homo-
geneously 2-dimensional point sets with connected boundaries. The definition of binary topological
relations between two spatial regions, and , is based on the four intersections of A’s boundary
( ) and interior ( ) with the boundary ( ) and interior ( ) of B (Egenhofer and Franzosa,
1991). By considering the values empty ( ) and non-empty ( ) for the 4-intersection, one can
distinguish sixteen binary topological relations. Eight topological relations can be realized for two
spatial regions if they are embedded in 2-D (Egenhofer and Franzosa, 1991). Note that the metric of
the spatial regions, such as their shape—whether convex or concave—does not matter as these def-
initions are based on purely topological principles (boundary and interior), which are independent
of other geometric properties. We call the eight topological relations between two spatial regions

, , , , , , , and (Figure 1), though any other
notation such as . . . would do the same service. These terms should not be given any seman-
tic, cognitive, or linguistic interpretation as they refer only to the formal, mathematical definitions.
Linkages between formal mathematics of this model and human cognition about space are investi-
gated elsewhere (Mark and Egenhofer, 1992). Readers should refer to the formal definitions with
respect to their boundary and interior intersections, rather than trying to associate intuitive interpre-
tations with these terms. The set of eight binary topological relations provides a complete coverage,
i.e., any possible configuration is treated by one 4-intersection, and it is mutually exclusive, i.e.,
exactly one of these topological relations holds true between any two spatial regions (Egenhofer and
Franzosa, 1991). Subsequently, will refer to the set of binary topological relation between two
spatial regions and and will be distinct elements of .

A 2 2 matrix, , called the 4-intersection, concisely represents the criteria (Equation 1).

( ) = (1)

To refer to a particular intersection between two spatial regions, the short form [ ] will be
used, e.g., [ ] to refer to the value of the boundary-interior intersection. The topological relation
between two spatial regions and will be denoted by ( ).

Some basic matrix operations apply to the 4-intersection, such as the transposition , which
can be used to determine properties of the topological relations by analyzing the 4-intersections.

( ) describes the 4-intersection of ( ), the topological relation converse to ( ).

A binary relation is called if ( ) implies ( ). Based on the 4-
intersection, a binary topological relation is symmetric if

[ ] = [ ] (2)

or, more generally, = .

is symmetric, because

[ ] = [ ] =
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A pair of binary relations, and , is called if ( ) implies ( ). In
terms of the 4-intersection, the converse property of two binary topological relations can be
described formally by

[ ] = [ ]

[ ] = [ ]

[ ] = [ ]

[ ] = [ ] (3)

or, concisely, = .

and are converse, because

[ ] = [ ] =
[ ] = [ ] =
[ ] = [ ] =
[ ] = [ ] =

Subsequently, we will introduce some properties of the topological relations. They are elements
of a (Maddux, 1990) over topological relations and are prerequisites for a formal
analysis of the topological consistency of a scene description.

The universal topological relation is the union of all possible topological relations and holds true
for the topological relation between any two spatial regions.

= disjoint meet equal inside coveredBy contains covers overlap

=

The empty topological relation, , is introduced to denote that a topological relation cannot be real-
ized, because it contradicts with respect to the other topological relations within the same configu-
ration.

From the 4-intersections (Figure 1) and Equation 3 it can be derived that of the eight possible
topological relations ( ) between two spatial regions has a topological relation
( ). These pairs of converse topological relations are:

disjoint (A, B) = disjoint (B, A)

meet (A, B) = meet (B, A)

equal (A, B) = equal (B, A)

overlap (A, B) = overlap (B, A)
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composition

equal
equal identity relation

inside (A, B) = contains (B, A)

contains (A, B) = inside (B, A)

covers (A, B) = coveredBy (B, A)

coveredBy (A, B) = covers (B, A)

The of two topological relations, ( ) and ( ), over a common spatial region
, denoted by ; , allows for the derivation of the topological relation between and . The

composition table (Table 1), which was formally derived based on the transitivity of empty and
non-empty intersections (Egenhofer, 1991b), shows the outcome of all 64 possible compositions
among all 8 topological relations. In addition, any composition with the empty topological relation
is defined to be the empty topological relation.

disjoint meet equal inside coveredBy contains covers overlap
d (B, C) m (B, C) e (B, C) i (B, C) cB (B, C) ct (B, C) cv (B, C) o (B, C)

disjoint
d (A, B)

d, m, i,
cB, o

d d, m, i,
cB, o

d, m, i, cB,
o

d d d, m, i,
cB, o

meet
m (A, B)

d, m, ct,
cv, o

d, m, e,
cB, cv, o

m i, cB, o m, i, cB, o d d, m d, m, i,
cB, o

equal
e (A, B)

d m e i cB ct cv o

inside
i (A, B)

d d i i i d, m, i,
cB, o

d, m, i,
cB, o

coveredBy
cB (A, B)

d d, m cB i i, cB d, m, ct,
cv, o

d, m, e,
cB, cv, o

d, m, i,
cB, o

contains
ct (A, B)

d, m, ct,
cv, o

ct, cv, o ct e, i, cB,
ct, cv, o

ct, cv, o ct ct ct, cv, o

covers
cv (A, B)

d, m, ct,
cv, o

m, ct, cv,
o

cv i, cB, o e, cB, cv, o ct ct, cv ct, cv, o

overlap
o (A, B)

d, m, ct,
cv, o

d, m, ct,
cv, o

o i, cB, o i, cB, o d, m, ct,
cv, o

d, m, ct,
cv, o

Table 1: The 64 compositions of the binary topological relations r (A, B) and r (B, C) with e =
equal, m = meet, d = disjoint, i = inside, ct = contains, cv = covers, and cB = coveredBy (Egenhofer,
1991b).

The composition table verifies immediately a number of properties that are part of a relation
algebra (Tarski, 1941). Any composition with results in the original topological relation;
therefore, is the , denoted by . Only compositions with the converse relations
may result in . On the other hand, any composition with the universal topological relation results
in the universal topological relation. This can be easily derived from the composition table since for
each topological relation , the union of all compositions ; , with = , contains all possible
topological relations. ; = implies that ; = as well. The composition of two relations
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is equal to the converse of the composition of the converse relations, applied in reverse order, i.e.,
; = ; . Finally, the composition distributes over disjunctions (Maddux, 1990), i.e.,

; ( ) = ( ; ) ( ; ) (4)

meet; (coveredBy covers) = (meet; coveredBy) (meet; covers)

= (meet inside coveredBy overlap) (disjoint meet)

= disjoint meet inside coveredBy overlap

The analysis of the composition table reveals also a number of particular properties of certain
compositions:

The composition is if it results in a single (non-empty) relation.

; =

If = ; is unique and = = , then the relation is .

; =

If the composition results in the universal topological relation, then it is said to be
.

; =

The composition is if it is not undetermined and results in more than one
possible relation.

; =

A generally applicable method to evaluate formally the topological consistency of a scene descrip-
tion must be based on a formal representation of a scene. This section introduces such a model.

The topology of a scene with spatial regions is described by binary topological relations.
The set of topological relations can be abstracted to a , in which each represents
an object and each between two nodes stands for a binary topological relation. Any
two nodes within a graph are linked by a , i.e., a sequence of edges that point in the same
direction. The number of edges along a path is called the . When applied to topological
relations between spatial regions, each node in the graph corresponds to a distinct spatial region
and each directed edge with the corresponding label stands for the binary topological relation

( ) between the two spatial regions and . Within such a graph of spatial regions, all
binary topological relations of a scene description form a , i.e., there is a
directed edge connecting any ordered pair of nodes. Figures 2 and 3 respectively show a graphical
representation of a scene description and the corresponding graph. The labels of the nodes refer to
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Figure 2: Example of a consistent scene with four spatial regions.

the (unique) identifiers of the spatial regions, while the labels of the edges refer to their topological
relations.

This model of the topology of a scene has several advantages over a graphical representation.
First, it is a symbolic representation of the topology of a scene and, therefore, can be formally an-
alyzed without the need for a (subjective) visual or graphical inspection. Second, it allows us to
consider only topological information without additional spatial relations such as directions, ratios
of sizes, and relative distances, which are typically implied by graphical representations. Third,
one can also model and information, which is an extremely difficult task with
graphical representations. The advantages of the network representation are contrasted by the possi-
bility of scene descriptions, i.e., scene descriptions that cannot be realized in a particular
space, because the intrinsic geometric constraints among multiple spatial regions have been absorbed
in the network. For example, it is possible to construct a network for the description of a scene that
“ is inside of and is inside of ” by labeling the directed edges between two nodes with the
corresponding topological relations, though no geometric interpretation can be made for this scene
description. Unlike a graphical sketch, the graph of topological relations has no implicit mecha-
nisms to enforce topological consistency; therefore, explicit knowledge is necessary to evaluate the
consistency of a scene description and to provide the same level of usefulness as a graphical repre-
sentation does. Given a means to evaluate the consistency of any arbitrary network of topological
relations, this model is more powerful than a graphical representation, because it is formal so that it
can be implemented on a computer.

This section introduces a comprehensive method for the integration and comparison of individual
topological relations. The basis for the integration is that there must be no logical contradiction
among topological relations describing the same scene. Logical consistency is based on the algebraic
properties of the individual relations, primarily their composition.

Given the scene representation as a directed graph, topological consistency constraints can be
formulated as (Maddux, 1990) over a network of binary topological
relations. To provide a consistent network of binary relations, the nodes, edges, and sequences of
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and and

edges must fulfill three constraints: the graph must be node-consistent, arc-consistent, and path-
consistent (Mackworth, 1977). If all three levels of consistency are fulfilled for the topological
relations, a scene description is topologically consistent.

The trivial constraints for binary topological relations are immediately implied by the properties
of the topological relations (Figure 3): (1) Each node must have a self loop, denoting the identity
relation , to ensure . (2) For each directed edge from to , representing the
topological relation ( ), there must be an edge in the reverse direction, from to , with
the implied converse topological relation ( ). If all edges in the network fulfill this constraint
and if the network is node-consistent, the network is called .

Figure 3: The constraint network for the configuration in Figure 2.

In terms of the constraint network, the directed edges must be labeled as follows:

= (5)

= (6)

While these two constraints provide a certain level of consistency, they are still insufficient to
guarantee topological consistency for any scene description.

Figure 4 shows a network that fulfills the criteria for node- and arc-consistency, but is
topologically inconsistent, because the composition of = contradicts the
composition table.

The constraint that guarantees the consistency of the compositions has been called
(Mackworth, 1977). It is based on the fact that within a topological constraint network, several

paths can be found to get from one node to another. For example, in figure 3, nodes and can
be reached over various paths: (1) directly, (2) via , (3) via , (4) via , or (5) via



A

B

C

d
do

o

e e

e

ct

i

\
=

Example 9

C A B

A B

A N

t t t t t t t

t t t

A B C

t

t

t

8 \ \ \

8

\ \

\ _ _ _ _ _ \

_ _ _ _ _

\ \

\ \ _ _ _

\ \

\ _ \

i;j ij iA Aj iB Bj iN Nj

i;j ij

N

k A

ik kj

AA

AB

AC

Geographical Systems, 1(1):47-68, 1993.

Figure 4: A constraint network that is node- and arc-consistent, but not path-consistent.

. While there is a multitude of possible paths connecting any two nodes and , it is sufficient
to consider all compositions of path length 2 that connect to to infer the consistency of their
relation (Montanari, 1974). In order to be a path-consistent scene description, the corresponding net-
work must be arc-consistent and each topological relation must coincide with its induced relation.
In terms of the constraint network of . . . relations, the induced topological relation is equal to
the intersection of all possible compositions of path length 2, i.e., the additional constraint for path
consistency is:

= ; ; . . . ; (7)

(where composition binds closer than intersection), or briefly

= ; (8)

Figure 5 shows a node- and arc-consistent network of a scene description with three
objects, , , and .

The nine induced relations are calculated as follows:

= equal; equal meet; meet meet; meet

= equal (disjoint meet equal coveredBy covers overlap)

disjoint meet equal coveredBy covers overlap

= equal

= equal; meet meet; equal meet; coveredBy

= meet meet (meet inside coveredBy overlap)

= meet

= equal; meet meet; covers meet; equal

= meet (disjoint meet) meet

= meet
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= meet; equal equal; meet covers; meet

= meet meet (meet contains covers overlap)

= meet

= meet; meet equal; equal covers; coveredBy

= (disjoint meet equal coveredBy covers overlap) equal
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= equal

Based on the notion of a constraint network, a topologically consistent scene description is eval-
uated in the following steps:

Construct a node-consistent network from the initial network of topological relations:

:= (9a)
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:= (9b)

Construct an arc-consistent network from a node-consistent network of topological relations:

:= (10)

Construct a path-consistent network from an arc-consistent network of topological relations:

:= ( ; ) (11)

This section assumes that a scene description is completely observed. In order to define a completely
observed scene description, it is necessary to introduce the cardinality of a relation.

The of a relation, denoted by # , is the (non-negative) number of relation
values in .

Some important properties of the cardinality of topological relations are given below:

A topological relation has cardinality 0 if and only if it is the empty topological relation .

Every non-empty relation has a positive cardinality.

The cardinality of a single relation value is 1.

The cardinality of the union of two topological relations, #( ), is the sum of the cardi-
nalities of each relation minus the number of relation values common to and .

The range of the cardinality of a topological relation is between 0 (# ) and 8 (# ).

A relation is if its cardinality is 1, i.e.,

# = 1 (12)

This gives rise to the definition of a completely observed scene description:

In a , all relations must be completely observed,
i.e.,

# = 1 (13)

For a scene description in which each relation has exactly one relation value, an
inferred relation is either or .

An inferred topological relation is the empty topological relation if (1) two or more
compositions, ; , have no common relation value(s) or (2) any or is . If two or more
compositions have no common relation value, then their combination (the intersection) is empty,
which corresponds to the empty topological relation. In the second scenario, a topological relation
is composed with an empty topological relation the result of which is empty as well. From the first
constraint follows that the intersection of all compositions is then empty as well.
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6 REASONING ABOUT INCOMPLETELY OBSERVED SCENE DE-
SCRIPTIONS
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equal

equal

equal

equal t̆
in lieu

incompletely observed

The only non-empty topological relation that can be inferred is itself, because the calculation
of includes as one of the terms the composition of ; , which is a composition with the identity
relation. Thus one of the terms of the intersection of the compositions is always . The intersection
of all relevant compositions is then only non-empty if all other compositions contain as well.

A topological relation is if the ob-
served topological relation does not coincide with the inferred topological relation (Equation 11),
i.e.,

= (14)

Conversely, a topological relation is
if it is not inconsistent, i.e.,

= (15)

With the two possible relation values and for the induced topological relation, the definitions of
topological consistency and inconsistency imply that in order to be consistent, a topological relation

must coincide with the induced relation , i.e.,

= (16)

A particular property of the set of eight binary topological relations allows for an abbreviated
evaluation process of topological consistency of an incompletely observed scene description. In
order to conform with the node consistency, it is necessary for all relations, ( ), that the implied
relation ( ) contains , i.e.,

; (17)

To fulfill this constraint, each composition ; must contain . Table 1 reveals that the only
compositions that result in the identity relation are those of pairs of converse relations, which means
that can only be inferred if and are converse. Thus, must be equal to , which
is the same condition as the arc consistency constraint. Thus, of evaluating the topological
consistency for nodes, arcs, and paths, it is sufficient to guarantee that the constraint network of
the topological relations is node- and path-consistent; therefore, Equation 11 can be immediately
expressed in terms of a node consistent network.

:= ( ; ) (18)

So far, it was assumed that the set of topological relations to be investigated for consistency is com-
plete. This section will lift this limitation and allow a scene description to be .
This generalization is crucial when reasoning about topology in geographic space, where incomplete
observations are a common setting and information is frequently obtained by inference rather than
observation (Chase and Chi,1981). To distinguish between a given set of topological relations that
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Definition 4

Example 10

Example 11

Definition 5

incompletely observed incomplete

unknown

incompletely observed

OR-
objects p-domains

disjoint or meet

disjoint meet overlap covers contains

incompletely observed scene description

describe a scene and the information inferred by the consistency constraints, the respective terms
and will be used. A topological relation with the highest possi-

ble degree of incompleteness corresponds to the universal topological relation and will be called
.

Generally, incomplete observations are considered to provide less information than complete
observations. Despite a higher degree of uncertainty about the actual value, it may be possible to infer
more precise information, exploiting the knowledge about the correlation of the observations. New
information may be an assessment of the consistency or the (partial) completion of an incompletely
observed scene description. Incompletely observed scene descriptions give rise to such interesting
questions as, “Can the unknown relations be inferred?”, “Are all relations necessary?” and, “Is the
given (incomplete) description consistent?” The latter assessment should be possible independent
of whether the scene description can be completed or not.

A relation is if its cardinality is greater than 1, i.e.,

# 1 (19)

Incomplete information about a topological relation may be expressed as a disjunction of sev-
eral binary topological relations. Such disjunctions of possible values have been also termed

(Imielinski and Vadaparty, 1989) and (for domains of “possible” values) (Mor-
rissey, 1990).

The interiors of two objects, and , are separated, without any particular information
about their boundaries. Figure 1 shows that there are two different topological relations, disjoint and
meet, with empty interior intersections; therefore, the topological relation ( ) is incompletely
observed. It can be described as .

Given two spatial regions, and , without any explicit information about their topo-
logical relation; however, it is known that is considerably larger than . This restricts the set of
possible topological relations between and and implies that their topological relation is either

or or or or (Egenhofer and Al-Taha, 1992).

An incompletely observed scene description is described by a set of topological relations in
which for at least one ordered pair of objects, and , there is more than one binary topological
relation.

An has at least one incompletely observed
relation, i.e.,

# 1 (20)

Figure 6 shows a network of an incompletely observed scene description. Incompletely observed
topological relations are depicted by multiple edges between the same two nodes pointing in the same
direction, whereas unknown relations are omitted in the graph.

The constraints about node consistency and path consistency hold for incompletely observed
scene descriptions as well, because the composition distributes over disjunctions (Maddux, 1990);
therefore, the basics of the inference mechanisms for the inconsistency and consistency of com-
pletely observed topological relations (Equations 14 and 15) apply immediately as a computational
model for the evaluation of the consistency of incompletely observed topological relations; however,
the underlying process of determining a path-consistent scene description (Equation 11) requires
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Figure 6: The constraint network for an incompletely observed scene.

some modification. An inferred topological relation may contribute to the inference of other topo-
logical relations in the same scene description and, therefore, may be used as additional knowledge
in a new round of constructing a consistent scene description. Clearly, this inference process has to
iterate until the induced scene description becomes stable, i.e., no new relations have been inferred.

Given four spatial regions, , , , and and their topological relations inside
, inside , and inside . All other relations are unknown, i.e., universal. The construction

of the node-consistent network (Equation 9a and 9b) adds knowledge that each relation is equal to
itself, and the arc-consistent network infers that contains , contains , and contains .
The construction of a path-consistent network infers inside , inside , and their converse
relations contains and contains . With this extended knowledge of the topology of the
scene description it becomes possible to infer also inside , and its converse, contains .

The major question is, “Over which steps has the algorithm to iterate?” First, it is sufficient to
apply the node consistency only once at the beginning of the evaluation process, because it does
not rely on new information derived from applying Equation 11. Second, since ; is the same as

; , each iteration of constructing a path-consistent network implies that the network is also arc-
consistent. Therefore, it is sufficient to iterate over the step constructing a path-consistent network.
Equation 21 shows the modified algorithm for path consistency (Equation 11) for incompletely ob-
served scene descriptions.

:=

:=

:= ;

= (21)
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Definition 6

Definition 7

Definition 8

Example 13

Definition 9

equal

topologically inconsistent

topologically consistent

determined

contains meet disjoint overlap
contains (A, B) meet (B, C)

disjoint (A, D) overlap (D, C)

topologically determined

In an incompletely observed scene description, the induced relation can be , ,
or a true subset of .

The first two scenarios follow immediately from the inference in a completely observed
scene description (Proposition 1) and because is also in an incompletely observed scene
description. The third scenario may happen when the composition of ; has a subset in common
with all other relevant compositions, but there is at least one relation value in that is not in one
of the other compositions.

No other values for the induced relation are possible. The summary of the three possible sce-
narios is that or = . A forth scenario could only exist if there was some such that

; however, this is impossible, because ; is always and through the intersec-
tions with the other relevant compositions, it can be only restricted, not expanded. Thus, the largest
possible is itself.

This leads to general definitions of topological consistency and inconsistency, independent of
whether the scene description is completely or incompletely observed.

A scene is if any induced relation is inconsistent, i.e.,

= (22)

For an entire scene to be , each induced relation must be con-
sistent, i.e.,

# 1 (23)

Note that an unknown scene (with all relations being universal) is topologically consistent.
For consistent, incompletely observed relations, a number of further properties can be formalized

in terms of the inferred relation.

A consistent, incompletely observed relation is if the induced relation
is unique, i.e.,

# = 1

In a scene with four spatial regions , , , and and the four observed topological
relations (A, B), (B, C), (A, D), and (D, C), the relationship between

and can be uniquely inferred. Though both compositions, ; and
; , are underdetermined, the intersection of the two compositions leads

to a unique result:

contains; meet disjoint; overlap = (contains covers overlap)

(disjoint meet inside coveredBy overlap)

= overlap

A scene is if the cardinality of each inferred relation is 1,
i.e.,

# = 1 (24)
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overlap inside disjoint

:

topologically underdetermined
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A topologically determined scene must be consistent as well, because if all ’s are unique their
cardinality is also greater than or equal to 1.

The intersections of the compositions of topological relations do not always result in singletons
and it may be unclear for certain configurations, what value an unspecified topological relation may
take.

An unknown topological relation is if the induced
topological relation is underdetermined, i.e.,

# 1

Given four spatial regions , , , and and the four topological relations
(A, D), (B, D), (C, B), and (C, A). The topological relation ( ) cannot
be inferred uniquely, because

disjoint; overlap inside; overlap = (disjoint meet inside coveredBy overlap)

(disjoint meet inside coveredBy overlap)

= disjoint meet inside coveredBy overlap

A scene is if it has no self-contradictions and the car-
dinality of any is greater than 1, i.e.,

# = 0 and

# 1 (25)

A weaker notion of a determined relation is a relation that can be enhanced.

An incompletely observed relation can be if its inferred relation reduces
the number of alternatives, without making the relation determined or inconsistent, i.e.,

# # 1

Given three spatial regions, , , and . It is know that is smaller than , which
implies that their topological relations is , , , , or (Egenhofer
and Al-Taha, 1992). Furthermore, it is known that covers and meets . Node consistency
implies that and are equal. The relation between and can be enhanced, because

= ; ; ;

= covers; meet equal; (disjoint meet coveredBy inside overlap)

(disjoint meet coveredBy inside overlap); equal

= (meet contains covers overlap)

(disjoint meet coveredBy inside overlap)

(disjoint meet coveredBy inside overlap)

= meet overlap
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A method was described to evaluate whether or not a set of binary topological relations between
spatial regions describes a scene consistently and without redundancy. It was based on a purely
symbolic representation of spatial predicates without a need to model objects in a particular topo-
logical data structure. The computational model was based on a closed set of mutually exclusive
topological relations between spatial regions and used the algebraic properties of the relations, pri-
marily the converseness and the composition. By applying these properties as constraints among
the topological relations of a scene description, the concepts of consistency and inconsistency were
defined. For incompletely observed scenes, the consistency constraints also induce refined relations,
up to the degree of completing the topology of a scene without adding additional information.

Although the discussions focused on point sets, any spatial data model that is a valid implemen-
tation of the point set concept may be used to implement the ideas discussed (Egenhofer and Herring
1991, Frank, 1992). Earlier work already reported about the application of the 4-intersection to mod-
eling topological relations between simplicial complexes (Egenhofer 1989) and its implementation
in commercial GISs for cells (Herring, 1991). GISs that record explicitly topology and solve topo-
logical conflicts based on the topology recorded, not by deriving it from such metric information
as coordinates, provide a consistent and robust implementation. Otherwise, the consistency checks
discussed here apply to detecting both inconsistent data and inconsistent geometry implementations.

The method has applications in a variety of fields such as data fusion to integrate multiple ob-
servations and spatial reasoning to infer new information. For geographic databases, it also applies
to spatial query processing and optimization (Egenhofer, 1993).

The investigations showed that a scene of objects needs less than all binary topological
relations to be determined. In order to further optimize the processing of such queries, it is necessary
to find the set of relations that predict the least cost of processing. In a first approximation, this
may be considered the smallest set of topological relations if all relations have the same processing
cost. The results of the present investigations suggest that such a minimal set contains somewhere
between ( 1) and ( ) 2 relations (Egenhofer and Sharma, 1992), because node consistency
eliminates relations and arc consistency further reduces this set by half. On the other hand, at least
( 1) relations are necessary to determine sufficiently a scene—less relations would definitely
leave the topological relation to some object undetermined. The actual number of the smallest set of
topological relations depends on the particular configuration. For example, a scene in which meets

, contains , and is disjoint from , needs only the first two relations, because the third is
induced by the others. On the other hand, if the relation between and was changed to overlap,
all three relations would be necessary to determine the scene. While an exhaustive backtracking
algorithm, removing one relation after another until the scene is topologically underdetermined,
will identify the smallest set of relations, it is not the most efficient way. Ongoing research focuses
on a more efficient algorithm, taking into consideration the particular properties of the topological
relations.

In order to make this method of evaluating consistency really useful, it is necessary to extend the
consistency analysis beyond topological relations. Similar relation algebras have to be developed
for other spatial relations over spatial regions and integrated with the present method. Such algebras
exist for point objects, describing cardinal directions (Frank, 1992, Freksa1992) and combinations
of cardinal directions with approximate distances (Hernández, 1991), and similar formalisms for
extended spatial objects are urgently needed.
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