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Abstract

Based on the 9-intersection for binary topological relations, two models of conceptual
neighborhoods among topological relations between a line and a region are developed. The
snapshot model derives the neighborhoods by comparing pairs of topological relations and
selects neighbors based on least noticeable differences, whereas the smooth-transition model
develops neighborhoods based on the knowledge of the deformations that may change a
topological relation. The resulting similarity diagrams show some differences, which were
compared with the results from tests in which human subjects were asked to organized line-
region relations into groups of similar relations. The groupings the subjects made indicate that
the smooth-transition model captures more important aspects of the similarity of topological line-
region relations than the snapshot model.

1. Introduction

The study of spatial relations aims at gaining a better understanding of the way people use them
in everyday life—how they think about space and the relations among spatial objects, and how
they communicate about them—and at developing methods suitable for the implementation in
information systems. Over the last few years, this field has received increasing attention. Areas
such as cognitive science (Lakoff and Johnson 1980) and linguistics (Talmy 1983; Herskovits
1986) have considerably influenced its advancement (Mark 1993). More recently, such
investigations of spatial relations have demonstrated enormous practical relevance, for instance
in the design and use of geographic information systems (Abler 1987; Mark and Frank 1991;
Frank and Campari 1993).

This paper investigates properties of topological relations, i.e., spatial relations that are preserved
under continuous transformations. We focus on the topological relations that result from a recent
categorization (Egenhofer and Franzosa 1991; Egenhofer and Herring 1991). This model is very
popular in the area of geographic information systems (GISs) as it has been applied to describe
more detailed spatial relations (Herring 1991; Pigot 1991; Hazelton et al. 1992) and used for a
number of applications in spatial query languages (Svensson and Zhexue 1991; Hadzilacos and
Tryfona 1992).

* This work was partially funded by NSF grant IRI 9309230 and Intergraph Corporation. Additional support from
NSF for the NCGIA under grant number SBR 8810917 is gratefully acknowledged.
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The model for topological relations used in this paper distinguishes 19 different topological
relations between a line and a region in IR2

. Examples are such situations as a line’s closure
being a subset of the region’s interior (Figure 1a), a line’s closure as a subset of a region’s
closure (Figure 1b), the line outside of the region such that the line’s interior intersects with the
region’s boundary (Figure 1c), and the line outside of the region such that only the line’s
boundaries, but not its interior, intersects with the region’s boundary (Figure 1d). Some of these
relations may be thought of being closer (or more similar) to each other than others. For
example, 1a and 1b are fairly similar—the only difference is the location of one of the two
endpoints, either in the region’s interior or in its boundary. Also 1c and 1d are conceptually
similar—the lines’ interiors are both outside of the region’s interior—however, the degree of
similarity is considerably lower than the similarity between 1a and 1b.

Figure 1: Two pairs of similar spatial relations.

The goal is to design a computational model that determines for each topological relation those
relations that are conceptually closest to it. This model will be helpful in grouping topological
relations according to their similarities, a task that is critical for the selection of appropriate
terminology when people communicate with information systems about specific spatial
configurations. The novel approach in this paper is the grouping of topological information,
usually thought of as values on a nominal scale (Stevens 1946). The grouping implies a partial
order over topological relations. This formal approach is complementary to human subject tests
about the use of spatial relations in natural language (Mark and Egenhofer 1992). Conceptual
neighbors of relations have been studied before; however, such models were based on visual
analysis, rather than formal methods, and applied only to relatively simple objects such as
1-dimensional (temporal) intervals (Freksa 1992).

Following a brief summary of the model for topological relations (Section 2), this Technical
Note focuses on the comparison of two different similarity models: The first model compares
two snapshots of a line-region relation without any knowledge about the potential processes (or
transformations) that may have occurred and selects conceptual neighbors based on the least
number of differences (Section 3). The second model derives the closest relations from smooth
transitions (Section 4). Using data from human-subjects tests, the significance of the two models
is assessed (Section 5).
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2. 9-Intersection

A spatial region is a connected, homogeneously 2-dimensional cell. Its formal definition is based
on point-set topology with open and closed sets (Alexandroff 1961). Interior ( A° ), boundary
(∂A), and exterior ( A−) of a 2-dimensional point set A  embedded in IR2

 are defined as usual.
The definition of a line is based on 1-cells, i.e., the direct connections between two geometrically
independent nodes. A line is a sequence of 1…n connected 1-cells such that they neither cross
themselves nor form cycles. Nodes at which exactly one 1-cell ends will be referred to as the
boundary of the line, or briefly boundary. Nodes that are an endpoint of more than one 1-cell are
interior nodes. The interior of a line is the union of all interior nodes and all connections
between the nodes. The closure of a line is the union of its interior and boundary. Finally, the
exterior is the difference between the embedding space and the closure of the lines. We will call
a sequence of 1-cells a simple line if it has exactly two boundary nodes. A complex line would
have more than two boundary nodes (Egenhofer and Herring, 1991). Lines with less than two
boundary nodes would include cycles, which are excluded by definition.

Interior, boundary, and exterior will be referred to as the topological parts of an object. Among
the parts there is an adjacency such that:

adjacent ( A° ) = ∂A (1a)
adjacent (∂A) = A°  and A− (1b)
adjacent ( A−) = ∂A (1c)

The definition of binary topological relationships between a line L and a region R is based on the
nine intersections of L’s interior ( L° ), boundary (∂L ), and exterior ( L−) with the interior ( R° ),
boundary ( ∂R), and exterior ( R−) of R (Egenhofer and Herring 1991). A 3 ×3-matrix, Μ, called
the 9-intersection, concisely represents these criteria (Equation 2).

Μ = 

L°∩ R° L°∩∂R L°∩ R−

∂L ∩ R° ∂L ∩ ∂R ∂L ∩ R−

L− ∩ R° L− ∩ ∂R L− ∩ R−

 

 

 
 
  

 

 

 
 
  

(2)

To refer to a particular intersection between two objects, the short form Μ [_, _] will be used,

e.g., Μ [∂ , − ] to denote the value of the boundary-complement intersection.

By considering the values empty (∅) and non-empty (¬∅ ) for the 9-intersection, one can
distinguish 512 binary topological relationships. The actual number of relationships that can be
realized between two spatial objects embedded in a particular space, depends on the topological
properties of the objects (Egenhofer and Franzosa 1991; Egenhofer and Herring 1991) and their
codimensions, i.e., the difference between the dimension of the embedding space and the object
(Egenhofer and Herring 1990; Herring 1991; Pigot 1991). For a simple line and a region in IR

2
,

it has been proven that only 19 different 9-intersections can be realized (Egenhofer and Herring
1991). This set is mutually exclusive and closed. Figure 2 shows the 9-intersections of the 19
binary topological relationships between a region and a line and depicts corresponding
prototypical geometric interpretations.
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Figure 2: Geometric interpretations of the 19 line-region relations that can be realized from the
9-intersection.

The geometric interpretations reveal some intuitive similarities among the 19 relations. For
example, the situation in which the line touches the region from outside at one of the end points
is more similar to the situation in which the line is disjoint from the region than to the situations
in which no part of the line is outside of the region.
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3. Snapshot Model

The snapshot model compares two different topological relations without any knowledge about
the potential transformations that may have caused their change. The comparison is based on the
topological distance (Egenhofer and Al-Taha 1992), a measure for the remoteness of two
different topological relations applied to their 9-intersections. We introduce the difference of
empty/non-empty intersections, by mapping the values of empty and non-empty onto the integers
0 and 1, respectively, and applying then integer subtraction.

∅ − ∅ = 0

¬∅ − ¬∅ = 0

∅ − ¬∅ = −1

¬∅ − ∅ = 1

(3)

The topological distance between two topological relationships, rA and rB, is the count of
differences of the empty/non-empty entries of corresponding elements in the
9-intersections (Equation 4).

Tr A , r B
 = 

j =°

−
∑

i=°

−
∑ |ΜA [i, j] - ΜB [i, j]| (4)

When calculated for each combination of line-region relations, the topological distance forms a
19×19 matrix of distances between pairs of topological relations. The shortest non-zero distance
is 1 (topological distance 0 applies only between a relation and itself). For each relation rI , the
relations rA…N with the shortest, non-zero topological distance are considered rI’s conceptual
neighbors. They can be represented in a planar graph in which each relation is depicted as node
and conceptual neighbors are the links between the nodes (Figure 3).
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Figure 3: The conceptual neighborhoods derived from the snapshot model.

Each relation is a conceptual neighbor of at least two, and at most four other relations. The graph
is symmetric with respect to the center column and its 9-intersections on the left hand are mirror
images of the ones on the right hand. On the left-hand side are all relations in which the line is
primarily in the region, while on the right-hand side are the relations in which the line is
primarily outside. The intermediate cases, partially inside, partially outside, are toward the center
of the diagram. Finally, the three symmetric relations are located in the center column of the
diagram.

4. Smooth Transitions

The second model we will investigate is based on the concept of smooth transitions. In this
model, two relations are conceptual neighbors if there exists a smooth transition from one to the
other. By a smooth transition we understand an infinitesimally small deformation that changes
the topological relationship. For lines and regions, such changes may be thought of as (1) pulling
at the end of a line and (2) pushing the line’s interior from one part of the region into an adjacent
part . (Alternatively, the region’s boundary could be moved among the parts of the line.) In terms
of the 9-intersection, a smooth transition means that an intersection or its adjacent intersection
(Equation 1) gets changed from empty to non-empty, or reverse. First, we introduce the extent of
a part i , denoted by # M[i, _] , as the number of non-empty intersection between i and the three
parts of the second object. For example, if the line’s interior lies completely in the interior of the
region, then its extent is 1 as it intersects with only one part of the region. The extent of a line’s
interior with respect to a region is in the interval of 1…3, the extent of the line’s boundary is
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either 1 (if both nodes a located in the same region part) or 2 (if the nodes are located in different
parts of the region), and the extent of a line’s exterior is always 3.

Based on this notion, the smooth transitions are formalized as follows:

(1) Moving a line’s boundary node from a region-part into an adjacent part of the region:

• If the line’s two boundaries intersect with the same region part then extend the intersection to
either of the adjacent region parts.

# M[∂ ,_] =1 ⇒ ∀i(M[∂ ,i] =¬ ∅): MN [∂ ,adjacent(i)]: = ¬∅ (5)

For example, in figure 4a, the boundary-boundary intersection is the only non-empty
intersection with the line’s boundary; therefore, the non-empty intersection is extended to the
adjacent boundary-interior intersection and its adjacent boundary-exterior intersection.

• If the line’s two boundaries intersect with two different region parts then move either
intersection to the adjacent region part.

# M[∂ ,_] = 2 ⇒ ∀i(M[∂ ,i] =¬ ∅): MN[∂ ,i]: = ∅ and MN[∂,adjacent (i)]: =¬ ∅ (6)

For example, in figure 4b, the line’s boundary intersects with the region’s boundary and
interior; therefore, the non-empty boundary-boundary intersection is moved to the adjacent
(empty) boundary-exterior intersection such that the boundary-exterior intersection turns
form empty to non-empty and the non-empty boundary-interior intersection is moved to the
adjacent (non-empty) boundary-boundary intersection such that the boundary-interior
intersection turns empty.

(2) Moving a line’s interior partially from a region-part into an adjacent part of the region:
• Extend the line’s interior-intersection to either of the adjacent region parts.

∀i(M[° ,i] =¬ ∅): MN[° ,adjacent(i)]: = ¬∅ (7)

For example, in Figure 4c, the line’s interior intersects with the region’s boundary; therefore,
the non-empty interior-interior intersection is extended to its adjacent empty boundary-
interior intersection and its adjacent non-empty boundary-exterior intersection.

• Reduce the line’s interior-intersection on either of the adjacent region parts.

# M[°, _] = 2 ⇒ ∀i (M[°,i]= ¬∅): MN [°,i]: = ∅ (8a)
# M[°, _] = 3 ⇒ ∀i (i ≠ ∂): MN[°,i]: = ∅ (8b)

For example, in Figure 4d, the line’s interior extends over the region’s boundary and exterior;
therefore, the line’s interior-intersection is reduced, moving the line’s boundary entirely into
the region’s boundary and exterior.
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Figure 4: (a) Moving one boundary of a line into an adjacent part of the region, (b) either
boundary into an adjacent region part, (c) the line’s interior into an adjacent part of
the region, and (d) the line’s interior out of a part of the region.
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The separate moves of the line’s interior and boundaries (Equations 5-8) are atomic operations
that do not account for some of the properties of the objects and their embedding space and,
therefore, may generate inconsistent 9-intersections for configurations that cannot be realized.

In order to maintain connectivity among the line’s boundaries and interior, it is necessary to
assure the following consistency constraint:

• If the line’s interior intersects with the regions interior and exterior, then the line’s interior
must also intersect with the region’s boundary.

M[°,° ] =¬ ∅ and M[°,− ]= ¬∅ ⇒ M[° ,∂]: =¬∅ (9)

Likewise, in order to preserve the continuous-space property of IR
2
, the following consistency

constraint must be fulfilled:

• If the line’s boundary intersects with the region’s interior (exterior) then the line’s interior
must intersect with the region’s interior (exterior) as well.

M[∂ ,° ] =¬∅ ⇒ M[°,° ]: =¬ ∅ (10a)

M[∂ ,− ] = ¬∅ ⇒ M[° ,− ]: = ¬∅ (10b)

Equations (5-10) establish the smooth transitions for line-region relations. When applied to the
19 line-region relations, they provide the neighborhood graph shown in Figure 5. This graph
resembles in most of its structure and properties the snapshot neighborhood graph (Figure 3).
The differences between the two graphs are (1) the way in which conceptual neighbors are
connected at the top and (2) the additional links that run across the smooth transition graph.

Figure 5: The conceptual neighborhoods derived from the smooth-transition model.
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5. Comparison with human behavior

The 19 line-region relations of the 9-intersection give rise to 171 distinct pairs (19 ×18/ 2 ) of
relations that can possibly be conceptual neighbors. Of these pairs, 26 are conceptual neighbors
under both the snapshot model and the smooth-transition model; two relation pairs are
conceptual neighbors by the snapshot model definition, but not the smooth transitions; twelve
pairs are conceptual neighbors by smooth transitions, but not under the snapshot model; and the
remaining 131 pairs are conceptual neighbors under neither model.

In an earlier study, we obtained human-subjects data on grouping of spatial relations (Mark and
Egenhofer 1992, 1994), when 28 subjects performed a grouping task involving 38 diagrams,
each of which showed a line and a region, said to be a road and a park, respectively. The parks
were all the same size and shape, and there were 2 geometrically distinct placements of the road
corresponding to each of the 19 topologically distinct relations. Since for each pair of relations
there were exactly two examples, each spatial relation could be grouped as many as 112 times (4
pairs times 28 subjects) with each other relation. As a basis for comparison, the pairs within each
relation distinguished by the 9-intersection were grouped by all 28 subjects for 7 of the 19
relations, and by at least 23 subjects (82%) for every relation. The maximum number of times
that the stimuli in two different spatial relations were paired was 78 out of a maximum of 112
times (70%).

Within the context of different models for conceptual neighbors, it is particularly enlightening to
analyze how the subjects formed groups of similar relations. The pairs that were neighbors by
both snapshot and smooth-transition models were grouped from 0 to 78 times, with a mean of
33.6 (Figure 6).

• Those pairs that were neighbors for smooth transitions—but not snapshots—were grouped
between 0 and 66 times, with a mean of 17.3 (15.4%).

• The two pairs that were snapshot neighbors—but not smooth transition neighbors—were
grouped 10 and 16 times (mean = 13; 11.6%).

(c) Snapshot and smooth-transition model

(b) Smooth-transition model only

(a) Snapshot model only

0 20 40 60 80

Number of times grouped

Figure 6: The number of times subjects grouped pairs of relations that are conceptual
neighbors in (a) the snapshot model only, (b) the smooth-transition model only, and
(c) in both models.
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Perhaps most significant, however, is the fact that the 131 pairs that were neighbors by neither
the snapshot model nor the smooth transitions were grouped an average of only 6.0 time by the
subject (5.3% of the maximum). Sixty pairs were never grouped by any of the 28 subjects nor
any of the four possible stimulus pairs. The most frequently-grouped pair in this category was 54
times (48%), but only 20 stimulus pairs with neither smooth transitions nor minimum snapshot
difference were grouped 12 or more times (10% of the maximum).

6. Conclusions

Two formal models for the similarity of topological line-region relations led to almost identical
conceptual-neighborhood diagrams. Tests with human subjects confirmed that the conceptual
neighborhoods identified by the two models correspond largely to the way humans conceptualize
similarity about spatial relations. The smooth-transition model represented the change process
explicitly, whereas the snapshot model inferred change from topological differences. Since the
majority of conceptual neighbors is the same in both diagrams, we conclude that the knowledge
of a change process can be generally neglected when only considering topological similarity.
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