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Practical needs in the realm of Geographic Information Systems (GISs) have
driven the efforts to investigate formal and sound methods to describe spatial
relations. After an introduction of the basic ideas and notions of topology, a
novel theory of topological spatial relations between sets is developed in
which the relations are defined in terms of the intersections of the boundaries
and interiors of two sets. By considering and as the values
of the intersections, a total of sixteen topological spatial relations are
described, each of which can be realized in IR . This set is reduced to nine
relations if the sets are restricted to spatial regions, a fairly broad class of
subsets of a connected topological space having application to GIS. It is
shown that these relations correspond to some of the standard set-theoretic
and topological spatial relations between sets such as equality, disjointness,
and containment in the interior.

The present investigations have been motivated by the practical need for a
formal understanding of spatial relations within the realm of Geographic
Information Systems (GISs). In order to display, process, or analyze spatial
information, users select data from a GIS by asking queries. Almost any GIS
query is based on spatial concepts. Many queries explicitly incorporate

to describe constraints about spatial objects to be analyzed
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or displayed. For example, a GIS user may ask the following query to get
information about potential risks of toxic waste dumps on school children in
a specific area:

Retrieve all toxic waste dumps which are within 10 miles of an
elementary school and located in Penobscot County and its
adjacent counties.

The number of elementary schools known to the information system are
restricted by using the formulation of constraints. Of particular interest are
the spatial constraints expressed by such as , ,
and .
The lack of a comprehensive theory of spatial relations has been a major
impediment to any GIS implementation. The problem is not only one of
selecting the appropriate terminology for these spatial relations, but rather
one of determining their semantics. The development of a theory of spatial
relations is expected to provide answers to the following questions (Abler,
1987):

What are the fundamental geometric properties of geographic objects
to describe their relations?

How can these relations be formally defined in terms of fundamental
geometric properties?

What is a minimal set of spatial relations?

Besides the purely mathematical aspects, cognitive, linguistic, and
psychological considerations (Talmy, 1983; Herskovits, 1986) must also be
included if a theory about spatial relations, applicable to real-world
problems, is to be developed (NCGIA, 1989). Within the scope of this paper
we will focus only on the formal, mathematical concepts which have been
partially provided from point-set topology.
The application of such a theory of spatial relations exceeds the domain of
GISs. Any branch of science and engineering that deals with spatial data
will benefit from a formal understanding of spatial relations. In particular, its
contribution to a spatial logic and spatial reasoning will also be helpful in
areas such as surveying engineering, CAD/CAM, robotics, and VLSI design.
The variety of spatial relations can be grouped into three different categories:

topological relations which are invariant under topological
transformations of the reference objects (Egenhofer, 1989; Egenhofer
and Herring, 1990);

metric relations in terms of distances and directions (Peuquet and
Ci-Xiang, 1987); and

relations concerning the partial and total order of spatial
objects (Kainz, 1990) as described by prepositions such as ,

, , and (Freeman, 1975; Chang ,
1989; Hernández, 1991).
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Within the scope of this paper, we are only interested in the topological
spatial relations.
In the past, formalisms for relations have been limited to simple data types in
a one-dimensional space such as integers, reals, or their combinations, e.g.,
as intervals (Allen, 1983). Spatial data, such as geographic objects or
CAD/CAM models, extend in higher dimensions. It has been assumed that a
set of primitive relations in such a space is richer, but so far no attempt has
been made to systematically explore this assumption.
The goal of this paper is twofold: First, to show that the description of
topological spatial relations in terms of topologically invariant properties of
point-sets is rather simple. As a consequence, the topological spatial relation
between two point-sets may be determined with little computational effort.
Second, we want to show that there exists a framework within which any
topological spatial relation falls. This does not state that the set of relations
determined by this formalism is complete—i.e., humans may distinguish
additional relations—but that the formalism provides a complete coverage,
i.e., any such additional relation will be only a specialization of one of the
relations described.
As the underlying data model, we selected subsets of a topological space.
The point-set approach is the most general model for the representation of
topological spatial regions. Other approaches to the definition of topological
spatial relations using different models, such as intervals (Pullar and
Egenhofer, 1988) or simplicial complexes (Egenhofer, 1989), are
generalized by our point-set approach.
This paper is organized as follows: the next section reviews previous
approaches to defining topological spatial relations. Section 3. summarizes
the relevant concepts of point-set topology and introduces the notions used in
the remainder of the paper. Section 4. introduces the definition of topological
spatial relations and shows their realization in IR . Section 5. investigates the
existence of the relations between two spatial regions, subsets of a
topological space with particular application to geographic data handling. In
Section 6., the relations within IR ( 2) and IR are compared.

Various collections of terms for spatial relations can be found in the
computer science and geography literature (Freeman, 1975; Claire and
Guptill, 1982; Chang , 1989; Molenaar, 1989). In particular, designs of
spatial query languages (Frank, 1982; Ingram and Phillips, 1987; Smith

, 1987; Herring , 1988; Roussopoulos , 1988) are a reservoir for
informal notations of spatial relations with verbal explanations in natural
language. A major drawback of these terms is the lack of a formal
underpinning, because their definitions are frequently based on other
expressions which are not exactly defined, but are assumed to be generally
understood.
Most formal definitions of spatial relations describe them as the results of
binary point-set operations. The subsequent review of these approaches will



6 � \

6 6

�

\ ;

\ 6 ;

\ 6 ;

\ 6 ;

\ 6 ;

\ ;

�

x y x y

x y x y

x y x y

x y x y

x y x y

x y x y

x y

x y x y

x y

distance direction
AND OR NOT

equal not equal inside outside
intersects

equal inside
intersects per se

intersects

boundary interior overlap neighbor

neighborhood

4 M.J. Egenhofer and R.D. Franzosa

show their advantages and deficiencies. It will be obvious that none of the
previous studies has been performed systematically enough to be used as a
means to prove that the relations defined provide a complete coverage for the
topological spatial relations between two spatial objects. Some definitions
consider only a limited subset of representations of “spatial objects,” while
others apply insufficient concepts to define the whole range of topological
spatial relations.
A formalism using the primitives and in combination with
the logical connectors , , and (Peuquet, 1986) will not be
considered here. The assumption that every space has a metric is obviously
too restrictive so that this formalism cannot be applied in a purely
topological setting.
The definitions of relations in terms of set operations use pure set theory to
describe topological relations. For example, the following definitions based
on point-sets have been given for , , , , and

in terms of the set operations =, =, , and (Güting, 1988):

= := points ( ) = points ( )

= := points ( ) = points ( )

inside := points ( ) points ( )

outside := points ( ) points ( ) =

intersects := points ( ) points ( ) =

The drawback of these definitions is that this set of relations is neither
orthogonal nor complete. For instance, and are both covered by
the definition of . On the other hand, the model of point-sets
does not allow for the definition of those relations that are based on the
distinction of particular parts of the point-sets such as the boundary and the
interior. For example, the relation is topologically different from
the one where common boundary points exist, but no common interior
points are encountered.
The point-set approach has been augmented with the consideration of

and so that and can be
distinguished (Pullar, 1988):

overlaps := boundary ( ) boundary ( ) = and

interior ( ) interior ( ) =

neighbor := boundary ( ) boundary ( ) = and

interior ( ) interior ( ) =

In a more systematic approach, boundaries and interiors have been identified
as the crucial descriptions of polygonal intersections (Wagner, 1988). By
comparing whether or not boundaries and interiors intersect, four relations
have been identified:

where boundaries intersect, but interiors do not;
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where neither boundaries nor interiors intersect;

where the boundaries do not intersect, but the interiors
do; and

with both boundaries and interiors intersecting.

This approach uses a single, coherent method for the description of
topological spatial relations, but it is not carried out in all its consequences.
For example, no distinction can be made between and ,
because for both relations boundaries and interiors intersect.

Our model of topological spatial relations is based on the point-set
topological notions of and . In this section we will present
the appropriate definitions and results from point-set topology. Some of the
results are stated without proofs. Those proofs are all straightforward
consequences of the definitions and can be found in most basic topology text
books, e.g., by Munkres (1966) and Spanier (1966).
Let be a set. A on is a collection of subsets of that
satisfies the three conditions:

the empty set and are in ,

is closed under arbitrary unions, and

is closed under finite intersections.

A is a set with a topology on . The sets in a
topology on are called , and their complements in are called

. The collection of closed sets

contains the empty set and ,

is closed under arbitrary intersections, and

is closed under finite unions.

Via the open sets in a topology on a set , a set-theoretic notion of closeness
is established. If is an open set and , then is said to be a

of . This set-theoretic notion of closeness generalizes the
metric notion of closeness. A metric on a set induces a topology on ,
called the . This topology is such that is
an open set if for each , there is an 0 such that the -ball of
radius around is contained in .
For the remainder of this paper let be a set with a topology . If is a
subset of then inherits a topology from . This topology is called the

and is defined such that is open in the subspace
topology if and only if = for some set . Under such
circumstances, is called a of .
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Given , the of , denoted by , is defined to be the union
of all open sets that are contained in , i.e., the interior of is the largest
open set contained in . is in the interior of if and only if there is a
neighborhood of contained in , i.e., if and only if there is an open
set such that . The interior of a set could be empty, e.g., the
interior of the empty set is empty. The interior of is itself. If is open
then = . If then .

The of , denoted by , is defined to be the intersection of all closed
sets that contain , i.e., the closure of is the smallest closed set containing

. It follows that is in the closure of if and only if every neighborhood
of intersects , i.e., if and only if = for every open set
containing . The empty set is the only set with empty closure. The closure
of is itself. If is closed then = . If then .

The of , denoted by , is the intersection of the closure of
and the closure of the complement of , i.e., = . The
boundary is a closed set. It follows that is in the boundary of if and only
if every neighborhood of intersects both and its complement, i.e.,

if and only if = and ( ) = for every open set
containing . The boundary can be empty, e.g., the boundaries of both
and the empty set are empty.

The concepts of interior, closure, and boundary are fundamental to the
forthcoming discussions of topological spatial relations between sets. The
relationships between interior, closure, and boundary are described by the
following propositions:

=

If , then every neighborhood of intersects so that
cannot be contained in . Since no neighborhood of is contained in
it follows that and, therefore, = .

=

and, by definition, . Since and are
both subsets of it follows that ( ) . To show that

( ), let and assume that . We show that
which, since , only requires showing that . implies
that every neighborhood of is not contained in ; therefore, every
neighborhood of intersects , implying that . So .
Thus if and then and it follows that ( ).
Thus = ( ).
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3.5 Separation

Proposition 3.3

Proof:

Proposition 3.4

Proof:

3.6 Topological Equivalence
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The concepts of separation and connectedness are crucial for establishing the
forthcoming topological spatial relations between sets. Let . A

of is a pair , of subsets of satisfying the following three
conditions:

= and = ;

= ; and

= and = .

If there exists a separation of then is said to be , otherwise
is said to be . If is the union of two non-empty disjoint open

subsets of then it follows that is disconnected. If is connected and
then is connected. In particular, if is connected then is

connected; however, and need not be connected.

By assumption, is a subset of the union of and , i.e.,
. We will show that the intersection between and one of or

is empty, i.e., either = or = . Suppose not, i.e., assume
that both intersections are non-empty. Let = and = . Then

and are both non-empty and = . Since , , and
= (because , is a separation of ), it follows that = .

Similarly, = ; therefore, and form a separation of ,
contradicting the assumption that is connected. So either = or

= , implying that either or .
A subset of is said to if is disconnected. The
following separation result gives simple conditions under which the
boundary of a subset of separates .

= =

By assumption, and are non-empty. Clearly, they are
disjoint open sets. Proposition 3.2 implies that = ( ). It
follows that and form a separation of .

The study of topological equivalence is central to the theory of topology.
Two topological spaces are if there is a bijective
function between them that yields a bijective correspondence between the
open sets in the respective topologies. Such a function, which is continuous
with a continuous inverse, is called a . Examples of
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4. A Framework for the Description of Topological Spatial
Relations

Definition 4.1

4.1 Topological Spatial Relations from Empty/Non-Empty
Set-Intersections
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f B Y
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topological invariants

Let , be a pair of subsets of a topological space . A
topological spatial relation between and is described by a four-tuple of
values of topological invariants associated respectively to each of the four
sets , , , and .

boundary-boundary interior-interior
boundary-interior

interior-boundary

empty
non-empty

empty non-empty
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homeomorphisms are the Euclidean notions of translation, rotation, scale,
and skew. Properties of topological spaces that are preserved under
homeomorphism are called of the spaces. For
example, the property of connectedness is a topological invariant.

Our model describing the topological spatial relations between two subsets,
and , of a topological space is based on a consideration of the four

intersections of the boundaries and interiors of the two sets and , i.e.,
, , , and .

A topological spatial relation between two sets is preserved under
homeomorphism of the underlying space . Specifically, if : is a
homeomorphism and , then , , , and

are mapped homeomorphically onto ( ) ( ),
( ) ( ) , ( ) ( ) , and ( ) ( ), respectively. Since the

topological spatial relation is defined in terms of topological invariants of
these intersections, it follows that the topological spatial relation between
and in is identical to the topological spatial relation between ( ) and

( ) in .
We denote a topological spatial relation by a four-tuple ( ). The entries
correspond in order to the values of topological invariants associated to the
four set-intersections. We will call the first intersection the

intersection, the second intersection the
intersection, the third intersection the intersection, and the
fourth intersection the intersection.

As the entries in the four-tuple, we consider properties of sets that are
invariant under homeomorphisms. For example, the properties and

are set-theoretic, and therefore topologically, invariant. Other
invariants, not considered in this paper, are the dimension of a set and the
number of connected components (Munkres, 1966). Empty/non-empty is the
simplest and most general invariant so that any other invariant may be
considered a more restrictive classifier.
For the remainder of this paper, we restrict our attention to the binary
topological spatial relations defined by assigning the appropriate value of

( ) and ( ) to the entries in the four-tuple. The sixteen
possibilities from these combinations are summarized in table 1.
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r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Table 1: The sixteen specifications of binary topological relations based upon
the criteria of empty and non-empty intersections of boundaries and interiors.

A set is either empty or non-empty; therefore, it is clear that these sixteen
topological spatial relations provide complete coverage, that is, given any
pair of sets and in , there is always a topological spatial relation
associated with and . Furthermore, a set cannot simultaneously be
empty and non-empty, from which follows that the sixteen topological
spatial relations are mutually exclusive, i.e., for any pair of sets and in

, exactly one of the sixteen topological spatial relations holds true.
In general, each of the sixteen spatial relations can occur between two sets.
Depending on various restrictions on the sets and the underlying topological
space, the actual set of existing topological spatial relations may be a subset
of the sixteen in table 1. For general point-sets in the plane IR , all sixteen
topological spatial relations can be realized (figure 1).

The setting, i.e., the topological space in which and lie, plays an
important role in the spatial relation between and . For example, in
figure 2a the two sets and have the relation ( ) as subsets of
the line. The same configuration shows a different relation between the two
sets when they are embedded in the plane (figure 2b). As subsets of the
plane, the boundaries of and are equal to and , respectively, and the
interiors are empty, i.e., = , = , = , and = . It follows
that in the plane the spatial relation between the two sets and is
( ).



2

�

�

�

�

�

� � �

� � � � � � �

� � �

6 ;

6 ; 6
�

� ;
6 ;

\ 6 ;
\ 6 ; [
[ [ [

\ ; \ ;

0 1 3 6 7 10 11 14 15

2 4 5 8

9 12 13

4 5 8 9 12 13

5. Topological Relations between Spatial Regions
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Definition 5.1

Proposition 5.2

Proof:

5.1 Existence of Region Relations

Proposition 5.3

Proof:

spatial regions

Let be a connected topological space. A in
is a non-empty proper subset of satisfying (1) is connected and

(2) .

If is a spatial region in then .

For two spatial regions the spatial relations r , r , r , r ,
r , r , and r cannot occur.

10 M.J. Egenhofer and R.D. Franzosa

It is our aim to model topological spatial relations that occur between
polygonal areas in the plane; therefore, we restrict the topological space
and the sets under consideration in . Our restrictions are not too specific
and the only assumption that we make about the topological space is that
it is connected. This guarantees that the boundary of each set of interest is
not empty.
The sets of interest are the , defined as follows:

spatial region

=

It follows from the definition that the interior of each spatial region is
non-empty. Furthermore, a spatial region is closed and connected since it is
the closure of a connected set.
The following proposition implies that the boundary of each spatial region is
non-empty.

=

= . = since is closed, and = by definition of a
spatial region. From proposition 3.4 it follows that and form a
separation of . If = then the two sets would form a separation
of , which is impossible since is connected; therefore, = .

The framework for the spatial relations between point-sets carries over to
spatial regions, however, not all of the sixteen relations between arbitrary
point-sets exist between two spatial regions. From the examples in figure 1
we conclude that at least the relations r , r , r , r , r , r , r , r , and r
exist between two spatial regions. The following proposition shows that
these nine topological spatial relations are the only ones that can occur
between spatial regions.

We begin by proving that if the boundary-interior or
interior-boundary intersection is non-empty then the interior-interior
intersection between the same two regions is non-empty as well. This
implies that the six topological spatial relations r , r , r , r , r , and r , all
with empty interior-interior and non-empty boundary-interior or
interior-boundary intersections, cannot occur.
Let and be spatial regions for which = . We show that

= . Using proposition 3.2, we have = and
( ) = . = = , so = ( ). Furthermore, by

proposition 3.1, ( ) = and = . It follows that
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5.2 Semantics of Region Relations

Definition 5.4
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The descriptive terms for the nine topological spatial
relations between two regions are given in table 2.
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( ) = . Now let , then ( ), and since is open
and contains , it follows that = . Thus if the boundary-interior
intersection is non-empty then the interior-interior intersection is non-empty
as well. It also follows that if the interior-boundary intersection is
non-empty then the interior-interior intersection is also non-empty.
Next we prove that if the boundary-boundary intersection is empty and the
interior-interior intersection is not empty then either the boundary-interior or
the interior-boundary intersection is not empty. This implies that the spatial
relation r , with a non-empty interior-interior intersection and empty
intersections for boundary-boundary, boundary-interior, and
interior-boundary, cannot occur. This will complete the proof of the
proposition.
Let and be spatial regions such that = and = . We
will show that if = then = . Assume that = .
Since = it follows that = and, therefore, .
Proposition 3.4 implies that and form a separation of ,
and since is connected, proposition 3.3 implies that either or

. Since, by assumption, = it follows that
and, therefore, . Clearly, = and the result follows.

In figure 1, examples were depicted for the topological spatial relations r ,
r , r , r , r , r , r , r , and r between spatial regions. We consider each of
these nine relations in the definitions below and will investigate their
semantics using the same notation as in (Egenhofer, 1989) and (Egenhofer
and Herring, 1990).

r ( , , , ) A and B are disjoint
r ( , , , ) A and B touch
r ( , , , ) A equals B
r ( , , , ) A is inside of B or B contains A
r ( , , , ) A is covered by B or B covers A
r ( , , , ) A contains B or B is inside of A
r ( , , , ) A covers B or B is covered by A
r ( , , , ) A and B overlap with disjoint boundaries
r ( , , , ) A and B overlap with intersecting boundaries

Table 2: The terminology used for the nine relations between two spatial re-
gions.
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Proof:

Corollary 5.6

Proof:

Corollary 5.7

Proof:
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X
X

X

n

disjoint

Let and be spatial regions in . If and
then and .

is covered by

equal

Let and be spatial regions. If the spatial relation
between and is r then .

inside
contains

Let and be spatial regions. If the spatial relation
between and is r then .

bounded
unbounded
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If the topological spatial relation between and is r then, in the
set-theoretic sense, and are disjoint and, therefore, the topological
spatial relation coincides with the set-theoretic notion of disjoint.
The following proposition and corollaries justify the other descriptive terms
for the topological spatial relations defined in table 2.

=
=

is connected. Proposition 3.4 implies that and form a
separation of . Since = it follows by proposition 3.1 that

( ). Proposition 3.3 implies that either or
( ). But = ; therefore, . Since it

follows that which, by definition 5.1, implies that .
From proposition 5.5 follows that if is covered by then ;
therefore, the spatial relation coincides with the set-theoretic
notion of being a subset of.
The following corollary to proposition 5.5 shows that the spatial relation

corresponds to the set-theoretic notion of equality.

=

= and = ; therefore, proposition 5.5 implies
that . Furthermore, = . Again by proposition 5.5, .
Thus = .
The following corollary to proposition 5.5 shows that if is inside of
then ; therefore, the spatial relation coincides with the
topological notion of being contained in the interior. Conversely,
corresponds to contains in the interior.

Proposition 5.5 implies that and . By
proposition 3.2, = and = . So . Since

= it follows that . Together with this implies
that .

It is natural to ask “What further restrictions on the topological space and
the sets under consideration in further reduces the topological spatial
relations that can occur?” This section will explore this question by
considering the case where is a Euclidean space.
IR denotes -dimensional Euclidean space with the usual Euclidean metric.
A subset of IR is if there is an upper bound to the distances
between pairs of points in the set; otherwise, it is said to be .
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unit disk

unit sphere

n-disk

n-sphere

overlap with disjoint boundary

Let be an -disk in IR with . Then is an -sphere
in IR and, therefore, connected.

Let be an -disk in IR with . Then IR is connected
and unbounded.

The topological spatial relation r ,
, does not occur between -disks in IR with .

overlap with disjoint boundary
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The in IR is the set of points in IR whose distance from the origin
is less than or equal to 1.
The in IR is the set of points in IR whose distance from the
origin is equal to 1. For 1 the unit disk in IR is connected. For 2
the unit sphere in IR is connected. Let be a topological space. An
in is a subspace of that is homeomorphic to the unit disk in IR . An

in is a subspace of that is homeomorphic to the unit sphere in
IR . -disks in IR are bounded and are spatial regions; the latter is a
relatively straightforward consequence of the Brower theorem on the
invariance of domain (Spanier, 1966). Since -disks in IR are spatial
regions, proposition 5.3 restricts the number of spatial relations that can
occur between them.
In proposition 6.1 we show that if and are -disks in IR with 2
then the spatial relation cannot occur. The
proof of this proposition is based on the following two facts:

2 ( 1)

This fact, also, is a consequence of the Brower theorem on the invariance of
domain (Spanier, 1966).

2

This second fact is a (non-)separation theorem related to the Jordan-Brower
separation theorem (Spanier, 1966).

overlap with disjoint
boundaries 2

Let and be -disks in IR with 2. We show that if
= then and do not overlap and, therefore, the spatial relation

cannot occur.
Assume = and and overlap. We will derive a contradiction.

is a spatial region; therefore, proposition 3.4 implies that and IR
form a separation of IR . Since = it follows that

IR . By fact 1, is connected, therefore, proposition 3.3
implies that either or (IR ). Since and overlap, it
follows that = and, therefore, .

implies that (IR ) = . By fact 2, IR is
connected. Using propositions 3.3 and 3.4 and arguing as above, it follows
that either (IR ) or (IR ) (IR ). The first case
yields a contradiction, because, by fact 2, IR is unbounded, but is
not. The second case implies that and, therefore, =
which contradicts the assumption that and overlap. So, in either case
we get a contradiction and it follows that the spatial relation r cannot occur
between -disks in IR with 2.
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Proposition 6.2

Proof:

n
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a; b a; b R

a; ; a a

A B A B
@A @B A B

A a; B ; b @A a @B b
a < b @A @B

overlap with
intersecting boundaries

overlap with intersecting boundaries

The topological spatial relation r does not occur between
spatial regions in IR .
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Note that for 2 the topological spatial relation r ,
, does occur between two -disks (figure 1).

The opposite situation occurs in IR where r can occur between 1-disks,
while r , , cannot. It is clear that r
can occur between two 1-disks in IR (figure 2). Proposition 6.2 shows that
r cannot occur. Its proof requires the easily-derived fact that a spatial
region in IR is either a closed interval [ ] for some , or a closed
ray [ ) or ( ] for some IR .

Let and be spatial regions in IR and assume that and
overlap. We show that = . Each of and is a closed interval or
a closed ray; therefore, we have nine different cases to examine. We select
one, the others can be proven accordingly.
Assume = [ ) and = ( ]. Then = and = . Since
A and B overlap, it follows that which implies that = .

A framework for the definition of topological spatial relations has been
presented. It is based upon purely topological properties and thus
independent of the existence of a distance function. The topological
relations are described by the four intersections of the boundaries and
interiors of two point-sets. Considering the binary values empty and
non-empty for these intersections a set of sixteen mutually exclusive
specifications has been identified. Fewer relations exist if particular
restrictions on the point-sets and the topological space are made. We proved
that there are only nine topological spatial relations between point-sets
which are homeomorphic to polygonal areas in the plane.
Though the nature of the present work is rather theoretical, the framework
has immediate impact on the design and implementation of geographic
information systems. Previously, for every topological spatial relation a
separate procedure had to be programmed and no mechanism existed to
assure completeness. Now, topological spatial relations can be derived from
a single, consistent model and no programming for individual relations will
be necessary. Prototype implementations of this framework have been
designed and partially implemented (Egenhofer, 1989) and various
extensions to the framework have been investigated to provide more details
about topological spatial relations such as the consideration of the
dimensions of the intersections and of the number of disconnected subsets in
the intersections (Egenhofer and Herring, 1990). Ongoing investigations
focus on the application of this framework for formal reasoning about
combinations of topological spatial relationships.
The framework presented is considered a start and further investigations are
necessary to verify its suitability. Here, only topological spatial relations
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Figure 1. Examples of the 16 binary topological spatial relations based on the comparion of
                empty and non-empty set-intersections between boundaries and interiors.

A B A B

Figure 2. The same configuration of the two sets A and B with (a) the topological spatial relation
                (¯, Â¯, Â¯, Â¯) when embedded in a line and (b) (Â¯, ¯, ¯, ¯) in a plane. 

(A) (B) (C) (D)

Figure 3. Sets in teh plane that are not spatial regions.


