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Abstract

The 4-intersection, a model for the representation of topological relations between 2-dimensional
objects with connected boundaries and connected interiors, is extended to cover topological
relations between 2-dimensional objects with arbitrary holes, called regions with holes. Each
region with holes is represented by its generalized region—the union of the object and its holes—
and the closure of each hole. The topological relation between two regions with holes, A  and B, is
described by the set of all individual topological relations between (1) A ’s generalized region and
B’s generalized region, (2) A ’s generalized region and each of B’s holes, (3) B’s generalized
region with each of A ’s holes, and (4) each of A ’s holes with each of B’s holes. As a side
product, the same formalism applies to the description of topological relations between 1-spheres.
An algorithm is developed that minimizes the number of individual topological relations necessary
to describe a configuration completely. This model of representing complex topological relations is
suitable for a multi-level treatment of topological relations, at the least detailed level of which the
relation between the generalized regions prevails. It is shown how this model applies to the
assessment of consistency in multiple representations when, at a coarser level of less detail,
regions are generalized by dropping holes.

1 . Introduction

The concepts and notions of topological relations have been discussed in the GIS literature for a
number of years. There are now several different models available that deal with spatial relations
among such simple objects as homogeneously 2-dimensional, connected areas (Egenhofer and
Franzosa 1991; Herring 1991; Randell et al. 1992; Clementini et al. 1993) and lines with exactly
two endpoints (Egenhofer, in press). Numerous prototypes and implementations in commercial
systems have been reported (Herring 1991; de Hoop and van Oosterom 1992; Keighan 1993).
While these models of topological relations have become very popular, they are based on a
simplified spatial data model. In general the objects treated are simple since they have such
constraints as “there must be a single connected boundary for each areal object,” “each object must
be connected,” and “each line must have exactly 2 endpoints.” In order to become operational
within a GIS environment, it is necessary that the existing theories cover the kinds of geometric
objects that are necessary for geographic applications, not just a simplified subset thereof.

GISs deal with a model of reality and describe such geographic objects and spatial relations as,
“San Marino is surrounded by Italy,” “Italy is a neighbor of Switzerland,” and “Greece is a part of
the European Community.” The geometry of these objects is frequently irregular since it has
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“exceptions” of a more simplistic treatment of geometry such as holes and separations. Such
constraints have been treated extensively at the level of representing spatial objects (Frank and
Kuhn 1986; Herring 1987; Egenhofer et al. 1989; Güting and Schneider 1993), but have been
often excluded in the treatment of spatial relations. Some investigations of the relations between
more complexly structured geographic objects exist such as topological relations with lines that
have more than two endpoints (Egenhofer and Herring 1991), and topological relations that
consider a generalization of the shape of an areal object to its convex hull (Cui et al. 1993). Work
that comes closest to these investigations describes some topological relations between regions
with holes (Egenhofer and Franzosa 1991) and develops a hierarchical model for areal objects with
holes (Worboys and Bofakos 1993).

This paper contributes to the treatment of spatial relations among complexly structured spatial
objects. Its scope is the formalization of topological relations between 2-dimensional objects that
may contain holes. While the objects of concern may have disconnected boundaries and
disconnected exteriors, their closures must be generally connected. Objects with disconnected
closures would form separations, which are excluded from these investigations. We base our work
on previous results of the formalization of topological relations between regions (homogeneously
2-dimensional objects with connected boundaries and connected interiors) (Egenhofer and
Franzosa 1991) and the assessment of topological consistency of a scene description (Egenhofer
and Sharma 1993).

These investigations are part of a larger research effort, the assessment of consistency in multiple
representations. Multiple representations encompass changes in the geometric and topological
structure of a digital object that may occur with the changing resolution at which that object is
encoded for computer storage, analysis, and depiction (Buttenfield 1989). The process that derives
the more general representation from a more detailed one is frequently called generalization
(Bruegger and Frank 1989; Buttenfield and McMaster 1991). Current GISs are based on single-
representation models, however, there are many GIS applications that have to deal with multi-
resolution data. For example, vehicle navigation systems require significantly different
representations of the same data for planning a trip, giving instruction, and driving (Timpf et al.
1992). A major impediment in the transition to more powerful multiple-representation GISs is the
lack of methods to maintain consistently the multiple representations of geographic objects. We are
particularly concerned with the consistent modeling of spatial relations among several objects
where each object is represented at multiple levels of details.

Within this setting of multiple representations, an important aspect is the strategy to generalize
complexly structured spatial objects by dropping their holes. When dropping one or several holes
of an object, it is important that the object’s topological relations with respect to all other objects be
maintained. Any such inconsistency may cause serious problems when queries get processed
against one or the other representation. The results of this paper provide a means to assess whether
or not such a generalization maintains the major topological properties among the objects involved.

The remainder of this paper is structured as follows: Section 2 gives a brief summary of the model
of topological relations between regions and demonstrates why it is insufficient as a model for
topological relations between regions with holes. Section 3 defines the concept of a region with
holes that must be fully surrounded by some interior, and introduces a model for the topological
relations between such objects. Section 4 shows how the topological relations among such regions
with embedded holes can be expressed by the description of a scene of topological relations among
multiple regions, and section 5 derives the smallest amount of information that is necessary to
describe completely the topological relations between two regions with embedded holes. Section 6
relaxes the definition of a region with holes to include holes along the region’s boundary and holes
that touch each other. Section 7 analyzes how this model applies to the assessment of topological
consistency among multiple representations. The conclusions in Section 8 summarize the major
results.
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2 . Topological relations

Topological relations are spatial relations that are preserved under such transformations as rotation,
scaling, and rubber sheeting. The model for binary topological relations used in this paper is based
on the usual concepts of point-set topology with open and closed sets (Alexandroff 1961). A
region is a homogeneously 2-dimensional point set embedded in IR2  with a connected interior,
denoted by A° , a connected boundary, denoted by ∂A, and a single connected exterior, denoted by
A− . The definition of binary topological relations between two such regions, A  and B, is based on
the four intersections of A ’s boundary and interior with the boundary and interior of B (Franzosa
and Egenhofer 1992). A 2×2 matrix, called the 4-intersection, concisely represents these criteria
(Equation 1).

∂A∩ ∂B ∂A ∩ B°
A°∩∂B A°∩ B°

 
 
 

 
 
 (1)

By considering the values empty (ø) and non-empty (¬ ø), one can distinguish between sixteen
binary topological relations, eight of which can be realized for two regions with connected
boundaries if the objects are embedded in IR2  (Egenhofer and Herring 1990). They are called
disjoint, meet, equal, inside, contains, covers, coveredBy, and overlap (figure 1). This set
provides a complete coverage and is mutually exclusive so that exactly one of these topological
relations holds true between any two regions (Egenhofer and Franzosa 1991). For each topological
relation ri  there exists a converse relation r j  such that   ri (A, B) = ( 
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Figure 1: The eight topological relations between two regions with connected boundaries for
the 4-intersection.
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Subsequently, the disjunction of all eight topological relations will be referred to as the universal
relation, denoted by U . The composition of topological relations forms the basis for an algebra to
reason about topological relations (Egenhofer 1991; Smith and Park 1992). For example, if region
A  meets region B, and B contains region C , then A  and C  must be disjoint. The composition of
two relations ri  and r j  will be denoted by ri ; r j , e.g.,

meet ; contains = disjoint (2)

The 4-intersection is used extensively, e.g., for studies that describe spatial relations between other
kinds of objects such as lines and volumes (Egenhofer and Herring 1991; Herring 1991; Pigot
1991; Hadzilacos and Tryfona 1992; Hazelton et al. 1992; Randell et al. 1992; Clementini et al.
1993), in spatial query languages (Svensson and Zhexue 1991; de Hoop and van Oosterom 1992),
to deduce spatial information (Smith and Park 1992; Abdelmoty et al. 1993), to assess topological
consistency (Egenhofer and Sharma 1992), and as a basis for cognitive-linguistic studies (Mark
and Egenhofer 1992). While the 4-intersection treats sufficiently the topological relations between
two regions, it provides only a very limited service to distinguish between topological relations
with objects that have holes. For example, figure 2 shows three configurations of topological
relations between 2-dimensional objects with holes, all of which have the same 4-intersection, but
have topologically distinct relations. Even by considering the intersections with the exteriors
(Egenhofer and Herring 1991) one cannot distinguish between the three configurations.

A A
A

B
B

B

(a) (b) (c)

Figure 2: Three topologically distinct relations between 2-dimensional objects with holes, all

of which have the 4-intersection 
∂B B°

∂A
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¬∅ ¬∅
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 .

3 . Definition of regions with embedded holes

Unlike a region without holes, the exterior of a region with holes may be separated. Separations of
the exterior imply that there exists one outer exterior (unbounded set) and n>0 inner exteriors
(bounded sets). The outer exterior will be denoted by A0

−  and the inner exteriors by A1
−…An

− . Their
union makes up the entire exterior, i.e.,

  
A− = Ai

−

i=0

n

U (3)
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Definition 1: A region with embedded holes, denoted by A , is a non-empty subset of IR2

with a connected interior such that the closure of any two different exteriors are
disjoint (Equation 4) and A  is equal to the closure of A ’s interior (Equation 5).

 ∀i, j = 0…n,i ≠ j: Ai
− ∩ Aj

− = ∅   (4)

A = A°  (5)

This definition includes regions with holes that are completely surrounded by the interior of the
region (figure 3a); however, it excludes spikes and separations of the interior (figure 3b).
Likewise, it excludes holes that touch the boundary or another hole (figure 3c).

(a) (b) (c)

Figure 3: A possible (a) and two impossible (b and c) regions with embedded holes.

Definition 2: A hole of A , denoted by H A , corresponds to the closure of an inner exterior,

i.e., Hi
A = Ai

−   for   i > 0 .

A hole is a connected set that is strictly contained in A  and each hole Hi
A  is disjoint from all other

holes H j
A  in A  with i ≠ j .

Definition 3: Considering n holes H1
A … Hn

A  in A , the generalized region A*  is defined as the
union of A  and all holes contained in A , i.e., 

  

A* = A ∪ Hi
A

i=1

n

U
 

 
 
 

 

 
 
  (6)

This implies for a region without holes that A* = A .

The concept of a hole as the closure of an inner exterior allows us to map any region with
embedded holes A  into a group of simple regions A* , H1

A , …, Hn
A , each without any holes. By

considering the holes as separate objects, the modeling of topological relations between regions
with embedded holes can be expressed in terms of topological relations between simple regions.
Therefore, the problem of modeling region-with-hole relations corresponds to modeling the
relations in a scene of regions (Egenhofer and Sharma 1993). The topology of a scene of n  objects
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is fully specified by n2  topological relations. They can be concisely represented by a n × n  matrix
M , called the relation matrix.

Let A  and B be two regions with m and n holes, respectively. The objects of the scene description
for these two regions with embedded holes consists of the set S = {A* , H1

A ,…, Hm
A , B* , H1

B ,…, Hn
B}  with

(1) the generalized region of A , (2) the generalized region of B, (3) each hole in A , denoted by
H1

A ,…, Hm
A , and (4) each hole in B, H1

B ,…, Hn
B . Since the scene description is made up of

(m + n + 2)  simple regions, the total number µ  of topological relations that can be specified between
the objects and their holes is:

 µ = (m + n + 2)2 (7)

Figure 4 shows an example configuration of two regions with one and three holes, respectively
and table 1 gives the corresponding relation matrix M, which denotes all binary topological
relations among the (m + n + 2)  objects.

A

B

H1
A

H2
A

H3
A

H1
B

Figure 4: Example of the topological relation between two objects with embedded holes, A

with holes H1
A , H2

A , and H3
A ; and B with H1

B .
In this notation, an individual relation will be referred to as M [a, b], e.g., M [ H1

A , A* ] = inside.

A* H1
A H2

A H3
A B* H1

B

A* equal contains contains contains covers contains

H1
A inside equal disjoint disjoint disjoint disjoint

H2
A inside disjoint equal disjoint meet disjoint

H3
A inside disjoint disjoint equal overlap overlap

B* coveredBy disjoint meet overlap equal contains

H1
B inside disjoint disjoint overlap inside equal

Table 1: The relation matrix for the scene in figure 4.
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4 . Eliminating redundant relations

As for any scene representation, the entire set of (m + n + 2)2  topological relations is redundant
(Egenhofer and Sharma 1993). The relations that can be immediately eliminated are those that are
enforced by the node consistency and the arc consistency (Mackworth 1977).

• The relation between each object and itself must be equal (node consistency).
• The relation between A  and B must be equal to the converse relation between B and A  (arc

consistency).

These two constraints reduce the number of relations required to fully describe the scene to ′ µ 
(Equation 8).

′ µ =
(m + n + 2)2 − (m + n + 2)

2
(8)

Furthermore, there are certain constraints about the topological relations that must hold between
each generalized region and its holes, and among the holes of the same region.

• The topological relation between the generalized region and each of its holes must be
always contains.

• The topological relation between any pair of holes that belong to the same object must be
disjoint.

Therefore, the number of relations can be further reduced to ′ ′ µ  (Equation 9).

′ ′ µ = mn + m + n + 1 (9)

This leaves only those relations between A*  and B*; A*  and B’s holes; A ’s holes and B*; and A ’s
holes and B’s holes. It applies to any configuration independent of the particular values the
topological relations may have. For example, in order to describe the topological relation between
the region A  with three holes and region B with one hole (figure 4), it is sufficient to specify eight
topological relations. Table 2 shows the reduced relation matrix for this scene, in which all implied
relations have been left out.

A* H1
A H2

A H3
A B* H1

B

A* covers contains

H1
A disjoint disjoint

H2
A meet disjoint

H3
A overlap overlap

B*

H1
B

Table 2: The reduced relation matrix for the scene in figure 4.

Subsequently, only the part with the necessary relations will be displayed, called the explicit
relations among the generalized regions and their holes. From the notation like H1

A  and H2
A  one can

infer the remaining relations—the implicit relations among the generalized regions and their
holes—as follows:
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• H1
A  inside A* ,

• H2
A  inside A* , and

• H1
A  disjoint H2

A .

5 . Minimizing the number of necessary relations

In the most general case, the explicit relations represent the smallest set of relations that are
necessary to describe a binary topological relation between regions with embedded holes; however,
depending on the configuration and the particular values of the relations, some of the remaining
topological relations may be inferred as well. For example, for the configuration in figure 4, the
fact that hole H1

A  is disjoint from B*  implies that hole H1
A  must be also disjoint from hole H1

B .

Egenhofer and Sharma (1993) presented an algorithm to determine whether an incompletely
observed scene description of topological relations can be completed by representing the set of all
topological relations as a network. It iterates over the relation matrix M  and applies the path-
consistency constraint—the intersection of all possible compositions of path-length 2—until no
additional inferences can be made. The completeness of a scene is finally evaluated by testing
whether each inferred relation is unique, i.e., its cardinality (# ) is equal to 1 (Algorithm 1).

Algorithm 1: sceneIsComplete ( M : relationMatrix): boolean
′ M := M

REPEAT M:= ′ M 

  
∀ ij: ′ M [i, j]:= ( M[i, k] ; M[k, j ])

k =0

n

I
UNTIL M = ′ M 
sceneIsComplete := ∀ ij: # ( ′ M [i, j ]) = 1

end sceneIsComplete

Here, the reverse process will be applied, reducing the set of relations to its smallest number so
that the entire scene description can still be inferred from the combination of the remaining
topological relations. Such a set will be referred to as a smallest set of base relations that describe
the topological relation between two regions with embedded holes. Due to the properties of the
composition table of topological relations (Egenhofer 1991), a scene description has a single
minimal set if and only if the elements in M ’s diagonal are equal. To find such a set , we start with
the set of the implicit and explicit relations (the relation matrix M ), which is assumed to be node-
and arc-consistent. The following iterative algorithm reduces the set of relations and finds a
smallest set of relations, from which all remaining topological relations between two regions with
embedded holes can be inferred (Algorithm 2). Since the goal is to reduce the number of explicit
relations, the minimization iterates only over these relations. Iteratively, each explicit relation and
its converse are set to “unknown” (i.e., the universal relation U ) and it is tested whether this
reduced set of relations would be sufficient to determine the scene completely. If so, then it is tried
to eliminate recursively additional relations. Otherwise, the value for the explicit relation is kept and
it is tried to eliminate the next. The processing stops when all explicit relations have been visited. A
smallest set of explicit relations is the set with the greatest number of unknown relations. It must
have been initialized with the completely observed relation matrix and gets updated whenever a
smaller set has been found.
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Algorithm 2: minimize ( M : relationMatrix, smallestSet: relationMatrix)
FOR i:= A*  TO Hm

A  DO
FOR j:= B*  TO Hn

B  DO
IF M[i, j ] ≠  U  THEN

′ M := M
′ M [i, j ]: = U
′ M [ j ,i ]: = U

IF sceneIsComplete ( ′ M ) THEN
IF # ( M) < # (smallestSet) THEN smallestSet := ′ M 

minimize ( ′ M , smallestSet)
end minimize

The benefits from the additional reduction of necessary explicit relations vary and depending on the
particular configuration, either none or almost all explicit relations may be found to be redundant.
An example of a configuration in which no further reduction are possible is when all explicit
relations are overlap. On the other hand, there are configurations in which a smallest set of
necessary relations can be reduced to a single topological relation (independent of the number of
holes). For example, for the configuration in figure 5 it is sufficient to record a single topological
relation, the one between H1

A  and B* , because all other implicit and explicit relations between the
generalized regions and the holes can be inferred.

A

B

H1
A

H2
A

H1
B H2

B

Figure 5: A configuration for which it is sufficient to record explicitly the topological relation
between H1

A  and H1
B .

6 . Relaxing the constraints about holes

Initially, the constraints among the generalized region and its holes were defined such that each
hole had to be strictly contained in the region. Likewise, any pair of holes of the same region had
to be disjoint. In this section, these constraints will be relaxed, allowing the holes to be at the
region’s boundary or along the boundary of another hole. This relaxation requires a modification
of the definition for the region with embedded holes (Definition 1), while the definitions of the hole
(Definition 2) and generalized region (Definition 3) remain the same.

Definition 4: A region with holes, denoted by A , is a non-empty subset of IR2  with a
connected interior such that the union of the region and all holes is equal to the
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closure of the union of the region’s interior and all its inner exteriors (10), and
the interior of any hole is equal to the corresponding inner exterior (11).

 

  

A ∪ Hi
A

i=1

n

U
 

 
 
 

 

 
 
 = A°∪ Ai

−

i=1

n

U
 

 
 
 

 

 
 
  (10)

∀i = 1…n: Hi
A( )°

= Ai
− (11)

Equation 10 is weaker than equations 4 and 5 together, since it allows for holes like those shown
in figure 3c that were disallowed by definition 1. While Equation 10 excludes spikes in the
exterior, Equation 11 is necessary to exclude any spikes in the holes.

This extension influences the discussion about eliminating redundant relations (Section 4), since it
implies a change in the types of topological relations that may hold between a generalized region
and its holes, and among the holes of the same region:

• The topological relation between the generalized region and each of its holes is contains ∨
covers ∨  equal.

• The topological relation between any pair of holes that belong to the same object is disjoint
∨  meet.

Therefore, the reduced relation matrix has to consider also the topological relations above. For
example, in order to describe the topological relation between the region A  with three holes and
region B with one hole (figure 6), it is necessary to specify the upper triangular relation matrix
shown in table 3.

A

B

H2
A

H1
B

H3
A

H1
A

Figure 6: A configuration with holes along the boundary and holes that touch each other.
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A* H1
A H2

A H3
A B* H1

B

A* covers contains contains covers contains

H1
A disjoint disjoint disjoint disjoint

H2
A meet meet disjoint

H3
A overlap overlap

B* contains

H1
B

Table 3: The relation matrix for the configuration in figure 6.

As a side product, this formalization of regions with holes provides also a comprehensive solution
for the treatment of 1-spheres and their topological relations. A 1-sphere is the boundary of a 2-
disk (Spanier 1966). As such, it is a line with an empty boundary and an interior that coincides
with its closure. In the present model, a 1-sphere S  would be represented as follows: S°  maps onto
the boundary of a region A , which in turn coincides with a single hole H1

A  such that A°= ∅  and
∂A = A ; therefore, the closure of A ’s inner exterior is equal to A* . In the relation matrix, the value
between A*  and H1

A  is equal, and therefore, the topological relation between any other region and
A*  determines the topological relation with H1

A . Figure 7 depicts two topologically distinct
relations between two pairs of spheres, and Table 4 shows their respective relation matrices.

A

H1
A

B

H1
B

B

H1
B

A

H1
A

(a) (b)

Figure 7: Two topological relations between two spheres.
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A* H1
A B* H1

B

A* equal contains contains

H1
A contains contains

B* equal
H2

A

(a)

A* H1
A B* H1

B

A* equal disjoint disjoint

H1
A disjoint disjoint

B* equal
H2

A

(b)

Table 4:    The relation matrices for the configuration between the spheres displayed in figure 7.

7 . Application to multiple representations

This extension of modeling topological relations is important for the consistent treatment of
relations among objects that are represented at multiple levels of detail. A common strategy used in
multiple representations is that holes are dropped when progressively moving through more
general levels of detail. As such, a change in the number of holes through consecutive multiple
representation levels must be monotonically decreasing and at the most generalized level of detail,
regions are represented without any holes.

Figure 8 shows the sequences of all possible generalization steps that eliminate holes, starting at
the most detailed level with regions A  with two holes and B  with one hole, and finishing at the
least detailed level where both regions have no holes.



      International Journal of Geographical Information Systems 8 (2): 129-144, 1994.

H
1

A
A

H
1

B B

H
2

A

A
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B B
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2
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A
A

H
1

B B

H
1
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A

B

H
2

A

A

H
1

B B

H
1

A A

B

A

B

H
2

A

A

B

(a)

(b)

(c)

(d)

Figure 8: An example of MR levels for two regions with holes.

Tables 5a-d show the relation matrices of the four consecutive multiple-representation levels that
follow the path emphasized in figure 8.
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B* H1
B

A* covers contains

H1
A disjoint disjoint

H2
A overlap disjoint

(a)

B* H1
B

A* covers contains

H2
A overlap disjoint

(b)

B*

A* covers

H2
A overlap

(c)

B*

A* covers

(d)

Table 5: The reduced relation matrices obtained from the stepwise elimination of holes H1
A ,

H1
B , and H2

A  (figure 8).

Dropping a hole from one level to the next does not affect the topological relations among the
remaining objects in the scene. The process of dropping a hole corresponds in the relation matrix to
deleting the corresponding row and column of that hole. The topological relation between the two
generalized regions A*  and B*  allows us to express immediately in the initial scene (1) the
dominant topological relation between regions A  and B  and (2) the topological relation that is
maintained through different multiple representation levels. Also the topological relations between
an object and the holes of the other object, and the topological relations between the holes of the
two objects are maintained by enforcing consistency.

8 . Conclusions

We presented an extension to 4-intersection to treat topological relations between objects with
holes. The model is based upon the eight basic topological relations between two regions that are
homeomorphic to 2-disks and applies them to the generalized region—the union of the region and
its holes—and each of the region’s holes. It covers topological relations (1) between two regions,
each with an arbitrary number of holes, (2) between two 1-spheres, and (3) between a 1-sphere
and a region (potentially with n  holes).
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With this model, it becomes possible to distinguish between the three different configurations in
figure 2, for which the 4-intersection per se did not make any differences. In all three cases B*

overlaps with A ’s holes, however, in figure 2a A*  covers B* , in figure 2b A*  contains B* , and in
figure 2c A*  and B*  overlap. Since the model uses only the topological relations that can be
distinguished by the content (emptiness or non-emptiness) of the intersections, more complex
topological relations may occur, which require additional topological invariants such as the
component types, their dimensions, relationships with respect to the complement, and sequences
(Egenhofer and Franzosa, 1993).

Although the objects’ definitions excluded any separations of the interior, the method applies also
to some cases of separations. The constraint for a region A  with separated interiors is that its
generalized region A*  must be connected. Such situations may occur when a hole, or the union of
several holes, splits the interior into two or more isolated interiors.
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