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Abstract

The field of Qualitative Spatial Reasoning is
now an active research area in its own right
within AI (and also in Geographical Informa-
tion Systems) having grown out of earlier work
in philosophical logic and more general Qual-
itative Reasoning in AI. In this paper (which
is a slightly updated version of [Cohn, 1997]) I
will survey the state of the art in Qualitative
Spatial Reasoning, covering representation and
reasoning issues as well as pointing to some ap-
plication areas.

1 What is Qualitative Reasoning?

The principal goal of Qualitative Reasoning (QR) [Weld
and De Kleer, 1990] is to represent not only our every-
day commonsense knowledge about the physical world,
but also the underlying abstractions used by engineers
and scientists when they create quantitative models. En-
dowed with such knowledge, and appropriate reasoning
methods, a computer could make predictions, diagnoses
and explain the behaviour of physical systems in a quali-
tative manner, even when a precise quantitative descrip-
tion is not available! or is computationally intractable.
The key to a qualitative representation is not simply that
it is symbolic, and utilises discrete quantity spaces, but
that the distinctions made in these discretisations are
relevant to the behaviour being modelled — i.e. distinc-
tions are only introduced if they are necessary to model
some particular aspect of the domain with respect to
the task in hand. Even very simple quantity spaces can
be very useful, e.g. the quantity space consisting just

'Note that although one use for qualitative reasoning is
that it allows inferences to be made in the absence of com-
plete knowledge, it does this not by probabilistic or fuzzy
techniques (which may rely on arbitrarily assigned probabil-
ities or membership values) but by refusing to differentiate
between quantities unless there is sufficient evidence to do so;
this is achieved essentially by collapsing ‘indistinguishable’
values into an equivalence class which becomes a qualitative
quantity. (The case where the indistinguishability relation is
not an equivalence relation has not been much considered,
except by [Kaufman, 1991; Hobbs, 1985].)

of {—,0,+}, representing the two semi-open intervals of
the real number line, and their dividing point, is widely
used in the literature, e.g. [Weld and De Kleer, 1990].
Given such a quantity space, one then wants to be able
to compute with it. There is normally a natural order-
ing (either partial or total) associated with a quantity
space, and one form of simple but effective inference is
to exploit the transitivity of the ordering relation. More
interestingly, one can also devise qualitative arithmetic
algebras [Weld and De Kleer, 1990]; for example one can
perform addition on the above qualitative quantity space
and add ‘4’ to ‘4’ to get ‘+’; however certain operations
will in general yield ambiguous results (e.g. adding ‘+’
and ‘=’ yields no information). This is a recurring fea-
ture of Qualitative Reasoning — not surprisingly, reduc-
ing the precision of the measuring scale decreases the
accuracy of the answer. Much research in the Qualita-
tive Reasoning literature is devoted to overcoming the
detrimental effects on the search space resulting from
this ambiguity, though there is not space here to delve
into this work. However one other aspect of the work in
traditional Qualitative Reasoning is worth noting here:
a standard assumption is made that change is continu-
ous; thus, for example, in the quantity space mentioned
above, a variable cannot transition from — to + without
first taking the value 0. We shall see this idea recurring
in the work on qualitative spatial reasoning described
below.

2 What is Qualitative Spatial
Reasoning?

QR has now become a mature subfield of AT as evidenced
by its 11th annual international workshop, several books
(e.g. [Weld and De Kleer, 1990] [Faltings and Struss,
1992],[Kuipers, 1994]) and a wealth of conference and
journal publications. Although the field has broadened
to become more than just Qualitative Physics (as it was
first known), the bulk of the work has dealt with rea-
soning about scalar quantities, whether they denote the
level of a liquid in a tank, the operating region of a tran-
sistor or the amount of unemployment in a model of an
economy.

Space, which is multidimensional and not adequately
represented by single scalar quantities, has only a re-



cently become a significant research area within the field
of QR, and, more generally, in the Knowledge Repre-
sentation community. In part, this may be due to the
Poverty Conjecture promulgated by Forbus, Nielsen and
Faltings [Weld and De Kleer, 1990]: “there is no purely
qualitative, general purpose kinematics”. Of course,
qualitative spatial reasoning (QSR) is more than just
kinematics, but it is instructive to recall their third (and
strongest) argument for the conjecture — “No total order:
quantity spaces don’t work in more than one dimension,
leaving little hope for concluding much about combining
weak information about spatial properties”. They cor-
rectly identify transitivity of values as a key feature of
a qualitative quantity space but doubt that this can be
exploited much in higher dimensions and conclude: “we
suspect the space of representations in higher dimen-
sions is sparse; that for spatial reasoning almost nothing
weaker than numbers will do”.

The challenge of QSR then is to provide calculi which
allow a machine to represent and reason with spatial en-
tities of higher dimension, without resorting to the tradi-
tional quantitative techniques prevalent in, for example,
the computer graphics or computer vision communities.

Happily, over the last few years there has been an in-
creasing amount of research which tends to refute, or at
least weaken the ‘poverty conjecture’. There is a sur-
prisingly rich diversity of qualitative spatial represen-
tations addressing many different aspects of space in-
cluding topology, orientation, shape, size and distance;
moreover, these can exploit transitivity as demonstrated
by the relatively sparse transitivity tables (cf the well
known table for Allen’s interval temporal logic [Weld
and De Kleer, 1990]) which have been built for these
representations (actually ‘composition tables’ is a better
name for these structures, as explained below).

In the remainder of this paper, first I will mention
some possible applications of QSR, then I will survey the
main aspects of the representation of qualitative spatial
knowledge including ontological aspects, topology, dis-
tance, orientation, shape and uncertainty. Then I will
move on to qualitative spatial reasoning including rea-
soning about spatial change. The paper concludes with
a discussion of theoretical results and a glimpse at future
work. This paper is a slightly revised version of [Cohn,
1997]. Although I have tried to cover the main areas of
QSR, this paper is certainly not a comprehensive survey
of the subject and there is much interesting work which
unfortunately I have not had space to describe here.

3 Possible applications of qualitative
spatial reasoning

Researchers in qualitative spatial reasoning are moti-
vated by a wide variety of possible application areas,
including: Geographical Information Systems (GIS),
robotic navigation, high level vision, the semantics of
spatial prepositions in natural languages, engineering de-
sign, commonsense reasoning about physical situations,
and specifying visual language syntax and semantics.

Below I will briefly discuss each of these areas, arguing
the need for some kind qualitative spatial representation.
Other application areas include document-type recogni-
tion [Fujihara and Mukerjee, 1991], the notion of a niche
(e.g. in biology) [Smith and Varzi, 1999] and domains
where space is used as a metaphor, e.g. [Lehmann and
Cohn, 1994], [Ralha, 1996].

GIS are now commonplace, but a major problem is
how to interact with these systems: typically, gigabytes
of information are stored, whether in vector or raster
format, but users often want to abstract away from this
mass of numerical data, and obtain a high level symbolic
description of the data or want to specify a query in a
way which is essentially, or at least largely, qualitative.
Arguably, the next generation of GIS will be built on
concepts arising from Naive Geography [Egenhofer and
Mark, 1995] which requires a theory of qualitative spatial
reasoning, for example in the provision of “spatial query
by sketch” [Egenhofer, 1997].

Although robotic navigation ultimately requires nu-
merically specified directions to the robot to move or
turn, this is not usually the best way to plan a route or
other spatially oriented task: the AI planning literature
[Tate et al., 1990] has long shown the effectiveness of hi-
erarchical planning with detailed decisions (e.g. about
how or exactly where to move) being delayed until a high
level plan has been achieved; moreover the robot’s model
of its environment may be imperfect (either because of
inaccurate sensors or because of lack of information),
leading to an inability to use more standard robot nav-
igation techniques. A qualitative model of space would
facilitate planning in such situations. One example of
this kind of work is [Kuipers and Levitt, 1988]; another,
solving the well known ‘piano mover’s problem’ is [Falt-
ings, 1995).

While computer vision has made great progress in re-
cent years in developing low level techniques to process
image data, there is now a movement back (e.g. [Fer-
nyhough et al., to appear]) to try to find more symbolic
techniques to take the results of these low level com-
putations and produce higher level descriptions of the
scene or video input; often (part of) what is required is
a description of the spatial relationship between the var-
ious objects or regions found in the scene; however the
predicates used to describe these relationships must be
sufficiently high level, or qualitative, in order to ensure
that scenes which are semantically close have identical
or at least very similar descriptions.

Perhaps one of the most obvious domains requiring
some kind of theory of qualitative spatial representa-
tion is the task of finding some formal way of de-
scribing the meaning of natural language spatial prepo-
sitions such as “inside”, “through”, “to the left of”
etc. This is a difficult task, not least because of the
multiple ways in which such prepositions can be used
(e.g. [Herskovits, 1986] cites many different meanings
of “in”); however at least having a formal language at
the right conceptual level enables these different mean-
ings to be properly distinguished. Examples of re-



search in this area include [Aurnague and Vieu, 1993;
Vieu, 1991].

Engineering design, like robotic navigation, ultimately
normally requires a fully metric description; however, at
the early stages of the design process, it is often better
to concentrate on the high level design, which can often
be expressed qualitatively. The field of qualitative kine-
matics (e.g. [Faltings, 1992]) is largely concerned with
supporting this kind of activity.

The fields of qualitative physics and naive physics
[Weld and De Kleer, 1990] have concerned themselves
with trying to represent and reason about a wide vari-
ety of physical situations, given only qualitative informa-
tion. Much of the motivation for this was given above
in the section on qualitative reasoning; however tradi-
tionally these fields, in particular qualitative physics,
have had a rather impoverished spatial capacity in their
representations, typically restricting information to that
which can be captured along a single dimension; adding
a richer theory of qualitative spatial reasoning to these
fields would increase the class of problems they could
tackle.

Finally, the study and design of visual languages, ei-
ther visual programming languages or some kind of rep-
resentation language, perhaps as part of a user inter-
face, has become rather fashionable; however, many of
these languages lack a formal specification of the kind
that is normally expected of a textual programming or
representation language. Although some of these vi-
sual languages make metric distinctions, often they are
predominantly qualitative in the sense that the exact
shape, size, length etc. of the various components of the
diagram or picture are unimportant — rather, what is
important is the topological relationship between these
components and thus a theory of qualitative spatial rep-
resentation may be applicable in specifying such lan-
guag]es [Gooday and Cohn, 1995; 1996b; Haarslev, 1995;
1996].

4 Aspects of qualitative spatial
representation

There are many different aspects to space and therefore
to its representation: not only do we have to decide on
what kinds of spatial entity we will admit (i.e. commit
to a particular ontology of space), but also we can con-
sider developing different kinds of ways of describing the
relationship between these kinds of spatial entity; for ex-
ample we may consider just their topology, or their sizes
or the distance between them, or their shape. Of course,
these notions are not entirely independent as we shall
see below.

4.1 Ontology

In developing a theory of space, one can either decide
that one will create a pure theory of space, or an ap-
plied one, situated in the intended domain of application;
the question is whether one considers aspects of the do-
main, such as rigidity of objects, which would prevent

certain spatial relationships, such as interpenetration,
from holding. In order to simplify matters in this pa-
per, we shall concentrate mainly on pure spatial theories
— one could very well argue that such a theory should
necessarily precede an applied one which would be ob-
tained by extending a purely spatial theory.

Traditionally, in mathematical theories of space,
points are considered as primary primitive spatial enti-
ties (or perhaps points and lines), and extended spatial
entities such as regions are defined, if necessary, as sets
of points. However, within the QSR community, there
has been a strong tendency to take regions of space as
the primitive spatial entity. There are several reasons for
this. If one is interested in using the spatial theory for
reasoning about physical objects, then one might argue
that the spatial extension of any actual physical object
must be region-like rather than a lower dimensional en-
tity. Similarly, most natural language (non mathemat-
ical) uses of the word “point” do not refer to a mathe-
matical point: consider sentences such as “the point of
pencil is blunt”. Moreover, it turns out that one can
define points, if required, from regions (e.g. [Biacino
and Gerla, 1991] following earlier work [Clarke, 1985;
Whitehead, 1929]). Another reason against taking
points as primitive is that many people find it counterin-
tuitive that extended regions can be composed entirely
of dimensionless points occupying no space! However, it
must be admitted that sometimes it is useful to make
an abstraction and view a 3D physical entity such as a
potholed road as a 2D or even 1D entity. Of course,
once entities of different dimensions are admitted, a fur-
ther question arises as to whether mixed dimension en-
tities are to be allowed. Further discussion of this issue
can be found in [Cohn et al., 1997b; Gotts et al., 1996;
Cohn et al., 1997a; Pratt and Lemon, 1997]

Another ontological question is what is the nature
of the embedding space, i.e. the universal spatial en-
tity? Conventionally, one might take this to be R™ for
some n, but one can imagine applications where discrete
(e.g. [Egenhofer and Sharma, 1993]), finite (e.g. [Gotts,
1996d], or non convex (e.g. non connected) universes
might be useful. For a recent investigation into discrete
vs continuous space, see [Masolo and Vieu, 1999].

Once one has decided on these ontological questions,
there are further issues: in particular, what primitive
“computations” will be allowed? In a logical theory, this
amounts to deciding what primitive non logical symbols
one will admit without definition, only being constrained
by some set of axioms. One could argue that this set of
primitives should be small, not only for mathematical
elegance and to make it perhaps easier to assess the con-
sistency of the theory, but also because this will simplify
the interface of the symbolic system to a perceptual com-
ponent resulting in fewer primitives to be implemented;
the converse argument might be that the resulting sym-
bolic inferences may be more complicated (and thus per-
haps slower) and for the kinds of reasons argued for in
[Hayes, 1979), i.e. that rather than just a few primitives
it is more natural to have a large and rich set of concepts



which are given meaning by many axioms which connect
them in many different ways.

One final ontological question we will mention here is
how to model the multi dimensionality of space? One
approach (which might appear superficially attractive)
is to attempt to model space by considering each dimen-
sion separately, projecting each region to each of the di-
mensions and reasoning along each dimension separately;
however, this is easily seen to be inadequate: e.g. two in-
dividuals may overlap when projected to both the z and
y axes individually, when in fact they do not overlap at
all.

4.2 Topology

Topology is perhaps the most fundamental aspect of
space and certainly one that has been studied extensively
within the mathematical literature. It is often described
informally as “rubber sheet geometry”, although this is
not quite accurate. However, it is clear that topology
must form a fundamental aspect of qualitative spatial
reasoning since topology certainly can only make qual-
itative distinctions; the question then arises: can one
not simply import a traditional mathematical topologi-
cal theory wholesale into a qualitative spatial representa-
tion? Although various qualitative spatial theories have
been influenced by mathematical topology, there are a
number of reasons why such a wholesale importation
seems undesirable in general [Gotts et al., 1996]; not
only does traditional topology deal with much more ab-
stract spaces that pertain in physical space or the space
to be found in the kinds of applications mentioned above,
but also we are interested in qualitative spatial reason-
ing not just representation, and this has been paid little
attention in mathematics and indeed since typical for-
mulations involve higher order logic, no reasonable com-
putational mechanism would seem to be immediately ob-
vious.

One exception to the disregard of earlier topologi-
cal theories by the QSR community, is the tradition of
work to be found in the philosophical logic literature,

.g. [Whitehead, 1978; de Laguna, 1922; Woodger, 1937;
Clarke, 1981; 1985; Biacino and Gerla, 1991]. This work
has built axiomatic theories of space which are predom-
inantly topological in nature, and which are based on
taking regions rather than points as primitive — indeed,
this tradition has been described as “pointless geome-
tries” [Gerla, 1995]. In particular the work of Clarke
[Clarke, 1981; 1985] has lead to the development of
the so called RCC systems [Randell and Cohn, 1989;
Randell et al., 1992c; 1992b; Randell and Cohn, 1992;
Cui et al., 1992; Cohn et al., 1994; Bennett, 1994; Gotts,
1994b; Cohn, 1995; Gotts et al., 1996; Cohn et al., 1997b;
1997a) and has also been developed further by [Vieu,
1991; Asher and Vieu, 1995).

Clarke took as his primitive notion the idea of two
regions ¢ and y being connected (sharing a point, if
one wants to think of regions as consisting of sets of

points): C(z,y). In the RCC system this interpretation?
is slightly changed to the closures of the regions sharing
a point® — this has the effect of collapsing the distinction
between a region, its closure and its interior, which it
is argued has no relevance for the kinds of domain with
which QSR is concerned (another reason for abandoning
traditional mathematical topology)?. This primitive is
surprisingly powerful: it is possible to define many pred-
icates and functions which capture interesting and useful
topological distinctions. The set of eight jointly exhaus-
tive and pairwise disjoint (JEPD) relations illustrated in
figure 1 are one particularly useful set (often known as
the RCC8 calculus) and indeed have been defined in an
entirely different way by [Egenhofer and Herring, 1994]

— see below.
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Figure 1: 2D illustrations of the relations of the RCC8
calculus and their continuous transitions (conceptual
neighbourhood).

The work of [Vieu, 1991; Asher and Vieu, 1995] men-
tioned above is also based on Clarke’s calculus. The
original interpretation of C(zx,y) is retained though the
general fusion operator is discarded, it is made first or-
der and several mistakes are corrected. An additional
predicate WC(z, y) is defined in order to try to model the
distinction between two bodies being ‘joined’ and merely
touching — consider the left and right halves of a table top
compared to the table top and a book resting on it: the
former case is modelled by EC(lefthalf,righthalf)’ whilst
the latter by WC(book,tabletop). WC(z,y) is true when
z is connected to the closure of the topological neighbour-
hood of y, i.e. the smallest open region the closure of y
is part of.

2A formal semantics for RCC has been given by [Gotts,
1996a; Dornheim, 1995; Stell and Worboys, 1997]. Further-
more, a canonical model for arbitrary ground Boolean wifs
over RCC8 atoms has been proposed by [Renz and Nebel,
1998] which is then utilised in a procedure to generate an
actual 2D or 3D interpretation.

3 Actually, given the disdain of the RCC theory as pre-
sented in [Randell et al., 1992c] for points, a better interpre-
tation, given some suitable distance metric, would be that
C(z,y) means that the distance between z and y is zero, c.f.
[Stell and Worboys, 1997].

“The variety of possible interpretations of the connection
relation and the presence or not of boundary elements in
the universe of discourse is explored in a paper setting out a
framework of possible Connection based theories [Cohn and
Varzi, 1998]; this framework is extended by considering two
further dimensions of variability in [Cohn and Varzi, 1999]

5And thus C(lefthalf,righthalf) holds too.
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Figure 2: It is possible to distinguish all these shapes using C(z,y) alone.

Expressiveness of C(z,y)
The predicate C(z,y) can be used to define many more
predicates than simply the RCC8 relations and WC(z, y).
For example one could define predicates which counted
the number of times two regions touched. In a se-
ries of papers, [Gotts, 1994a; 1994b; Gotts et al., 1996;
Gotts, 1996¢], Gotts sets himself the task of distinguish-
ing a ‘doughnut’ (a solid, one-piece region with a single
hole). It is shown how (given certain assumptions about
the universe of discourse and the kinds of regions inhab-
iting it) all the shapes depicted in Fig.2 can be distin-
guished. In so doing he defines many predicates in terms
of the C(z,y) primitive, for example the distinction be-
tween being a firm and non firm tangential part (TPP),
i.e. whether the tangential connection is point-like or
not® Fig.3 illustrates another range of topological dis-
tinctions between one-piece (CON) regions that can be
made (under certain assumptions) using C. A region, if it
is connected, may or may not also be interior-connected
(INCON), meaning that the interior of the region is all
one piece. It is relatively easy to express this property
(or its converse) in RCC terms. However, INCON(r) does
not rule out all regions with anomalous boundaries, and
in particular does not exclude the region at the right
of Fig.3, nor any of the final three cases illustrated in
Fig.2, which do have one-piece interiors, but which nev-
ertheless have boundaries which are not (respectively)
simple curves or surfaces, having ‘anomalies’ in the form
of points which do not have line-like (or disc-like) neigh-
bourhoods within the boundary (i.e. which are locally
Euclidean.)

It appears possible using C(z,y) to define [Gotts,
1994b] a predicate (WCON) that will rule out the INCON

5The notion of the firmness of the C(z,) relation in gen-
eral is explored in [Cohn and Varzi, 1999] — four different
strengths of connection are presented. This extends the
framework for connection relations first presented in [Cohn
and Varzi, 1998] to a second dimension; a third dimension
also presented in [Cohn and Varzi, 1999] is obtained by con-
sidering multipiece regions and the degree of connection be-
tween these.

0] D |0

CON, INCON and WCON

CON, not INCON or WCON  CON and INCON, not WCON

Figure 3: Types of CON Region

but anomalous cases of Fig.3, but it is by no means
straightforward,” and it is not demonstrated conclusively
in [Gotts, 1994b] that the definitions do what is intended.
One source of the difficulties arising is the fact that
within RCC, since all regions in a particular model of the
axioms are of the same dimensionality as the universal
region, u , assuming u itself to be of uniform dimension-
ality (this follows from the fact that all regions have an
NTPP), there is no way to refer directly to the bound-
ary of a region or to the dimensionality of the shared
boundary of two EC regions, or to any relations between
entities of different dimensionalities.

In cases where reasoning about dimensionality be-
comes important, RCC and related systems based on
a C(z,y) predicate are not very powerful (and to reason
about regions of different dimensionality is impossible
with out imposing a sort structure and essentially taking
a copy of the theory for each dimension-sort). To remedy
this Gotts proposed a new primitive INCH(x,y), whose
intended interpretation is that spatial entity x includes
a chunk of y, where the included chunk is of the same
dimension as z. The two entities may be of differing
(though uniform) dimension. Thus if z is line crossing a
2D region y, then INCH(z,y) is true, but not vice versa.
Tt is easy to define C(x,y) in terms of INCH, but not vice
versa, so the previous RCC system can be defined as a
sub theory. An initial exposition of this theory can be
found in [Gotts, 1996b].

Another proposal addressing the problem of repre-
senting and reasoning about regions of differing dimen-
sionality (though still not of mixed dimensionality) is

"Note, however, that this task becomes almost trivial once
the conv(z) primitive is introduced in Section 4.4.



[Galton, 1996]). Here, two primitives are proposed,
the mereological part relation, P(z,y), and a bound-
ary operator, B(z,y) — = is the boundary of y (be-
ing a region of one less dimension). This follows on
from other theories which introduce boundaries of re-
gions explicitly (e.g. [Smith, 1993; 1996; Varzi, 1994;
Randell and Cohn, 1989]) but which did not explicitly
introduce dimensional reasoning.

Topology via “n-intersections”

An alternative approach to representing and reasoning
about topological relations has been promulgated via a
series of papers (e.g.[Clementini et al., 1994; Egenhofer,
1989; Egenhofer and Franzosa, 1991; Egenhofer, 1994;
Egenhofer and Franzosa, 1995; Egenhofer and Herring,
1994]). In the most recent calculus, three sets of points
are associated with every region — its interior, bound-
ary and complement; the relationship between two re-
gions can be characterized by a 3x3 matrix,® called the
9-intersection, each of whose elements denotes whether
the intersection of the corresponding sets from each re-
gion are empty or not. Although it would seem that
there are 2° = 512 possible matrices, after taking into
account the physical reality of 2D space and some specific
assumptions about the nature of regions, which can then
be translated into constraints between the matrix values,
it turns out that there are exactly 8 remaining matrices,
corresponding to the eight RCC8 relations. One can use
this calculus to reason about regions which have holes by
classifying the relationship not only between each pair of
regions, but also the relationship between each hole of
each region and the other region and each of its holes
[Egenhofer et al., 1994]. By changing the underlying as-
sumptions about what a region is, and by allowing the
matrix to represent the codimension of the intersection,
different calculi with more JEPD relations can be de-
rived. For example, one may derive a calculus for repre-
senting and reasoning about regions in Z2 rather than R?
[Egenhofer and Sharma, 1993] — there are 16 possible ma-
trices representing the set of JEPD relations in this case.
Alternatively, one can extend the representation by not-
ing in each matrix cell the dimension of the intersection
rather than simply whether it exists or not [Clementini
and Di Felice, 1995]; this allows one to enumerate all the
relations between areas, lines and points — this extension
is known as the “dimension extended method (DEM)”.
[Clementini et al., 1993] have noted the very large num-
ber of possible relationships that may be defined in this
way and have proposed a way (which they call the “cal-
culus based method (CBM)”, to generate all these from
a set of five polymorphic binary relations between a pair
of spatial entities = and y: disjoint, touch (a/a, 1/1, 1/a,

8 Actually, a simpler 2x2 matrix [Egenhofer and Franzosa,
1991], known as the 4-intersection, featuring just the interior
and boundary is sufficient to describe the eight RCC rela-
tions; however the 3x3 matrix allows more expressive sets of
relations to be defined as noted below since it takes into ac-
count the relationship between the region and its embedding
space.

p/a, p/l), in, overlap (a/a, 1/1), cross (restrictions on the
arguments are denoted by the notation a/f8, e.g. a/a
meaning that both arguments must be areal, p/p that
they must be points and 1/1 that they must both be lin-
ear). In addition, operators are introduced to denote the
boundary of a region and the two endpoints of a non cir-
cular line. A complex relation between x and y may then
formed by conjoining atomic propositions formed by us-
ing one of the five relations above, whose arguments may
be either be x or y or a boundary or endpoint operator
applied to = or y. [Clementini et al., 1993] have analysed
the number of JEPD relations relations) for each of the
techniques mentioned above (4- and 9-intersections, DIM
and CBM). For the most expressive calculus (either the
CBM or the combination of the 9-intersection and the
DIM), there are 9 area/area relations, 31 line/area re-
lations, 3 point/area relations, 33 line/line relations, 3
point/line relations and 2 point/point relations giving a
grand total of 81.

4.3 Modes of Overlap

[Galton, 1997] analyses a variety of ways in which two
regions can partially overlap each other. In most pre-
vious work (an exception is [Cohn et al., 1995)), partial
overlap has always been taken to be a single relation
(usually denoted PO(x,y)), just as connection itself is
usually taken to be a single relation. Whilst recognis-
ing that there are potentially infinitely many varieties
of partial overlap relation, Galton parameterised these
using a matrix notation:

(3 )

where z,a,b and o are the numbers of connected compo-
nents of z Ny, z\y, y\z, compl(z U y). He investigates
all matrices with numbers no greater than two; of the 54
theoretical possibilities, just 23 are physically realisable.

Mereology and Topology

Although mereology (being the theory of the part-whole
relationship) would seem at first sight simply to be a
subtheory of topology (and indeed is presented thus in
the topological theories mentioned so far in this section),
there are arguments against this view. Varzi [Varzi,
1996] has discussed the issue and notes that whilst cer-
tain mereology is not sufficient by itself, there are three
main ways in which theories in the literature have pro-
posed integrating topology and mereology:

1. Generalise mereology by adding a topological prim-
itive. This is the approach taken by, for exam-
ple, [Borgo et al., 1996] who add the topological
primitive SC(z), i.e. z is a self connected (one-
piece) spatial entity to the mereological part rela-
tion. Alternatively a single primitive can be used
to as in [Varzi, 1994]: “z and y are connected parts
of z. Generally, this approach forces the existence
of boundary elements (i.e. spatial entities of lower
dimensions). The main advantage of separate the-
ories of mereology and topology is that it allows



colocation without sharing parts which is not easily
possible in the second two approaches below.

2. Topology is primal and mereology is a sub theory.
For example in the topological theories based on
C(z,y), such as those mentioned above, one defines
P(z,y) from C(z,y). This has the elegance of being
a single unified theory, but colocation implies shar-
ing of parts. These theories are normally bound-
aryless (i.e. without lower dimensional spatial en-
tities) but this is not absolutely necessary [Randell
and Cohn, 1989; Gotts, 1996b]. Thus, for example
EC(z,y) is not necessarily explained by sharing a
boundary.

3. The final approach is that taken by [Eschenbach
and Heydrich, 1995], i.e. topology is introduced as
a specialised domain specific sub theory of mere-
ology. Of course an additional primitive needs to
be introduced since mereology alone is not powerful
enough to define topology. The idea is to use re-
stricted quantification by introducing a sortal pred-
icate Region(z). C(z,y) can then be defined thus:
C(x,y) = ger O(z,y) A Region(z) A Region(y).

4.4 Between Topology and Fully Metric
Spatial Representation

Topology can be seen as perhaps the most abstract and
most qualitative spatial representation, furthest removed
from fully metric representations. However it is clear
that although potentially useful there many be many
domains where topological information alone is insuffi-
cient but it would still be desirable to have a qualitative
representation. In the following subsections a selection
of different ways of add qualitative non topological in-
formation are presented.

Orientation

Orientation is a naturally qualitative property: in 2D
it is very common to talk about clockwise or anticlock-
wise orientation for instance. However, unlike most of
the topological relations on spatial entities mentioned
above, orientation is not a binary relation — at least
three elements need to be specified to give an orienta-
tion between two of them (and possibly more in dimen-
sions higher than 2D). If we want to specify the orien-
tation of a primary object (PO) with respect to a ref-
erence object (RO), then we need some kind of frame
of reference (FofR). An extrinsic frame of reference im-
poses an external, immutable orientation: e.g. grav-
itation, a fixed coordinate system, or an third object
(such as the North pole). A deictic frame of reference
is with respect to the “speaker” or some other inter-
nal observer. Finally, an intrinsic frame of reference
exploits some inherent property of the RO — many ob-
jects have a natural “front”, e.g. humans, buildings and
boats. This categorization manifests itself in the display
of qualitative orientation calculi to be found in the lit-
erature: certain calculi have an explicit triadic relation
while others presuppose an extrinsic frame of reference

and, for example, use compass directions [Frank, 1992;
Hernandez, 1994]. Of those with explicit triadic relations
is it especially worth mentioning the work of Schlieder
[Schlieder, 1993] (following earlier work [Goodman and
Pollack, 1993]) who develops a calculus based on a func-
tion which maps triples of points to one of three qual-
itative values, + , 0 or -, denoting anticlockwise, col-
inear and clockwise orientations respectively. This can
be used for reasoning about visible locations in qualita-
tive navigation tasks, or for shape description [Schlieder,
1996] or to develop a calculus for reasoning about the
relative orientation of pairs of line segments [Schlieder,
1995] — see figure 4. Schlieder also notes that the notion
of a permutation sequence [Goodman and Pollack, 1993]
subsumes this framework. In this representation, given
a set of points and directed lines connecting them, one
chooses a new directed line /, not orthogonal to any ex-
isting line and notes the order of all the points projected
onto [. One then rotates [ counterclockwise until order
of projection changes. As [ continues to rotate, one will
generate further permutations of the set of points.

Another important triadic orientation calculus is that
of [Rohrig, 1994]; this calculus is based on a relation
CYCORD(z, y, z) which is true (in 2D) when z,y, z are
in clockwise orientation. Rohrig shows how a number of
qualitative calculi (not only orientation calculi) can be
translated into the CYCORD system, whose reasoning
system (implemented as a constraint logic program) can
then be exploited.

Figure 4: The 14 JEPD relations of Schlieder’s oriented
line segment calculus and their conceptual neighbour-
hood.

The disadvantage of the CYCORD relation is that rea-
soning in it is NP complete; thus [Isli and Cohn, 1998]
proposes an algebra of ternary relations for cyclic or-
dering of 2D orientations which refines the CYCORD
theory: it contains 24 atomic relations, hence 2?4 gen-
eral relations, of which the CYCORD relation is one.
However, the propagation algorithm is polynomial, and
complete for a subclass including all atomic relations. It
is also shown how to model other orientation calculi in
the algebra.



Distance and size

Distance and size are related in the sense that tradi-
tionally we use a linear scale to measure each of these
aspects, even though distance is normally thought of as
being a one dimensional concept, whilst size is usually
associated with higher dimensional measurements such
as area or volume. The domain can influence distance
measurements, as we shall see below, but first I will dis-
cuss pure spatial representations. These can be divided
into two main groups: those which measure on some
“absolute” scale, and those which provide some kind of
relative measurement. Of course, since traditional Qual-
itative Reasoning [Weld and De Kleer, 1990] is primarily
concerned with dealing with linear quantity spaces, the
qualitative algebras and the transitivity of such quantity
spaces mentioned earlier can be used as a distance or size
measuring representation.

Also of interest in this context are the order of magni-
tude calculi [Mavrovouniotis and Stephanopoulos, 1988;
Raiman, 1996] developed in the QR community. These
calculi introduce measuring scales which allow one quan-
tity to be described as being much larger than another,
with the consequence that it requires summing many (in
some formulations even an infinite number) of the for-
mer quantities in order to surpass the second, “much
larger” quantity. Most of these “traditional QR” for-
malisms are of the “absolute” kind of representations
mentioned above?® as is the Delta calculus [Zimmermann,
1995] which introduces a triadic relation,z(>,d)y: z is
larger /bigger than y by amount d; terms such as z(>,y)y
mean that x is more than twice as big as y.

Of the ‘relative’ representations specifically developed
within the spatial reasoning community, perhaps the first
is the calculus proposed by [de Laguna, 1922], which in-
troduces a triadic CanConnect(z,y, z) primitive, which is
true if the body z can connect y and z by simple trans-
lation (i.e. without scaling, rotation or shape change).
From this primitive it is quite easy to define notions such
as equidistance, nearer than, and farther than (as well as
the C(z, y) relation). Also note that this primitive allows
a simple size metric on regions to be defined: one region
is larger than another if it can connect regions that the
other cannot. Another technique to determine the rela-
tive size of two objects was proposed by [Mukerjee and
Joe, 1990] and relies on being able to translate regions
(assumed to be shape and size invariant) and then ex-
ploit topological relationships — if a translation is possi-
ble so that one region becomes a proper part of another,
then it must be smaller. Interestingly, these seem to be
about the only proposals which are grounded in a region
based theory — all the other representations mentioned in
this section take points as their primitive spatial entity.
An interesting question arises in the case of distances
between regions as to where to measure to/from — in
the formalisms mentioned above the closest distance is

9 Actually it is usually straightforward to specify relative
measurements given an “absolute” calculus: to say that = >
y, one may simply write £ —y = +.

taken, but alternatively one might be interested in the
distance between centroids or some other distinguished
subregion or point.

Distance is closely related to the notion of orientation:
e.g. distances cannot usually be summed unless they are
in the same direction, and the distance between a point
and region may vary depending on the orientation. Thus
it is perhaps not surprising that there have been a num-
ber of calculi which are based on a primitive which com-
bines distance and orientation information. Arguably,
unless both of these aspects are represented then the
calculus is not really a calculus of distance, though it
might be said that this is a calculus of position rather
than mere distance.

One straightforward idea [Frank, 1992] is to combine
directions as represented by segments of the compass
with a simple distance metric (far, close). A slightly
more sophisticated idea is to introduce a primitive which
defines the position of a third point with respect to a di-
rected line segment between two other points [Zimmer-
mann and Freksa, 1993] — see figure 5. A calculus which
combines the Delta calculus and orientation is presented
in [Zimmermann, 1993].
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Figure 5: There are 15 qualitatively different positions
a point ¢ (denoted by the shaded circles) can be with
respect to a vector from point a to point b. Some dis-
tance information is represented, for example the darker
shaded circles are in the same orientation but at different
distances from ab.

Another system which combines qualitative orienta-
tion (via a set of angles: acute, slightlyacute, rightangle,
slightlyobtuse, obtuse) with qualitative distances (w.r.t.
to a reference constant, d: less, slightlyless, equal, slight-
lygreater, greater than d) is that of [Jiming, 1998]. He
defines composition tables (see below) for the calculus to
combine both types of information and proposes to com-
pute a quantitative visualisation by simulated annealing.

Of particular interest is the framework for represent-
ing distances [Hernéndez et al., 1995] which has been ex-
tended to include orientation[Clementini et al., 1997]'°.
In this framework a distance is expressed in a partic-
ular frame of reference (FofR) between a primary ob-
ject (PO) and a reference object (RO). A distance sys-
tem is composed of an ordered sequence of distance rela-
tions (between a PO and an RO), and a set of structure

10Whereas [Clementini et al., 1997] combines qualita-
tive orientation and absolute distance knowledge, [Isli and
Moratz, 1999] combines qualitative orientation [Isli and
Cohn, 1998] and relative distance information. Another ex-
ample of a combined distance and position calculus is [Escrig
and Toledo, 1998].



relations which give additional information about how
the distance relations relate to each other (apart from
their distance ordering given implicitly by the ordered
sequence). Each distance has an acceptance area (which
in the case of an isotropic space will be a region the same
shape as the PO, concentrically located around the PO);
the distance between successive acceptance areas defines
a sequence of intervals: d1, 02, .... The structure relations
define relationships between these §;. Typical structure
relations might specify a monotonicity property (the §;
are increasing), or that each J; is greater than the sum of
all the preceding §;. The structure relationships can also
be used to specify order of magnitude relationships, e.g.
that 6; + d; ~ &; for j < i. The structure relationships
are important in refining the composition tables (see be-
low). In a homogeneous distance system all the distance
relations have the same structure relations; however this
need not be the case in a heterogeneous distance sys-
tem. The proposed system also allows for the fact that
the context may affect the distance relationships; this
is handled by having different frames of reference, each
with its own distance system and with inferences in dif-
ferent frames of reference being composed using articu-
lation rules (cf. [Hobbs, 1985]). Analogously to orien-
tation calculi, intrinsic, extrinsic and deictic frames of
reference can be distinguished.

It is possible that different qualitative distance calculi
(or FofR) might be needed for different scale spaces —
Montello [Montello, 1993] suggests that there are four
main kinds of scale of space, relative to the human
body: figural space pertains to distances smaller than
the human body and which thus can be perceived with-
out movement (e.g. table top space and pictures); vista
space is similar but pertains to spaces larger than the
human body, making distortions more likely; environ-
mental space cannot be perceived without moving from
one location to another; finally, geographic space cannot
be properly apprehended by moving — rather it requires
indirect perception by a (figural space) map. One ob-
vious effect of moving from one scale, or context to an-
other, is that qualitative distance terms such as “close”
will vary greatly; more subtly, distances can behave in
various “non mathematical” ways in some contexts or
spaces: e.g. distances may not be symmetrical —e.g. be-
cause distances are sometimes measured by time taken
to travel, and an uphill journey may take longer than
the return downhill journey. Distance may easily be-
come non isotropic when time taken to travel is used as
a distance measure (i.e. travel in certain directions may
take a longer time compared to the actual distance) —e.g.
a fast East-West highway will tend to reduce east west
travel time[Herndndez et al., 1995]. Another “mathe-
matical aberration” is that in some domains the short-
est distance between two points may not be a straight
line (e.g. because a lake or a building might be in the
way,). Human perception of distance can also be dis-
torted — [Holyoak and Mah, 1982] reports experiments
which show that cities on the west coast of the USA are
viewed as being relatively closer when imagined from the

east coast compared to east coast cities and vice versa
when the viewpoint is changed to the other coast.

Shape

As mentioned above, one can think of theories of space as
forming a hierarchy ordered by expressiveness (in terms
of the spatial distinctions made possible) with topology
at the top and a fully metric/geometric theory at the
bottom. Clearly in a purely topological theory only very
limited statements can be made about the shape of a
region: whether it has holes (in the sense that a torus
has a hole), or interior voids, or whether it is in one
piece or not — we have already described this kind of
work in section 4.2 above. [Galton, 1993] has observed
that one can (weakly) constrain the shape of rigid ob-
jects by topological constraints using RCC8: congruent
shapes can only ever be DC, EC, PO or EQ; if one shape
can just fit inside the other then they can only ever be
DC, EC, PO, TPP; if one shape can easily fit inside the
other then they can only ever be DC, EC or PO; whilst
incommensurate shapes must be DC, EC or PO.

However, if one’s application demands finer grained
distinctions than these, then some kind of semi-metric
information has to be introduced!!; there is a huge choice
of possible primitives for extending topology with some
kind of shape primitives whilst still retaining a quali-
tative representation (i.e. not becoming fully metric).
Of course, as [Clementini and Di Felice, 1997b] note, the
mathematical community have developed many different
geometries which are less expressive than Euclidean ge-
ometry, for example projective and affine geometries, but
have not necessarily developed efficient computational
reasoning techniques for them!2. The QSR community
has only just started exploring the various possibilities;
below we briefly describe some of the approaches.

There are a number of ways to classify these ap-
proaches; one distinction is between those techniques
which constrain the possible shapes of a region and those
that construct a more complex shaped region out of sim-
pler ones (e.g. along the lines of constructive solid geom-
etry [Requicha and Boelcke, 1992], but perhaps starting
from a more qualitative set of primitives). An alter-
native dichotomy can be drawn between representations
which primarily describe the boundary of an object com-
pared to those which represent its interior (e.g. symme-
try based techniques). Arguably [Brady, 1993], the latter
techniques are preferable since shape is inherently not a
one dimensional concept.

Examples of approaches which work by describing the
boundary of an object include those that classify the se-
quence different types of boundary segments (curving
in/out, angle in/out, cusp in/out, straight) [Richards
and Hoffman, 1985] or by describing the sequence of dif-
ferent kinds of curvature extrema[Leyton, 1988] along its

1 Of course, the orientation and distance primitives dis-
cussed above already add something to pure topology, but as
already mentioned these are largely point based and thus not
directly applicable to describing region shape.

12Though see [Balbiani et al., 1994; 1997).



contour. Another related approach would be to pick out
distinguished points on the boundary of the object (such
as corners) and relate every triple of such points by us-
ing the qualitative orientation calculus described in the
previous section (i.e. the shape description would con-
sist of a sequence of -/0/+ symbols, one for each triple
of distinguished points). Yet another technique is de-
scribed by [Jungert, 1993] who uses a slope projection
approach to describe polygonal shape: for each corner,
one describes whether it is convex/concave,obtuse/right-
angled/acute together with a qualitative representation
of the direction of the corner (chosen from a set of 9
possible values).

One approach of the latter kind is to make use of a
shape abstraction primitive such as the bounding box or
the convex hull. Both these techniques have been consid-
ered briefly within the n-intersection model [Clementini
and Di Felice, 1997a] whilst the latter technique has been
investigated extensively within the RCC calculus. The
distinction between convex and concave regions seems
fundamental to shape description 3. RCC theory has
shown that many interesting predicates can be defined
once one takes the notion of a convex hull of a region
(or equivalently, a predicate to test convexity) and com-
bines it with the topological representation. By comput-
ing the topological relationships between the shape itself
and the different components of the difference between
the convex hull and the shape, one can distinguish many
different kinds of concave shapes [Cohn, 1995]. A re-
finement to this technique exploits the idea of recursive
shape description [Sklansky, 1972] to describe any non
convex components of the difference between the convex
hull and the shape. One can also develop many sets of
JEPD predicates to relate pairs of regions which directly
exploit the convex hull function; such predicates give an-
other approach to shape description: one constrains the
shape of a region by specifying its relationships to other
regions[Cohn et al., 1995).

The convex hull is clearly a powerful primitive and in
fact it has recently been shown [Davis et al., to appear]
that this system essentially is equivalent to an affine ge-
ometry: any two compact planar shapes not related by
an affine transformation can be distinguished by a con-
straint language of just EC(z), PP(z) and Conv(x).

Various different notions of the inside of a region can
be distinguished using a convex hull primitive [Cohn,
1995; Cohn et al., 1995] — these can all be viewed as
different kinds of hole. A very interesting line of research
[Casati and Varzi, 1994; Varzi, 1993] has investigated
exactly what holes are and proposes an axiomatisation
of holes based on a new primitive: Hosts(z,y) — which
is true if the body x hosts hole y; note that this is not a
theory of pure space: holes cannot host other holes, only

13Note that topology only allows certain rather special kind
of non convex regions to be distinguished, and in any case
does not allow the concavities to be explicitly referred to —
it is a theory of ‘holed regions’, rather than of holes per se —
the distinction between “hole realist” and “irrealist” theories
has been made by [Casati and Varzi, 1994].

physical objects can act as hosts.

Another recent proposal [Borgo et al., 1996] is to take
the notion of two regions being congruent as primitive;
from this it is possible to define the notion of a sphere,
and then import Tarski’s theory of spheres and related
definitions such as ‘betweenness’ [Tarski, 1956]. That
this theory is more powerful than one just with convex
hull is shown by the fact convexity can now be defined in
a congruence based system, whilst the reverse is not the
case. Also of interest in this paper is the idea of using
a “grain” to eliminate small surface irregularities which
might distort the shape description.

The notion of a Voronoi hull has also been used as
an approach to qualitative shape description [Edwards,
1993]. A set of voronoi regions are defined by lines
equidistant from each pair of closest objects under con-
sideration. Notions such as proximity, betweenness, in-
side/outside, amidst can all be addressed by this tech-
nique.

Finally, before leaving the topic of shape descrip-
tion we should point out the work of [Clementini and
Di Felice, 1997b] on describing shape via properties such
as compactness and elongation by using the minimum
bounding rectangle of the shape and the order of mag-
nitude calculus of [Mavrovouniotis and Stephanopoulos,
1988]: elongation is computed via the ratio of the sides of
the minimum bounding rectangle whilst compactness by
comparing the are of the shape and its minimum bound-
ing rectangle.

4.5 Uncertainty and Vagueness

Uncertainty and vagueness are endemic in many appli-
cations, for example because of indeterminate region
boundaries . Such vagueness may arise for a number
of reasons, perhaps because of ignorance, i.e. lack of
data (e.g. sample oil well drillings) or because of tem-
poral variation (e.g. tidal regions, a flood plain, or a
river changing its course), or indeterminacy may arise
because of ‘field variation’ (e.g. the one soil type may
gradually change into another) or a region might display
what one might term ‘intrinsic vagueness’ (e.g. ‘south-
ern England’ might be so regarded since one could never
agree as to what determined this region except by some
arbitrary process).

Even though any qualitative calculus already makes
some attempt to represent and reason about uncertainty
because the qualitative abstraction hides some indeter-
minacy, sometimes some extra mechanism may be re-
quired. Of course, it is always possible to glue on some
standard numerical technique for reasoning about un-
certainty (e.g. [Gahegan, 1995]), but there has also
been some research on extending existing qualitative spa-
tial reasoning techniques to explicitly represent and rea-
son about uncertain information. For example, a GIS-
DATA workshop on representing and reasoning about
regions with indeterminate boundaries generated two pa-
pers [Cohn and Gotts, 1996a; Clementini and Di Fe-
lice, 1996] which extended the RCC calculus and the
9-intersection in very similar ways to handle these kind



of regions.

The former approach, which is continued in a series
of papers [Cohn and Gotts, 1994b; 1994a; 1996b] pos-
tulates the existence of non crisp regions in addition to
crisp regions and then adds another binary relation to
RCC — z is crisper than region y. A variety of relations
are then defined in terms of this primitive and this ex-
tended theory is then related to what has become known
as the “egg-yolk” calculus which originated in [Lehmann
and Cohn, 1994] and models regions with indeterminate
boundaries as a pair of regions: the ‘yolk’, which is def-
initely part of the region and the ‘white’, which may or
may not be part of the region. It turns out that if one
generalises RCC8 in this way [Cohn and Gotts, 1996b]
there are 252 JEPD relations between non crisp regions
which can be naturally clustered into 40 sets.

The latter approach looks very similar to the egg-yolk
calculus but does not consider such a fine granularity of
relations; it postulates 44 JEPD relations, also clustered
into groups (18 in their case) but using a more ad hoc
technique to achieve this. An interesting extension to
this work [Clementini and Di Felice, 1997a] shows that
this calculus of regions with broad boundaries can be
used to reason not just about regions with indetermi-
nate boundaries but also can be specialised to cover a
number of other kinds of regions including convex hulls
of regions, minimum bounding rectangles, buffer zones
and rasters (this last specialisation generalises the appli-
cation of the n-intersection model to rasters previously
undertaken by [Egenhofer and Sharma, 1993)).

It is worth noting the similarity of these ideas to
rough sets [Duentsch and Gediga, 1998], though the
exact relationship has yet to be explored. Other ap-
proaches to spatial uncertainty are to work with an indis-
tinguishability relation which is not transitive and thus
fails to generate equivalence classes [Topaloglou, 1994;
Kaufman, 1991] and the development of nonmonotonic
spatial logics [Shanahan, 1995; Asher and Lang, 1994].

5 Qualitative spatial reasoning

Although much of the work in QSR has concen-
trated on representational aspects, various computa-
tional paradigms are being investigated including con-
straint based reasoning (e.g. [Herndndez, 1994]). How-
ever, the most prevalent form of qualitative spatial rea-
soning is based on the composition table (originally
known as a transitivity table [Allen, 1983], but now re-
named since more than one relation is involved and thus
it is relation composition rather than transitivity which
is being represented). Given a set of n JEPD relations,
the n x n composition table specifies for each pair of re-
lations R1, and R2 such that R1(a,b) and R2(b, c) hold,
what the possible relationships between a and ¢ could
be. In general, there will be a disjunction of entries,
as a consequence of the qualitative nature of the calcu-
lus. Most of the calculi mentioned in this paper have had
composition tables constructed for them, though this has
sometimes posed something of a challenge [Randell et
al., 1992a]. One approach to the automatic generation

of composition tables has been to try to reduce each cal-
culus to a simple ordering relation [Rohrig, 1994]. An-
other, perhaps more general approach, is to formulate
the calculus as a decidable theory (many calculi, e.g. the
original RCC system, are presented as first order theo-
ries), ideally even as a tractable theory, and then use
exhaustive theorem proving techniques to analyze and
thus generate each composition table entry. A refor-
mulation of the RCC first order theory in a zero order
intuitionistic logic 1* [Bennett, 1994] was able to gen-
erate the appropriate composition tables automatically;
another approach would have been been to use a zero
order modal logic [Bennett, 1996b).

Composition tables provide a very efficient form of rea-
soning and have certainly been the mostly commonly
used form of qualitative spatial inference but they do
not necessarily subsume all forms of desired reasoning.
For example, reasoning with just three objects at a
time will not necessarily determine all inconsistent sit-
uations in some calculi. An interesting question then
arises: exactly when is composition table reasoning a
sufficient inference mechanism (i.e. for which theories
is it complete)[Bennett et al., 1997]? This question is
taken up in [Duentsch et al., 1998]

For cases when composition table based reasoning is
not sufficient, then other more general constraint based
reasoning may be sufficient[Herndndez, 1994; Guesgen
and Hertzberg, 1992]; more generally one may resort to
theorem proving, or preferably, some kind of specialised
theorem proving system[Bennett, 1994; Rohrig, 1994] for
example.

5.1 Reasoning about Spatial Change

So far we have been concerned purely with static spatial
calculi, so that we can only represent and reason about
snapshots of a changing world. It is thus important to
develop calculi which combine space and time in an in-
tegrated fashion.

There are many kinds of spatial change: individual
spatial entities may change their topological structure,
their orientation, their position, their size or shape. Such
changes are not necessarily independent and of course
change in one spatial entity may engender a change in
its spatial relationship to other entities.

Topological changes in ‘single’ spatial entity include:
change in dimension (this is usually ‘caused’ by an ab-
straction or granularity shift rather than an ‘actual’ spa-
tial change!®; change in number of topological compo-
nents (e.g. breaking a cup, fusing blobs of mercury);

This reformulation is interesting in that it becomes a
true spatial logic, rather than a theory of space: the “logi-
cal symbols” have spatial interpretations, e.g. implication is
interpreted as parthood and disjunction as the sum of two
regions.

15E.g. we may view a road as being a 1D line on a map,
a 2D entity when we consider whether it is wide enough for
an outsize load, and a 3D entity as we consider the range of
mountains it passes over, or the potholes and a particularly
delicate cargo.



change in the number of tunnels (e.g. drilling through
a block of wood); change in the number of interior cav-
ities (e.g. putting a lid on a container). Such changes
may also simultaneously effect changes in position, size,
shape, and orientation as well as in topology (e.g. con-
sider drilling a hole in a block of wood).

In many domains we assume that change is
continuous'®, as is the case in traditional qualitative rea-
soning, and thus there is a requirement to build into the
qualitative spatial calculus which changes in value will
respect the underlying continuous nature of change, and
this requirement is of course common to all the differ-
ent kinds of spatial change we have mentioned above. It
is thus important to know which qualitative values or
relations are neighbours in the sense that if a value or
predicate holds at one time, then there is some continu-
ous change possible such that the next value or predicate
to hold will be a neighbour. Continuity networks defin-
ing such neighbours are often called conceptual neigh-
bourhoods in the literature following the use of the term
[Freksa, 1992] to describe the of structure Allen’s 13
JEPD temporal relations [Allen, 1983] according to their
conceptual closeness!” (e.g. meets is a neighbour of both
overlaps and before). Most of the qualitative spatial cal-
culi reported in this paper have had conceptual neigh-
bourhoods constructed for them; see figures 1 and 4 for
example!8.

Perhaps the most common form of computation in the
traditional QR literature is qualitative simulation; us-
ing conceptual neighbourhood diagrams is quite easy to
build a qualitative spatial simulator [Cui et al., 1992].
Such a simulator takes a set of ground atomic state-
ments describing an initial state'® and constructs a tree
of future possible states — the branching of the tree re-
sults from the ambiguity of the qualitative calculus. Of
course, continuity alone does not provide sufficient con-
straints to restrict the generation of next possible states
to a reasonably small set in general — domain specific
constraints are required in addition. These may be of
two kinds: intra state constraints restrict the spatial re-
lationships that may hold within any state whilst inter

16Sometimes changes are discontinuous, e.g. when political
fiat moves the boundaries of geopolitical entities in a discon-
tinuous manner.

'"Note that one can lift this notion of closeness from indi-
vidual relations to entire scenes via the set of relations be-
tween the common objects and thus gain some measure of
their conceptual similarity as suggested by [Bruns and Egen-
hofer, 1996].

18 A close related notion is that of “closest topological dis-
tance” [Egenhofer and Al-Taha, 1992] — two predicates are
neighbours if their respective n-intersection matrices differ by
fewer entries than any other predicates; however the resulting
neighbourhood graph is not identical to the true conceptual
neighbourhood or continuity graph — some links are missing.

19The construction of an envisioner [Weld and De Kleer,
1990] rather than a simulator would also be possible of course.
See also the transition calculus approach of [Gooday and
Cohn, 1996a].

state constraints restrict what can hold between adjacent
states (or in general, across a sequence of states). Both
of these constraint types can be used to prune otherwise
acceptable next states from the simulation tree. Addi-
tional pruning is required to make sure that each state is
consistent with respect to the semantics of the calculus
(e.g. that there is no cycle of proper part relationships)
— the composition table may be used for this purpose.

A desirable extension, by analogy with earlier QR
work, would be to incorporate a proper theory of spatial
processes couched in a language of QSR; some work in
this direction is reported in: [Lundell, 1995] who con-
siders a field based theory of spatial processes such as
heat flow; [Egenhofer and Al-Taha, 1992] who consider
which traversals of their version of the conceptual neigh-
bourhood diagram for an 8 relation topological calculus
analogous to RCC8 correspond to processes such as ex-
pansion of a region, rotation of region etc; [Leyton, 1988]
considers how the processes of protrusion and resistance
cause changes in his boundary based shape description
language mentioned in section 4.4 above — given two
shapes he can then infer sequences of processes which
could cause one to change into the other. Also worthy
of note is the qualitative spatial simulation work of [Ra-
jagopalan, 1994] based on the QSIM system [Weld and
De Kleer, 1990).

One problem is that the conceptual neighbourhood is
usually built manually for each new calculus — a some-
times arduous and error prone operation if there are
many relations; techniques to derive these automatically
would be very useful. An analysis of the structure of
conceptual neighbourhoods reported by [Ligozat, 1994]
goes some way towards this goal. A more foundational
approach which exploits the continuity of the underly-
ing semantic spaces has been investigated by [Galton,
1995] — this analysis not only allows the construction
of a conceptual neighbourhood for a class of relations
from a semantics, but also infers which relations domi-
nate other relations: a relation R; dominates R if Rs
can hold over an interval followed/preceded by R; in-
stantaneously. E.g. in RCC8 TPP dominates NTPP and
PO, while EQ dominates all of its neighbouring relations.
Dominance is analogous to the equality change law to be
found in traditional QR [Weld and De Kleer, 1990] and
allows a stricter temporal order to be imposed on events
occurring in a qualitative simulation.

Another approach to automatically inferring continu-
ity networks has been proposed by Muller [Muller, 1998c;
1998a; 1998b). He has taken up the idea of spatio-
temporal histories proposed by [Hayes, 1985] and defined
a notion of continuity on these in addition to relations
essentially the same as those in figure 1. From these def-
initions the presence (and absence) of the arcs in figure
1 can be deduced. Also of interest is the use Muller puts
his spatio-temporal theory to in defining various kinds
of events, such as leaving, crossing, and hitting.



5.2 Theoretical results in QSR

There are a number of theoretical questions of interest.
Not all calculi have been given a formal semantics by
their inventors and even for those that have there is the
question of whether it is the best or simplest seman-
tics. Given a semantics one can ask whether the task of
showing a set of formulae is consistent or whether one
set entails another is decidable, and if it is what is the
complexity of the decision procedure. One can ask if a
theory is complete, either in the weak sense of every true
formula being provable, or the stronger sense of whether
every formula is made either true or false in the the-
ory. Any complete, recursively axiomatizable theory is
decidable. Finally, there is the property of being cate-
gorical, i.e. whether all models are isomorphic? Since
theories may have models of various cardinalities, and
models of different cardinalities cannot by definition be
isomorphic, a more interesting property is Ng categoric-
ity, i.e. whether all countable models are isomorphic,
since these are perhaps the most useful models from the
user’s viewpoint.

[Pratt and Lemon, 1997] set out to answer the ques-
tion as to whether there is something special about
region based theories from the ontological viewpoint?
They believe the answer is in the negative, at least for
2D mereotopology: they show, under certain assump-
tions, that the standard 2D point based interpretation
is simplest model (prime model) proved under assump-
tions; the only alternative models involve regions with
infinitely many pieces. But it may be argued, that it is
still useful to have region based theories even if they are
always interpretable point set theoretically.

A fundamental result on decidability which has
widespread applicability in qualitative spatial theories is
that of [Grzegorczyk, 1951] which shows that although
of course Boolean algebra is decidable, adding either a
closure operation or an external connection relation re-
sults in an undecidable system since one can then encode
arbitrary statements of arithmetic. This implies that
Clarke’s calclus and all the related calculi such as the
first order theory of RCC, and the calculi of [Asher and
Vieu, 1995] and [Borgo et al., 1996] are all undecidable.

The question then becomes whether there are any
decidable subsystems 2°? The constraint language of
RCCS8 has been shown to be decidable [Bennett, 1994]
— this was achieved by encoding each RCCS8 relation as
a set of formulae in intuitionistic propositional calcu-
lus which is a decidable calculus. This language was
subsequently shown to be tractable [Nebel, 1995a] —
in fact the satisfaction problem is solvable in polylog-
arithmic time since it is in the complexity class NC.
However the constraint language of 2% (i.e. where
constraints may be arbitrary disjunctions of RCC8 rela-
tions) is not tractable, though [Renz and Nebel, 1997;
to appear] have identified a maximal tractable subset

20Rather in the same manner as the description logic com-
munity have sought to find the line dividing decidability from
undecidability and tractability from intractability.

(containing 148 relations) of the constraint language of
2RCC8 and furthermore have shown that path consis-
tency is sufficient for deciding consistency in this case.
As in the case of identifying the maximal tractable subset
of Allen’s interval calculus [Nebel, 1995b], the analysis
relies on an exhaustive computer generated case anal-
ysis. [Gerevini and Renz, 1998] show that if an ap-
propriate size constraint is introduced between two re-
gions then all reasoning in 2FCC8 effectively becomes
polynomial. In [Renz, 1999] a complete classification
of the tractibility of RCC8 is provided: it turns out
that there are two further maximal tractable subsets
(containing 158 and 160 relations respectively). Further
work on the complexity of RCC includes [Cristani, 1997;
Jonsson and Drakengren, 1997).

As far as the complexity of non topological theories is
concerned, [Isli and Cohn, 1998] presents and analyses
an orientation calculus and determines polynomial sub-
sets (including all the base relations), whilst determin-
ing satisfiability in the general algebra is NP complete.
Similarly [Ligozat, 1998] shows that whilst the general
consistency problem in the algebra of cardinal directions
is NP complete, consistency for preconvex relations is
polynomial and this set is a maximal tractable subset.

Also of interest is the analysis of [Grigni et al., 1995]
which considers an RCC8-like calculus and two simpler
calculi and determines which of a number of different
problem instances of relational consistency and planar
realizability are tractable and which are not — the latter
is the harder problem. It has also been shown that the
constraint language of EC(z), PP(z) and Conv(z) is in-
tractable (it is at least as hard as determining whether
a set of algebraic constraints over the reals is consistent)
[Davis et al., to appear].

Clarke’s system has been given a semantics (regu-
lar sets of Euclidean space are models) and has been
shown to be complete in the weak sense [Biacino and
Gerla, 1991]. Unfortunately it turns out that contrary
to Clarke’s intention, only mereological relations are ex-
pressible! The theory in fact characterises a complete
atomless Boolean algebra. The system of [Asher and
Vieu, 1995] which corrects the problems in Clarke as
mentioned above, is given a semantics and shown to be
complete by the authors but their inclusion of the notion
of ‘weak connection’ forces a non standard model since
models must be non dense 2!.

A completeness result (in the strong sense) has been
derived by [Pratt and Schoop, 1998] who give a com-

21This enforced abandonment of R™ as a model leads one
to question whether it is indeed a good idea to try to model
the proposed distinction between strong and weak connec-
tion topologically in a purely spatial theory, rather than in
an applied theory of physical bodies and material substances
together with the regions they occupy. It should be pointed
out that they do propose an extension to their theory in
which they allow the spatial granularity to be varied; as finer
and finer granularities are considered, so fewer instances of
WC(z,y) are true and in the limit the theory tends to the
classical topological model.



plete 2D topological theory whose elements are 2D finite
(polygonal) regions and whose primitives are: the null
and universal regions, the Boolean functions (+,*—),
and a predicate to test for a region being one piece. The
theory is first order but requires an infinitary rule of in-
ference (which is not surprising in view of the undecid-
ability of first order topology mentioned above [Grzegor-
czyk, 1951]. The infinitary rule of inference guarantees
the existence of models in which every region is sum of
finitely many connected regions. The resulting theory is
complete but not decidable.

Notwithstanding the attempt [Bennett, 1996a] to de-
rive a complete first order topological theory, it is now
clear that no first order finite axiomatisation of topology
can be complete or categorical because it is not decid-
able.

6 Final comments

An issue which has not been much addressed yet in the
QSR literature is the issue of cognitive validity — claims
are often made that qualitative reasoning is akin to hu-
man reasoning, but with little or no empirical justifica-
tion; one exception to this work is the study made of
a calculus for representing topological relations between
regions and lines [Mark et al., 1995] where native speak-
ers of several different languages were asked to perform
tasks in which they correlated spatial expressions such
as “the road goes through the park” with a variety of
diagrams which depicted a line and a region which the
subjects were told to interpret as as road and a park. An-
other study is [Knauff et al., 1995] which has investigated
the preferred Allen relation (interpreted as a 1D spatial
relation) in the case that the composition table entry is a
disjunction. Perhaps the fact that humans seem to have
a preferred model explains why they are able to reason
efficiently in the presence of the kind of ambiguity engen-
dered by qualitative representations. They extend their
evaluation to RCCS8 in [Knauff et al., 1997].

As in so many other fields of knowledge representa-
tion it is unlikely that a single universal spatial repre-
sentation language will emerge — rather, the best we can
hope for is that the field will develop a library of repre-
sentational and reasoning devices and some criteria for
their most successful application. Moreover, as in the
case of non spatial qualitative reasoning, quantitative
knowledge and reasoning must not be ignored — qualita-
tive and quantitative reasoning are complementary tech-
niques and research is needed to ensure they can be inte-
grated, for example by developing reliable ways of trans-
lating between the two kinds of formalism?2. Equally,
interfacing symbolic QSR to the techniques being devel-
oped by the diagrammatic reasoning community [Glas-
gow et al., 1995] is an interesting and important chal-
lenge.

In this paper I have tried to provide an overview of
the field of qualitative spatial reasoning; however the

22Gome existing research on this problem includes [Forbus
et al., 1987; Fernyhough et al., 1997].

field is active and there has not been space to cover
everything (for example qualitative kinematics [Falt-
ings, 1992]). Another survey is [Mukerjee, 1998] whilst
[Stock, 1997] contains several chapters of interest includ-
ing an introduction by Vieu on spatial representation
and reasoning in AI [Stock, 1997, Chapter 1]. Rele-
vant web sites include the spatial reasoning home page
at http://www.cs.albany.edu/~amit/bib/spatsites.html
and the  spatio-temporal home  page  at:
http://www.cs.aukland.ac.nz/~hans/spacetime/.  An
online searchable web bibliographies can be found at
http://www.cs.albany.edu/~amit/bib/spatial.html.
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