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Abstract. The field of Qualitative Spatial Reasoning is now an active
research area in its own right within AI (and also in Geographical Infor-
mation Systems) having grown out of earlier work in philosophical logic
and more general Qualitative Reasoning in Al In this paper (which is an
updated version of [25]) T will survey the state of the art in Qualitative
Spatial Reasoning, covering representation and reasoning issues as well
as pointing to some application areas.

1 What is Qualitative Reasoning?

The principal goal of Qualitative Reasoning (QR) [129] is to represent not only
our everyday commonsense knowledge about the physical world, but also the
underlying abstractions used by engineers and scientists when they create quan-
titative models. Endowed with such knowledge, and appropriate reasoning meth-
ods, a computer could make predictions, diagnoses and explain the behaviour
of physical systems in a qualitative manner, even when a precise quantitative
description is not available! or is computationally intractable. The key to a
qualitative representation is not simply that it is symbolic, and utilises discrete
quantity spaces, but that the distinctions made in these discretisations are rel-
evant to the behaviour being modelled — i.e. distinctions are only introduced if
they are necessary to model some particular aspect of the domain with respect
to the task in hand. Even very simple quantity spaces can be very useful, e.g.
the quantity space consisting just of {—, 0, +}, representing the two semi-open
intervals of the real number line, and their dividing point, is widely used in the
literature, e.g. [129]. Given such a quantity space, one then wants to be able to
compute with it. There is normally a natural ordering (either partial or total)
associated with a quantity space, and one form of simple but effective inference

! Note that although one use for qualitative reasoning is that it allows inferences to
be made in the absence of complete knowledge, it does this not by probabilistic or
fuzzy techniques (which may rely on arbitrarily assigned probabilities or membership
values) but by refusing to differentiate between quantities unless there is sufficient
evidence to do so; this is achieved essentially by collapsing ‘indistinguishable’ values
into an equivalence class which becomes a qualitative quantity. (The case where
the indistinguishability relation is not an equivalence relation has not been much
considered, except by [86, 83].)



is to exploit the transitivity of the ordering relation. More interestingly, one can
also devise qualitative arithmetic algebras [129]; for example one can perform
addition on the above qualitative quantity space and add ‘4+’ to ‘+’ to get ‘“+’;
however certain operations will in general yield ambiguous results (e.g. adding
‘+’ and ‘=’ yields no information). This is a recurring feature of Qualitative
Reasoning — not surprisingly, reducing the precision of the measuring scale de-
creases the accuracy of the answer. Much research in the Qualitative Reasoning
literature is devoted to overcoming the detrimental effects on the search space
resulting from this ambiguity, though there is not space here to delve into this
work. However one other aspect of the work in traditional Qualitative Reasoning
is worth noting here: a standard assumption is made that change is continuous;
thus, for example, in the quantity space mentioned above, a variable cannot
transition from — to + without first taking the value 0. We shall see this idea
recurring in the work on qualitative spatial reasoning described below.

2  What is Qualitative Spatial Reasoning?

QR has now become a mature subfield of Al as evidenced by its 11th annual
international workshop, several books (e.g. [129] [51],[88]) and a wealth of con-
ference and journal publications. Although the field has broadened to become
more than just Qualitative Physics (as it was first known), the bulk of the work
has dealt with reasoning about scalar quantities, whether they denote the level
of a liquid in a tank, the operating region of a transistor or the amount of
unemployment in a model of an economy.

Space, which is multidimensional and not adequately represented by single
scalar quantities, has only a recently become a significant research area within the
field of QR, and, more generally, in the Knowledge Representation community. In
part, this may be due to the Poverty Conjecture promulgated by Forbus, Nielsen
and Faltings [129]: “there is no purely qualitative, general purpose kinematics”.
Of course, qualitative spatial reasoning (QSR) is more than just kinematics, but
it is instructive to recall their third (and strongest) argument for the conjecture
— “No total order: quantity spaces don’t work in more than one dimension,
leaving little hope for concluding much about combining weak information about
spatial properties”. They correctly identify transitivity of values as a key feature
of a qualitative quantity space but doubt that this can be exploited much in
higher dimensions and conclude: “we suspect the space of representations in
higher dimensions is sparse; that for spatial reasoning almost nothing weaker
than numbers will do”.

The challenge of QSR then is to provide calculi which allow a machine to
represent and reason with spatial entities of higher dimension, without resorting
to the traditional quantitative techniques prevalent in, for example, the computer
graphics or computer vision communities.

Happily, over the last few years there has been an increasing amount of re-
search which tends to refute, or at least weaken the ‘poverty conjecture’. There
is a surprisingly rich diversity of qualitative spatial representations addressing
many different aspects of space including topology, orientation, shape, size and



distance; moreover, these can exploit transitivity as demonstrated by the rel-
atively sparse transitivity tables (cf the well known table for Allen’s interval
temporal logic [129]) which have been built for these representations (actually
‘composition tables’ is a better name for these structures, as explained below).

In the remainder of this paper, first I will mention some possible applications
of QSR, then I will survey the main aspects of the representation of qualitative
spatial knowledge including ontological aspects, topology, distance, orientation,
shape and uncertainty. Then I will move on to qualitative spatial reasoning
including reasoning about spatial change. The paper concludes with a discussion
of theoretical results and a glimpse at future work. This paper is a revised and
updated version of [25]. Although T have tried to cover the main areas of QSR,
this paper is certainly not a comprehensive survey of the subject and there is
much interesting work which unfortunately I have not had space to describe
here.

3 Possible applications of qualitative spatial reasoning

Researchers in qualitative spatial reasoning are motivated by a wide variety of
possible application areas, including: Geographical Information Systems (GIS),
robotic navigation, high level vision, the semantics of spatial prepositions in
natural languages, engineering design, commonsense reasoning about physical
situations, and specifying visual language syntax and semantics. Below I will
briefly discuss each of these areas, arguing the need for some kind qualitative
spatial representation. Other application areas include document-type recogni-
tion [56] and domains where space is used as a metaphor, e.g. [90], [104].

GIS are now commonplace, but a major problem is how to interact with these
systems: typically, gigabytes of information are stored, whether in vector or raster
format, but users often want to abstract away from this mass of numerical data,
and obtain a high level symbolic description of the data or want to specify a
query in a way which is essentially, or at least largely, qualitative. Arguably, the
next generation of GIS will be built on concepts arising from Naive Geography
[47] which requires a theory of qualitative spatial reasoning.

Although robotic navigation ultimately requires numerically specified direc-
tions to the robot to move or turn, this is not usually the best way to plan a route
or other spatially oriented task: the Al planning literature [123] has long shown
the effectiveness of hierarchical planning with detailed decisions (e.g. about how
or exactly where to move) being delayed until a high level plan has been achieved;
moreover the robot’s model of its environment may be imperfect (either because
of inaccurate sensors or because of lack of information), leading to an inability
to use more standard robot navigation techniques. A qualitative model of space
would facilitate planning in such situations. One example of this kind of work is
[89]; another, solving the well known ‘piano mover’s problem’ is [50].

While computer vision has made great progress in recent years in developing
low level techniques to process image data, there is now a movement back (e.g.
[52]) to try to find more symbolic techniques to take the results of these low



level computations and produce higher level descriptions of the scene or video
input; often (part of) what is required is a description of the spatial relationship
between the various objects or regions found in the scene; however the predicates
used to describe these relationships must be sufficiently high level, or qualitative,
in order to ensure that scenes which are semantically close have identical or at
least very similar descriptions.

Perhaps one of the most obvious domains requiring some kind of theory
of qualitative spatial representation is the task of finding some formal way of
describing the meaning of natural language spatial prepositions such as “inside”,
“through”, “to the left of” etc. This is a difficult task, not least because of
the multiple ways in which such prepositions can be used (e.g. [82] cites many
different meanings of “in”); however at least having a formal language at the right
conceptual level enables these different meanings to be properly distinguished.
Examples of research in this area include [4, 128].

Engineering design, like robotic navigation, ultimately normally requires a
fully metric description; however, at the early stages of the design process, it is
often better to concentrate on the high level design, which can often be expressed
qualitatively. The field of qualitative kinematics (e.g. [49]) is largely concerned
with supporting this kind of activity.

The fields of qualitative physics and naive physics [129] have concerned them-
selves with trying to represent and reason about a wide variety of physical situ-
ations, given only qualitative information. Much of the motivation for this was
given above in the section on qualitative reasoning; however traditionally these
fields, in particular qualitative physics, have had a rather impoverished spatial
capacity in their representations, typically restricting information to that which
can be captured along a single dimension; adding a richer theory of qualitative
spatial reasoning to these fields would increase the class of problems they could
tackle.

Finally, the study and design of visual languages, either visual programming
languages or some kind of representation language, perhaps as part of a user
interface, has become rather fashionable; however, many of these languages lack
a formal specification of the kind that is normally expected of a textual pro-
gramming or representation language. Although some of these visual languages
make metric distinctions, often they are predominantly qualitative in the sense
that the exact shape, size, length etc. of the various components of the diagram
or picture are unimportant — rather, what is important is the topological re-
lationship between these components and thus a theory of qualitative spatial
representation may be applicable in specifying such languages [65, 64, 77, 78§].

4 Aspects of qualitative spatial representation

There are many different aspects to space and therefore to its representation:
not only do we have to decide on what kinds of spatial entity we will admit (i.e.
commit to a particular ontology of space), but also we can consider developing
different kinds of ways of describing the relationship between these kinds of



spatial entity; for example we may consider just their topology, or their sizes
or the distance between them, or their shape. Of course, these notions are not
entirely independent as we shall see below.

4.1 Ontology

In developing a theory of space, one can either decide that one will create a
pure theory of space, or an applied one, situated in the intended domain of
application; the question is whether one considers aspects of the domain, such
as rigidity of objects, which would prevent certain spatial relationships, such as
interpenetration, from holding. In order to simplify matters in this paper, we
shall concentrate mainly on pure spatial theories — one could very well argue
that such a theory should necessarily precede an applied one which would be
obtained by extending a purely spatial theory.

Traditionally, in mathematical theories of space, points are considered as
primary primitive spatial entities (or perhaps points and lines), and extended
spatial entities such as regions are defined, if necessary, as sets of points. How-
ever, within the QSR community, there has been a strong tendency to take
regions of space as the primitive spatial entity. There are several reasons for
this. If one is interested in using the spatial theory for reasoning about physical
objects, then one might argue that the spatial extension of any actual physical
object must be region-like rather than a lower dimensional entity. Similarly, most
natural language (non mathematical) uses of the word “point” do not refer to
a mathematical point: consider sentences such as “the point of pencil is blunt”.
Moreover, it turns out that one can define points, if required, from regions (e.g.
[11] following earlier work [16, 130]). Another reason against taking points as
primitive is that many people find it counterintuitive that extended regions can
be composed entirely of dimensionless points occupying no space! However, it
must be admitted that sometimes it is useful to make an abstraction and view a
3D physical entity such as a potholed road as a 2D or even 1D entity. Of course,
once entities of different dimensions are admitted, a further question arises as to
whether mixed dimension entities are to be allowed. Further discussion of this
issue can be found in [27, 73, 26].

Another ontological question is what is the nature of the embedding space,
i.e. the universal spatial entity? Conventionally, one might take this to be R” for
some n, but one can imagine applications where discrete (e.g. [43]), finite (e.g.
[72], or non convex (e.g. non connected) universes might be useful.

Once one has decided on these ontological questions, there are further issues:
in particular, what primitive “computations” will be allowed? In a logical theory,
this amounts to deciding what primitive non logical symbols one will admit with-
out definition, only being constrained by some set of axioms. One could argue
that this set of primitives should be small, not only for mathematical elegance
and to make it perhaps easier to assess the consistency of the theory, but also
because this will simplify the interface of the symbolic system to a perceptual
component resulting in fewer primitives to be implemented; the converse argu-
ment might be that the resulting symbolic inferences may be more complicated



(and thus perhaps slower) and for the kinds of reasons argued for in [79], i.e.
that rather than just a few primitives it is more natural to have a large and rich
set of concepts which are given meaning by many axioms which connect them
in many different ways.

One final ontological question we will mention here is how to model the
multi dimensionality of space? One approach (which might appear superficially
attractive) is to attempt to model space by considering each dimension sepa-
rately, projecting each region to each of the dimensions and reasoning along
each dimension separately; however, this is easily seen to be inadequate: e.g. two
individuals may overlap when projected to both the xz and y axes individually,
when in fact they do not overlap at all.

4.2 Topology

Topology is perhaps the most fundamental aspect of space and certainly one
that has been studied extensively within the mathematical literature. It is of-
ten described informally as “rubber sheet geometry”, although this is not quite
accurate. However, it is clear that topology must form a fundamental aspect of
qualitative spatial reasoning since topology certainly can only make qualitative
distinctions; the question then arises: can one not simply import a traditional
mathematical topological theory wholesale into a qualitative spatial represen-
tation? Although various qualitative spatial theories have been influenced by
mathematical topology, there are a number of reasons why such a wholesale
importation seems undesirable in general [73]; not only does traditional topol-
ogy deal with much more abstract spaces that pertain in physical space or the
space to be found in the kinds of applications mentioned above, but also we are
interested in qualitative spatial reasoning not just representation, and this has
been paid little attention in mathematics and indeed since typical formulations
involve higher order logic, no reasonable computational mechanism would seem
to be immediately obvious.

One exception to the disregard of earlier topological theories by the QSR
community, is the tradition of work to be found in the philosophical logic lit-
erature, e.g. [131, 36, 132, 15, 16, 11]. This work has built axiomatic theo-
ries of space which are predominantly topological in nature, and which are
based on taking regions rather than points as primitive — indeed, this tradi-
tion has been described as “pointless geometries” [61]. In particular the work
of Clarke [15, 16] has lead to the development of the so called RCC systems
[109, 108, 107, 105, 34, 28, 7, 68, 24, 73, 27, 26] and has also been developed
further by [128, 3].

Clarke took as his primitive notion the idea of two regions z and y being
connected (sharing a point, if one wants to think of regions as consisting of sets
of points): C(z, y). In the RCC system this interpretation? is slightly changed to
the closures of the regions sharing a point® — this has the effect of collapsing the

2 A formal semantics for RCC has been given by [69, 37, 121].
# Actually, given the disdain of the RCC theory as presented in [108] for points, a



distinction between a region, its closure and its interior, which it is argued has no
relevance for the kinds of domain with which QSR is concerned (another reason
for abandoning traditional mathematical topology). This primitive is surprisingly
powerful: it is possible to define many predicates and functions which capture
interesting and useful topological distinctions. The set of eight jointly exhaustive
and pairwise digjoint (JEPD) relations illustrated in figure 1 are one particularly
useful set (often known as the RCC8 calculus) and indeed have been defined in
an entirely different way by [42] — see below.

TPP NTPP

Y : - '< ) O
":’P NTPPi

Fig. 1. 2D illustrations of of the relations of the RCC8 calculus and their con-
tinuous transitions (conceptual neighbourhood).

The work of [128, 3] mentioned above is also based on Clarke’s calculus. The
original interpretation of C(z,y) is retained though the general fusion operator
is discarded, it is made first order and several mistakes are corrected. An ad-
ditional predicate WC(x, y) is defined in order to try to model the distinction
between two bodies being ‘joined’ and merely touching — consider the left and
right halves of a table top compared to the table top and a book resting on
it: the former case is modelled by EC(lefthalf righthalf)* whilst the latter by
WC(book,tabletop). WC(z, y) is true when z is connected to the closure of the
topological neighbourhood of y, 1.e. the smallest open region the closure of y is
part of.

Expressiveness of C(x,y) The predicate C(z, yy) can be used to define many
more predicates than simply the RCC8 relations and WC(z, y). For example one
could define predicates which counted the number of times two regions touched.
In a series of papers, [67, 68, 73, 71], Gotts sets himself the task of distinguishing
a ‘doughnut’ (a solid, one-piece region with a single hole). It is shown how
(given certain assumptions about the universe of discourse and the kinds of
regions inhabiting it) all the shapes depicted in Fig.2 can be distinguished. In so
doing he defines many predicates in terms of the C(x, y) primitive, for example
the distinction between being a firm and non firm tangential part (FTPP), i.e
whether the tangential connection is point-like or not. Fig.3 illustrates another

better interpretation, given some suitable distance metric, would be that C(z,y)
means that the distance between z and y is zero, c.f. [121].

* And thus C(lefthalf,righthalf) holds too.



. . ‘ Doughnut with gap

Doughnut (or Solid Torus) Torts (topologicaly, asolid block) Cylinder-surface

Block minus block

A doughnut with a
degenerate hole-surround

Double doughnut Loop  Two doughnuts with degenerate holes

Fig. 2. Tt is possible to distinguish all these shapes using C(z, y) alone.

range of topological distinctions between one-piece (CON) regions that can be
made (under certain assumptions) using C. A region, if it is connected, may
or may not also be interior-connected (INCON), meaning that the interior of
the region is all one piece. It is relatively easy to express this property (or its
converse) in RCC terms. However, INCON(r) does not rule out all regions with
anomalous boundaries, and in particular does not exclude the region at the
right of Fig.3, nor any of the final three cases illustrated in Fig.2, which do
have one-piece interiors, but which nevertheless have boundaries which are not
(respectively) simple curves or surfaces, having ‘anomalies’ in the form of points
which do not have line-like (or disc-like) neighbourhoods within the boundary
(i.e. which are locally Euclidean.)

It appears possible using C(z,y) to define [68] a predicate (WCON) that
will rule out the INCON but anomalous cases of Fig.3, but it is by no means
straightforward,® and it is not demonstrated conclusively in [68] that the defini-
tions do what is intended. One source of the difficulties arising is the fact that
within RCC, since all regions in a particular model of the axioms are of the same
dimensionality as the universal region, u , assuming u itself to be of uniform
dimensionality (this follows from the fact that all regions have an NTPP), there
is no way to refer directly to the boundary of a region or to the dimensionality
of the shared boundary of two EC regions, or to any relations between entities
of different dimensionalities.

5 Note, however, that this task becomes almost trivial once the conv(z) primitive is

M D

CON, INCON and WCON CON, not INCON or WCON  CON and INCON, not WCON

introduced in Section 4.3.

Fig. 3. Types of CON Region



In cases where reasoning about dimensionality becomes important, RCC and
related systems based on a C(z, y) predicate are not very powerful (and to reason
about regions of different dimensionality is impossible with out imposing a sort
structure and essentially taking a copy of the theory for each dimension-sort).
To remedy this Gotts proposed a new primitive INCH(z,y), whose intended
interpretation is that spatial entity x includes a chunk of y, where the included
chunk is of the same dimension as z. The two entities may be of differing (though
uniform) dimension. Thus if z is line crossing a 2D region y, then INCH(xz,y) is
true, but not vice versa. It is easy to define C(z,y) in terms of INCH, but not
vice versa, so the previous RCC system can be defined as a sub theory. An initial
exposition of this theory can be found in [70].

Another proposal addressing the problem of representing and reasoning about
regions of differing dimensionality (though still not of mixed dimensionality) is
[59]. Here, two primitives are proposed, the mereological part relation, P(z, y),
and a boundary operator, B(z,y) — # is the boundary of y (being a region of
one less dimension). This follows on from other theories which introduce bound-
aries of regions explicitly (e.g. [119, 120, 125, 109]) but which did not explicitly
introduce dimensional reasoning.

Topology via “n-intersections” An alternative approach to representing and
reasoning about topological relations has been promulgated via series of papers
(e.g.[23, 39, 41, 41, 40, 46, 42]). In the most recent calculus three sets of points
are associated with every region — its interior, boundary and complement; the
relationship between two regions can be characterized by a 3x3 matrix,® called
the 9-intersection, each of whose elements denotes whether the intersection of the
corresponding sets from each region are empty or not. Although it would seem
that there are 2° = 512 possible matrices, after taking into account the physical
reality of 2D space and some specific assumptions about the nature of regions,
which can then be translated into constraints between the matrix values, it turns
out that there are exactly 8 remaining matrices, corresponding to the eight RCC8
relations. One can use this calculus to reason about regions which have holes by
classifying the relationship not only between each pair of regions, but also the
relationship between each hole of each region and the other region and each of its
holes [45]. By changing the underlying assumptions about what a region is, and
by allowing the matrix to represent the codimension of the intersection, different
calculi with more JEPD relations can be derived. For example, one may derive a
calculus for representing and reasoning about regions in Z2 rather than R? [43] —
there are 16 possible matrices representing the set of JEPD relations in this case.
Alternatively, one can extend the representation by noting in each matrix cell
the dimension of the intersection rather than simply whether it exists or not [17];
this allows one to enumerate all the relations between areas, lines and points —

¢ Actually, a simpler 2x2 matrix [41], known as the 4-intersection, featuring just the
interior and boundary is sufficient to describe the eight RCC relations; however the
3x3 matrix allows more expressive sets of relations to be defined as noted below since
it takes into account the relationship between the region and its embedding space.



this extension is known as the “dimension extended method (DEM)”. [22] have
noted the very large number of possible relationships that may be defined in
this way and have proposed a way (which they call the “calculus based method
(CBM)”, to generate all these from a set of five polymorphic binary relations
between a pair of spatial entities z and y: disjoint, touch (a/a, 1/1,1/a, p/a, p/l),
in, overlap (a/a, 1/1), cross (restrictions on the arguments are denoted by the
notation «/f, e.g. a/a meaning that both arguments must be areal, p/p that
they must be points and 1/1 that they must both be linear). In addition, operators
are introduced to denote the boundary of a region and the two endpoints of a
non circular line. A complex relation between x and y may then formed by
conjoining atomic propositions formed by using one of the five relations above,
whose arguments may be either be z or y or a boundary or endpoint operator
applied to z or y. [22] have analysed the number of JEPD relations relations)
for each of the techniques mentioned above (4- and 9-intersections, DIM and
CBM). For the most expressive calculus (either the CBM or the combination of
the 9-intersection and the DIM), there are 9 area/area relations, 31 line/area
relations; 3 point/area relations, 33 line/line relations, 3 point/line relations and
2 point/point relations giving a grand total of 81.

Mereology and Topology Although mereology (being the theory of the part-
whole relationship) would seem at first sight simply to be a subtheory of topology
(and indeed is presented thus in the topological theories mentioned so far in this
section), there are arguments against this view. Varzi [126] has discussed the
issue and notes that whilst certain mereology is not sufficient by itself, there are
three main ways in which theories in the literature have proposed integrating
topology and mereology:

1. Generalise mereology by adding a topological primitive. This is the approach
taken by, for example, [12] who add the topological primitive SC(x), i.e. z is
a self connected (one-piece) spatial entity to the mereological part relation.
Alternatively a single primitive can be used to as in [125]: “z and y are con-
nected parts of z. Generally, this approach forces the existence of boundary
elements (i.e. spatial entities of lower dimensions). The main advantage of
separate theories of mereology and topology is that it allows colocation with-
out sharing parts which is not easily possible in the second two approaches
below.

2. Topology is primal and mereology is a sub theory. For example in the topo-
logical theories based on C(z, y), such as those mentioned above, one defines
P(z,y) from C(z,y). This has the elegance of being a single unified the-
ory, but colocation implies sharing of parts. These theories are normally
boundaryless (i.e. without lower dimensional spatial entities) but this is not
absolutely necessary [109, 70]. Thus, for example EC(z,y) not necessarily
explained by sharing a boundary.

3. The final approach is that taken by [48], i.e. topology is introduced as a
specialised domain specific sub theory of mereology. Of course an addi-
tional primitive needs to be introduced since mereology alone is not powerful



enough to define topology. The idea is to use restricted quantification by in-
troducing a sortal predicate Region(z). C(z,y) can then be defined thus:
C(z,y) = 4¢ O(z,y) A Region(z) A Region(y).

4.3 Between Topology and Fully Metric Spatial Representation

Topology can be seen as perhaps the most abstract and most qualitative spatial
representation, furthest removed from fully metric representations. However it
is clear that although potentially useful there many be many domains where
topological information alone is insufficient but it would still be desirable to have
a qualitative representation. In the following subsections a selection of different
ways of add qualitative non topological information are presented.

Orientation Orientation is a naturally qualitative property: in 2D it is very
common to talk about clockwise or anticlockwise orientation for instance. How-
ever, unlike most of the topological relations on spatial entities mentioned above,
orientation is not a binary relation — at least three elements need to be specified
to give an orientation between two of them (and possibly more in dimensions
higher than 2D). If we want to specify the orientation of a primary object (PO)
with respect to a reference object (RO), then we need some kind of frame of ref-
erence (FofR). An eztrinsic frame of reference imposes an external, immutable
orientation: e.g. gravitation, a fixed coordinate system, or an third object (such
as the North pole). A deictic frame of reference is with respect to the “speaker”
or some other internal observer. Finally, an intrinsic frame of reference exploits
some inherent property of the RO — many objects have a natural “front”, e.g.
humans, buildings and boats. This categorization manifests itself in the display
of qualitative orientation calculi to be found in the literature: certain calculi have
an explicit triadic relation while others presuppose an extrinsic frame of reference
and, for example, use compass directions [54, 80]. Of those with explicit triadic
relations is it especially worth mentioning the work of Schlieder [114] (following
earlier work [66]) who develops a calculus based on a function which maps triples
of points to one of three qualitative values, 4+ | 0 or -, denoting anticlockwise,
colinear and clockwise orientations respectively. This can be used for reasoning
about visible locations in qualitative navigation tasks, or for shape description
[116] or to develop a calculus for reasoning about the relative orientation of pairs
of line segments [115] — see figure 4. Schlieder also notes that the notion of a per-
mutation sequence [66] subsumes this framework. In this representation, given
a set of points and directed lines connecting them, one chooses a new directed
line [, not orthogonal to any existing line and notes the order of all the points
projected onto !. One then rotates ! counterclockwise until order of projection
changes. As ! continues to rotate, one will generate further permutations of the
set of points.

Another important triadic orientation calculus is that of Roehrig [113]; this
calculus is based on a relation CYCORD(x, y, z) which is true (in 2D) when
z,y, z are in clockwise orientation. Roehrig shows how a number of qualitative



calculi (not only orientation calculi) can be translated into the CYCORD system,
whose reasoning system (implemented as a constraint logic program) can then
be exploited.

Fig. 4. The 14 JEPD relations of Schlieder’s oriented line segment calculus and
their conceptual neighbourhood.

Distance and size Distance and size are related in the sense that traditionally
we use a linear scale to measure each of these aspects, even though distance is
normally thought of as being a one dimensional concept, whilst size is usually
associated with higher dimensional measurements such as area or volume. The
domain can influence distance measurements, as we shall see below, but first I
will discuss pure spatial representations. These can be divided into two main
groups: those which measure on some “absolute” scale, and those which pro-
vide some kind of relative measurement. Of course, since traditional Qualitative
Reasoning [129] is primarily concerned with dealing with linear quantity spaces,
the qualitative algebras and the transitivity of such quantity spaces mentioned
earlier can be used as a distance or size measuring representation.

Also of interest in this context are the order of magnitude calculi [95, 102]
developed in the QR community. These calculi introduce measuring scales which
allow one quantity to be described as being much larger than another, with
the consequence that it requires summing many (in some formulations even an
infinite number) of the former quantities in order to surpass the second, “much
larger” quantity. Most of these “traditional QR” formalisms are of the “absolute”
kind of representations mentioned above’ as is the Delta calculus [134] which
introduces a triadic relation,z(>,d)y: « is larger/bigger than y by amount d;
terms such as #(>, y)y mean that x is more than twice as big as y.

Of the ‘relative’ representations specifically developed within the spatial rea-
soning community, perhaps the first is the calculus proposed by de Laguna [36],

7 Actually it is usually straightforward to specify relative measurements given an “ab-
solute” calculus: to say that z > y, one may simply write z — y = +.



which introduces a triadic CanConnect(z,y, z) primitive, which is true if the
body # can connect y and z by simple translation (i.e. without scaling, rotation
or shape change). From this primitive it is quite easy to define notions such as
equidistance, nearer than, and farther than (as well as the C(z, y) relation). Also
note that this primitive allows a simple size metric on regions to be defined: one
region is larger than another if it can connect regions that the other cannot.
Another technique to determine the relative size of two objects was proposed
by Mukerjee and Joe [97] and relies on being able to translate regions (assumed
to be shape and size invariant) and then exploit topological relationships — if
a translation is possible so that one region becomes a proper part of another,
then it must be smaller. Interestingly, these seem to be about the only proposals
which are grounded in a region based theory — all the other representations men-
tioned in this section take points as their primitive spatial entity. An interesting
question arises in the case of distances between regions as to where to measure
to/from — in the formalisms mentioned above the closest distance is taken, but
alternatively one might be interested in the distance between centroids or some
other distinguished subregion or point.

Distance is closely related to the notion of orientation: e.g. distances cannot
usually be added unless they are in the same direction, and the distance between
a point and region may vary depending on the orientation. Thus it is perhaps
not surprising that there have been a number of calculi which are based on a
primitive which combines distance and orientation information. Arguably, unless
both of these aspects are represented then the calculus is not really a calculus of
distance, though it might be said that this is a calculus of position rather than
mere distance.

One straightforward idea [54] is to combine directions as represented by seg-
ments of the compass with a simple distance metric (far, close). A slightly more
sophisticated idea is to introduce a primitive which defines the position of a third
point with respect to a directed line segment between two other points [135] —
see figure 5. A calculus which combines the Delta calculus and orientation is
presented in [133].
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Fig. 5. There are 15 qualitatively different positions a point ¢ (denoted by the
shaded circles) can be with respect to a vector from point a to point b. Some
distance information is represented, for example the darker shaded circles are in
the same orientation but at different distances from ab.

The most sophisticated qualitative distance calculus to date is the framework
for representing distances [81] which has been extended to include orientation[21].
In this framework a distance is expressed in a particular frame of reference (FofR)



between a primary object (PO) and a reference object (RO). A distance system
is composed of an ordered sequence of distance relations (between a PO and an
RO), and a set of structure relations which give additional information about
how the distance relations relate to each other (apart from their distance order-
ing given implicitly by the ordered sequence). Each distance has an acceptance
area (which in the case of an isotropic space will be a region the same shape as
the PO, concentrically located around the PO); the distance between successive
acceptance areas defines a sequence of intervals: d;, do, .... The structure relations
define relationships between these §;. Typical structure relations might specify
a monotonicity property (the d; are increasing), or that each J; is greater than
the sum of all the preceding §;. The structure relationships can also be used
to specify order of magnitude relationships, e.g. that d; + d; ~ d; for j < 4.
The structure relationships are important in refining the composition tables (see
below). In a homogeneous distance system all the distance relations have the
same structure relations; however this need not be the case in a heterogeneous
distance system. The proposed system also allows for the fact that the context
may affect the distance relationships; this is handled by having different frames
of reference, each with its own distance system and with inferences in different
frames of reference being composed using articulation rules (cf. [83]). Analo-
gously to orientation calculi, intrinsic, extrinsic and deictic frames of reference
can be distinguished.

It is possible that different qualitative distance calculi (or FofR) might be
needed for different scale spaces — Montello [96] suggests that there are four
main kinds of scale of space, relative to the human body: figural space pertains
to distances smaller than the human body and which thus can be perceived
without movement (e.g. table top space and pictures); vista space is similar but
pertains to spaces larger than the human body, making distortions more likely;
environmental space cannot be perceived without moving from one location to
another; finally, geographic space cannot be properly apprehended by moving —
rather it requires indirect perception by a (figural space) map. One obvious effect
of moving from one scale, or context to another, is that qualitative distance terms
such as “close” will vary greatly; more subtly, distances can behave in various
“non mathematical” ways in some contexts or spaces: e.g. distances may not be
symmetrical — e.g. because distances are sometimes measured by time taken to
travel, and an uphill journey may take longer than the return downhill journey.
Distance may easily become non isotropic when time taken to travel is used
as a distance measure (i.e. travel in certain directions may take a longer time
compared to the actual distance) — e.g. a fast East-West highway will tend to
reduce east west travel time[81]. Another “mathematical aberration” is that in
some domains the shortest distance between two points may not be a straight
line (e.g. because a lake or a building might be in the way,). Human perception
of distance can also be distorted — [84] reports experiments which show that
cities on the west coast of the USA are viewed as being relatively closer when
imagined from the east coast compared to east coast cities and vice versa when
the viewpoint is changed to the other coast.



Shape As mentioned above, one can think of theories of space as forming a
hierarchy ordered by expressiveness (in terms of the spatial distinctions made
possible) with topology at the top and a fully metric/geometric theory at the
bottom. Clearly in a purely topological theory only very limited statements can
be made about the shape of a region: whether it is has holes (in the sense that a
torus has a hole), or interior voids, or whether it is in one piece or not — we have
already described this kind of work in section 4.2 above. [60] has observed that
one can (weakly) constrain the shape of rigid objects by topological constraints
using RCC8: congruent shapes can only ever be DC, EC, PO or EQ; if one shape
can just fit inside the other then they can only ever be DC, EC, PO, TPP; if one
shape can easily fit inside the other then they can only ever be DC, EC or PO;
whilst incommensurate shapes must be DC, EC or PO.

However, if one’s application demands finer grained distinctions than these,
then some kind of semi-metric information has to be introduced®; there is a
huge choice of possible primitives for extending topology with some kind of
shape primitives whilst still retaining a qualitative representation (i.e. not be-
coming fully metric). Of course, as [20] note, the mathematical community have
developed many different geometries which are less expressive than Euclidean
geometry, for example projective and affine geometries, but have not necessar-
ily developed efficient computational reasoning techniques for them®. The QSR
community has only just started exploring the various possibilities; below we
briefly describe some of the approaches.

There are a number of ways to classify these approaches; one distinction is
between those techniques which constrain the possible shapes of a region and
those that construct a more complex shaped region out of simpler ones (e.g. along
the lines of constructive solid geometry [111], but perhaps starting from a more
qualitative set of primitives). An alternative dichotomy can be drawn between
representations which primarily describe the boundary of an object compared
to those which represent its interior (e.g. symmetry based techniques). Arguably
[13], the latter techniques are preferable since shape is inherently not a one
dimensional concept.

Examples of approaches which work by describing the boundary of an object
include those that classify the sequence different types of boundary segments
(curving in/out, angle in/out, cusp in/out, straight) [112] or by describing the
sequence of different kinds of curvature extrema[91] along its contour. Another
related approach would be to pick out distinguished points on the boundary of
the object (such as corners) and relate every triple of such points by using the
qualitative orientation calculus described in the previous section (i.e. the shape
description would consist of a sequence of -/0/+ symbols, one for each triple
of distinguished points). Yet another technique is described by [85] who uses
a slope projection approach to describe polygonal shape: for each corner, one

8 Of course, the orientation and distance primitives discussed above already add some-
thing to pure topology, but as already mentioned these are largely point based and
thus not directly applicable to describing region shape.

° Though see [5, 6].



describes whether it is convex/concave,obtuse/right-angled/acute together with
a qualitative representation of the direction of the corner (chosen from a set of
9 possible values).

One approach of the latter kind is to make use of a shape abstraction prim-
itive such as the bounding box or the convex hull. Both these techniques have
been considered briefly within the n-intersection model [19] whilst the latter tech-
nique has been investigated extensively within the RCC calculus. The distinction
between convex and concave regions seems fundamental to shape description. °
RCC theory has shown that many interesting predicates can be defined once
one takes the notion of a convex hull of a region (or equivalently, a predicate
to test convexity) and combines it with the topological representation. By com-
puting the topological relationships between the shape itself and the different
components of the difference between the convex hull and the shape, one can
distinguish many different kinds of concave shapes [24]. A refinement to this
technique exploits the idea of recursive shape description [118] to describe any
non convex components of the difference between the convex hull and the shape.
One can also develop many sets of JEPD predicates to relate pairs of regions
which directly exploit the convex hull function; such predicates give another ap-
proach to shape description: one constrains the shape of a region by specifying
its relationships to other regions[33].

The convex hull is clearly a powerful primitive and in fact it has recently
been shown [35] that this system essentially is equivalent to an affine geometry:
any two compact planar shapes not related by an affine transformation can be
distinguished by a constraint language of just EC(z), PP(z) and Conv(z).

Various different notions of the inside of a region can be distinguished using
a convex hull primitive [24, 33] — these can all be viewed as different kinds of
hole. A very interesting line of research [14, 127] has investigated exactly what
holes are and proposes an axiomatisation of holes based on a new primitive:
Hosts(z,y) — which is true if the body x hosts hole y; note that this is not a
theory of pure space: holes cannot host other holes, only physical objects can
act as hosts.

Another recent proposal [12] is to take the notion of two regions being con-
gruent as primitive; from this it is possible to define the notion of a sphere, and
then import Tarski’s theory of spheres and related definitions such as ‘between-
ness’ [122]. That this theory is more powerful than one just with convex hull is
shown by the fact convexity can now be defined in a congruence based system,
whilst the reverse is not the case. Also of interest in this paper is the idea of
using a “grain” to eliminate small surface irregularities which might distort the
shape description.

The notion of a Voronoi hull has also been used as an approach to qualitative
shape description [38]. A set of voronoi regions are computed by drawing lines

10 Note that topology only allows certain rather special kind of non convex regions to be
distinguished, and in any case does not allow the concavities to be explicitly referred
to — it is a theory of ‘holed regions’, rather than of holes per se — the distinction
between “hole realist” and “irrealist” theories has been made by [14].



equidistant from each pair of closest objects under consideration. Notions such
as proximity, betweenness, inside/outside, amidst can all be addressed by this
technique.

Finally, before leaving the topic of shape description we should point out
the work of [20] on describing shape via properties such as compactness and
elongation by using the minimum bounding rectangle of the shape and the order
of magnitude calculus of [95]: elongation is computed via the ratio of the sides
of the minimum bounding rectangle whilst compactness by comparing the are
of the shape and its minimum bounding rectangle.

4.4 Uncertainty and Vagueness

In many applications uncertainty and vagueness, for example because of indeter-
minate region boundaries are endemic. Such vagueness may arise for a number
of reasons, perhaps because of ignorance, i.e. lack of data (e.g. sample oil well
drillings) or because of temporal variation (e.g. tidal regions, a flood plain, or a
river changing its course), or indeterminacy may arise because of ‘field variation’
(e.g. the one soil type may gradually change into another) or a region might dis-
play what one might term ‘intrinsic vagueness’ (e.g. ‘southern England’ might
be so regarded since one could never agree as to what determined this region
except by some arbitrary process).

Even though any qualitative calculus already makes some attempt to repre-
sent and reason about uncertainty because the qualitative abstraction hides some
indeterminacy, sometimes some extra mechanism may be required. Of course, it
is always possible to glue on some standard numerical technique for reasoning
about uncertainty (e.g. [57]), but there has also been some research on extend-
ing existing qualitative spatial reasoning techniques to explicitly represent and
reason about uncertain information. For example, a GISDATA workshop on rep-
resenting and reasoning about regions with indeterminate boundaries generated
two papers [31, 18] which extended the RCC calculus and the 9-intersection in
very similar ways to handle these kind of regions.

The former approach, which is continued in a series of papers [30, 29, 32]
postulates the existence of non crisp regions in addition to crisp regions and
then adds another binary relation to RCC — z is crisper than region y. A variety
of relations are then defined in terms of this primitive and this extended theory
is then related to what has become known as the “egg-yolk” calculus which
originated in [90] and models regions with indeterminate boundaries as a pair of
regions: the ‘yolk’, which is definitely part of the region and the ‘white’, which
may or may not be part of the region. It turns out that if one generalises RCC8
in this way [32] there are 252 JEPD relations between non crisp regions which
can be naturally clustered into 40 sets.

The latter approach looks very similar to the egg-yolk calculus but does not
consider such a fine granularity of relations; it postulates 44 JEPD relations, also
clustered into groups (18 in their case) but using a more ad hoc technique to
achieve this. An interesting extension to this work [19] shows that this calculus of
regions with broad boundaries can be used to reason not just about regions with



indeterminate boundaries but also can be specialised to cover a number of other
kinds of regions including convex hulls of regions, minimum bounding rectangles,
buffer zones and rasters (this last specialisation generalises the application of the
n-intersection model to rasters previously undertaken by [43]).

Other approaches to spatial uncertainty are to work with an indistinguisha-
bility relation which is not transitive and thus fails to generate equivalence classes
[124, 86] and the development of nonmonotonic spatial logics [117, 2].

5 Qualitative spatial reasoning

Although much of the work in QSR has concentrated on representational as-
pects, various computational paradigms are being investigated including con-
straint based reasoning (e.g. [80]). However, the most prevalent form of quali-
tative spatial reasoning is based on the composition table (originally known as
a transitivity table [1], but now renamed since more than one relation is in-
volved and thus it is relation composition rather than transitivity which is being
represented). Given a set of n JEPD relations, the n x n composition table
specifies for each pair of relations R1, and R2 such that R1(a,b) and R2(b,¢)
hold, what the possible relationships between a and ¢ could be. In general, there
will be a disjunction of entries, as a consequence of the qualitative nature of
the calculus. Most of the calculi mentioned in this paper have had composition
tables constructed for them, though this has sometimes posed something of a
challenge [106]. One approach to the automatic generation of composition tables
has been to try to reduce each calculus to a simple ordering relation [113]. An-
other, perhaps more general approach, is to formulate the calculus as a decidable
theory (many calculi, e.g. the original RCC system, are presented as first order
theories), ideally even as a tractable theory, and then use exhaustive theorem
proving techniques to analyze and thus generate each composition table entry.
A reformulation of the RCC first order theory in a zero order intuitionistic logic
11 17] was able to generate the appropriate composition tables automatically;
another approach would have been been to use a zero order modal logic [9].

Composition tables provide a very efficient form of reasoning and have cer-
tainly been the mostly commonly used form of qualitative spatial inference but
they do not necessarily subsume all forms of desired reasoning. For example,
reasoning with just three objects at a time will not necessarily determine all in-
consistent situations in some calculi. An interesting question then arises: exactly
when is composition table reasoning a sufficient inference mechanism (i.e. for
which theories is it complete)[10]?

For cases when composition table based reasoning is not sufficient, then other
more general constraint based reasoning may be sufficient[80, 76]; more gener-
ally one may resort to theorem proving, or preferably, some kind of specialised
theorem proving system[7, 113] for example.

' This reformulation is interesting in that it becomes a true spatial logic, rather than
a theory of space: the “logical symbols” have spatial interpretations, e.g. implication
is interpreted as parthood and disjunction as the sum of two regions.



5.1 Reasoning about Spatial Change

So far we have been concerned purely with static spatial calculi, so that we
can only represent and reason about snapshots of a changing world. It is thus
important to develop calculi which combine space and time in an integrated
fashion.

There are many kinds of spatial change: individual spatial entities may change
their topological structure, their orientation, their position, their size or shape.
Such changes are not necessarily independent and of course change in one spatial
entity may engender a change in its spatial relationship to other entities.

Topological changes in ‘single’ spatial entity include: change in dimension
(this is usually ‘caused’ by an abstraction or granularity shift rather than an ‘ac-
tual’ spatial change!?; change in number of topological components (e.g. breaking
a cup, fusing blobs of mercury); change in the number of tunnels (e.g. drilling
through a block of wood); change in the number of interior cavities (e.g. putting
a lid on a container). Such changes may also simultaneously effect changes in
position, size, shape, and orientation as well as in topology (e.g. consider drilling
a hole in a block of wood).

In many domains we assume that change is continuous!3, as is the case in
traditional qualitative reasoning, and thus there is a requirement to build into
the qualitative spatial calculus which changes in value will respect the underlying
continuous nature of change, and this requirement is of course common to all the
different kinds of spatial change we have mentioned above. It is thus important
to know which qualitative values or relations are neighbours in the sense that if a
value or predicate holds at one time, then there is some continuous change possi-
ble such that the next value or predicate to hold will be a neighbour. Continuity
networks defining such neighbours are often called conceptual neighbourhoods
in the literature following the use of the term [55] to describe the of structure
Allen’s 13 JEPD temporal relations [1] according to their conceptual closeness
(e.g. meets is a neighbour of both overlaps and before). Most of the qualita-
tive spatial calculi reported in this paper have had conceptual neighbourhoods
constructed for them; see figures 1 and 4 for example'®.

Perhaps the most common form of computation in the traditional QR litera-
ture is qualitative simulation; using conceptual neighbourhood diagrams is quite
easy to build a qualitative spatial simulator [34]. Such a simulator takes a set of
ground atomic statements describing an initial state!® and constructs a tree of

12 B.g. we may view a road as being a 1D line on a map, a 2D entity when we consider
whether it is wide enough for an outsize load, and a 3D entity as we consider the
range of mountains it passes over, or the potholes and a particularly delicate cargo.
Sometimes changes are discontinuous, e.g. when political fiat moves the boundaries
of geopolitical entities in a discontinuous manner.

A close related notion is that of “closest topological distance” [44] — two predicates
are neighbours if their respective n-intersection matrices differ by fewer entries than
any other predicates; however the resulting neighbourhood graph is not identical to
the true conceptual neighbourhood or continuity graph — some links are missing.

!5 The construction of an envisioner [129] rather than a simulator would also be possible

13
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future possible states — the branching of the tree results from the ambiguity of
the qualitative calculus. Of course, continuity alone does not provide sufficient
constraints to restrict the generation of next possible states to a reasonably small
set in general — domain specific constraints are required in addition. These may
be of two kinds: intra state constraints restrict the spatial relationships that may
hold within any state whilst inter state constraints restrict what can hold be-
tween adjacent states (or in general, across a sequence of states). Both of these
constraint types can be used to prune otherwise acceptable next states from the
simulation tree. Additional pruning is required to make sure that each state is
consistent with respect to the semantics of the calculus (e.g. that there is no
cycle of proper part relationships) — the composition table may be used for this
purpose.

A desirable extension, by analogy with earlier QR work, would be to incor-
porate a proper theory of spatial processes couched in a language of QSR; some
work in this direction is reported in: [93] who considers a field based theory of
spatial processes such as heat flow; [44] who consider which traversals of their
version of the conceptual neighbourhood diagram for an 8 relation topological
calculus analogous to RCC8 correspond to processes such as expansion of a re-
gion, rotation of region etc; [91] considers how the processes of protrusion and
resistance cause changes in his boundary based shape description language men-
tioned in section 4.3 above — given two shapes he can then infer sequences of
processes which could cause one to change into the other. Also worthy of note is
the qualitative spatial simulation work of [103] based on the QSIM system [129].

One problem is that the conceptual neighbourhood is usually built manually
for each new calculus — a sometimes arduous and error prone operation if there
are many relations; techniques to derive these automatically would be very use-
ful. An analysis of the structure of conceptual neighbourhoods is reported by
Ligozat [92] goes some way towards this goal. A more foundational approach
which exploits the continuity of the underlying semantic spaces has been inves-
tigated by [58] — this analysis not only allows the construction of a conceptual
neighbourhood for a class of relations from a semantics, but also infers which
relations dominate other relations: a relation R; dominates Ro if R can hold
over an interval followed/preceded by R; instantaneously. E.g. in RCC8 TPP
dominates NTPP and PO, while EQ dominates all of its neighbouring relations.
Dominance is analogous to the equality change law to be found in traditional
QR [129] and allows a stricter temporal order to be imposed on events occurring
in a qualitative simulation.

5.2 Theoretical results in QSR

There are a number of theoretical questions of interest. Not all calculi have been
given a formal semantics by their inventors and even for those that have there is
the question of whether it is the best or simplest semantics. Given a semantics
one can ask whether the task of showing a set of formulae is consistent or whether

of course. See also the transition calculus approach of [63].



one set entails another is decidable, and if it is what is the complexity of the
decision procedure. One can ask if a theory is complete, either in the weak sense
of every true formula being provable, or the stronger sense of whether every
formula is made either true or false in the theory. Obviously, complete first order
theories are also decidable. Finally, there is the property of being categorical,
i.e. whether all models are isomorphic? Since theories may have both finite and
infinite models, a more interesting property is Ny categoricity, i.e. whether all
infinite models are isomorphic.

[100] set out to answer the question as to whether there is something special
about region based theories from the ontological viewpoint? They believe the
answer is in the negative, at least for 2D mereotopology: they show, under certain
assumptions, that the standard 2D point based interpretation is simplest model
(prime model) proved under assumptions; the only alternative models involve
regions with infinitely many pieces. But it may be argued, that it is still useful
to have region based theories even if they are always interpretable point set
theoretically.

A fundamental result on decidability which has widespread applicability in
qualitative spatial theories is that of [75] which shows that although of course
Boolean algebra is decidable, adding either a closure operation or an external
connection relation results in an undecidable system since one can then encode
arbitrary statements of arithmetic. This implies that Clarke’s calclus and all the
related calculi such as the first order theory of RCC, and the calculi of [3] and
[12] are all undecidable.

The question then becomes whether there are any decidable subsystems? 16
The constraint language of RCC8 has been shown to be decidable [7] — this was
achieved by encoding each RCCS8 relation as a set of formulae in intuitionistic
propositional calculus which is a decidable calculus. This language was subse-
quently shown to be tractable [98] — in fact the satisfaction problem is solvable
in polylogarithmic time since it is in the complexity class N C'. However the con-
straint language of 2f8€C® (i.e. where constraints may be arbitrary disjunctions
of RCCS8 relations) is not tractable, though some subsets are tractable — [110]
have identified a maximal tractable subset of the constraint language of 28¢¢8
and furthermore have shown that for path consistency is sufficient for deciding
consistency in this case. As in the case of identifying the maximal tractable sub-
set of Allen’s interval calculus [99], the analysis relies on an exhaustive computer
generated case analysis. Also of interest is the analysis of [74] which considers an
RCC8-like calculus and two simpler calculi and determines which of a number of
different problem instances of relational consistency and planar realizability are
tractable and which are not — the latter is the harder problem. It has also been
shown that the constraint language of EC(z), PP(z) and Conv(z) is intractable
(it is at least as hard as determining whether a set of algebraic constraints over
the reals is consistent) [35].

Clarke’s system has been given a semantics (regular sets of Euclidean space

6 Rather in the same manner as the description logic community have sought to find
the line dividing decidability from undecidability and tractability from intractability.



are models) and has been shown to be complete in the weak sense [11]. Unfortu-
nately it turns out that contrary to Clarke’s intention, only mereological relations
are expressible! The theory in fact characterises complete atomless Boolean al-
gebra. The system of [3] which corrects the problems in Clarke as mentioned
above, is given a semantics and shown to be complete by the authors but their
inclusion of the notion of ‘weak connection’ forces a non standard model since
models must be non dense. 17

A completeness result (in the strong sense) has been derived by [101] who
give a complete 2D topological theory whose elements are 2D finite (polygonal)
regions and whose primitives are: the null and universal regions, the Boolean
functions (4,*,—), and a predicate to test for a region being one piece. The
theory is first order but requires an infinitary rule of inference (which is not
surprising in view of the undecidability of first order topology mentioned above
[75]. The infinitary rule of inference guarantees the existence of models in which
every region is sum of finitely many connected regions. The resulting theory is
complete but not decidable.

Notwithstanding the attempt [8] to derive a complete first order topological
theory, it is now clear that no first order finite axiomatisation of topology can
be complete or categorical because it is not decidable.

6 Final comments

An issue which has not been much addressed yet in the QSR literature is the issue
of cognitive validity — claims are often made that qualitative reasoning is akin to
human reasoning, but with little or no empirical justification; one exception to
this work is the study made of a calculus for representing topological relations
between regions and lines [94] where native speakers of several different languages
were asked to perform tasks in which they correlated spatial expressions such
as “the road goes through the park” with a variety of diagrams which depicted
a line and a region which the subjects were told to interpret as as road and a
park. Another study is [87] which has investigated the preferred Allen relation
(interpreted as a 1D spatial relation) in the case that the composition table entry
is a disjunction. Perhaps the fact that humans seem to have a preferred model
explains why they are able to reason efficiently in the presence of the kind of
ambiguity engendered by qualitative representations.

As in so many other fields of knowledge representation it is unlikely that a
single universal spatial representation language will emerge — rather, the best
we can hope for is that the field will develop a library of representational and

17 This enforced abandonment of R™ as a model leads one to question whether it is
indeed a good idea to try to model the proposed distinction between strong and weak
connection topologically in a purely spatial theory, rather than in an applied theory
of physical bodies and material substances together with the regions they occupy. It
should be pointed out that they do propose an extension to their theory in which
they allow the spatial granularity to be varied; as finer and finer granularities are
considered, so fewer instances of WC(z, y) are true and in the limit the theory tends
to the classical topological model.



reasoning devices and some criteria for their most successful application. More-
over, as in the case of non spatial qualitative reasoning, quantitative knowledge
and reasoning must not be ignored — qualitative and quantitative reasoning are
complementary techniques and research is needed to ensure they can be inte-
grated, for example by developing reliable ways of translating between the two
kinds of formalism'®. Equally, interfacing symbolic QSR to the techniques being
developed by the diagrammatic reasoning community [62] is an interesting and
important challenge.

In this paper I have tried to provide an overview of the field of quali-
tative spatial reasoning; however the field is active and there has not been
space to cover everything (for example qualitative kinematics [49]). A Euro-
pean funded Human Capital and Mobility Network, Spacenet, links together
eleven sites working in the field of qualitative spatial reasoning and the web page
(http://www.scs.leeds.ac.uk /spacenet/) provides an entry to point to the ongo-
ing work at these sites and elsewhere. Other relevant web sites include the spatial
reasoning home page at http://www.cs.albany.edu/~amit/bib/spatsites.html and
the spatio-temporal home page at: http://www.cs.aukland.ac.nz/~hans/spacetime/.
An online searchable web bibliographies can be found at
http://www.cs.albany.edu/~amit/bib/spatial html.
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