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Abstract. This chapter surveys the work of the qualitative spatial reason-
ing group at the University of Leeds. The group has developed a number
of logical calculi for representing and reasoning with qualitative spatial re-
lations over regions. We motivate the use of regions as the primary spatial
entity and show how a rich language can be built up from surprisingly few
primitives. This language can distinguish between convex and a variety of
concave shapes and there is also an extension which handles regions with
uncertain boundaries. We also present a variety of reasoning techniques,
both for static and dynamic situations. A number of possible application
areas are briefly mentioned.

1. Introduction

Qualitative Reasoning (QR) has now become a mature subfield of Al as
its tenth annual international workshop, several books (e.g. (Weld and
De Kleer 1990, Faltings and Struss 1992)) and a wealth of conference
and journal publications testify. QR tries to make explicit our everyday
commonsense knowledge about the physical world and also the underly-
ing abstractions used by scientists and engineers when they create models.
Given this kind of knowledge and appropriate reasoning methods, a com-
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puter could make predictions and diagnoses and explain the behavior of
physical systems in a qualitative manner, even when a precise quantitative
description is not available or is computationally intractable. Note that a
representation is not normally deemed to be qualitative by the QR com-
munity simply because it is symbolic and utilizes discrete quantity spaces
but because the distinctions made in these discretizations are relevant to
high-level descriptions of the system or behavior being modeled.

Most QR systems have reasoned about scalar quantities, whether they
denote the height of a bouncing ball, the amount of fluid in a tank, the tem-
perature of some body, or perhaps some more abstract quantity. Although
there have been spatial aspects to the systems reasoned about, these have
rarely been treated with any sophistication. In particular, the multidimen-
sional nature of space has been ill addressed until recently, despite some
important early forays such as (Hayes 1985a, Forbus, Nielson and Faltings
1987).

The neglect of this topic within Al may be due to the poverty conjecture
promulgated by Forbus, Nielsen and Faltings (Weld and De Kleer 1990,
page 562): “there is no purely qualitative, general purpose kinematics”. Of
course, qualitative kinematics is only a part of qualitative spatial reasoning
(QSR), but it is worth noticing their third (and strongest) reason for putting
forward the conjecture — “No total order: Quantity spaces don’t work in
more than one dimension, leaving little hope for concluding much about
combining weak information about spatial properties.” They point out that
transitivity is a vital feature of a qualitative quantity space but doubt that
this can be exploited much in higher dimensions and conclude: “we suspect
the space of representations in higher dimensions is sparse; that for spatial
reasoning almost nothing weaker than numbers will do.”

However, there is now a growing body of research in the QR and, more
generally, in the Knowledge Representation community and elsewhere that,
at least partly, refutes this conjecture. A rich space of qualitative spatial
representations is now being explored, and these can indeed exploit transi-
tivity.

There are many possible applications of QSR; we have already men-
tioned reasoning about physical systems, the traditional domain of QR
systems. Other workers are motivated by the necessity of giving a semantics
to natural language spatial expressions, e.g., (Vieu 1991), which tend to be
predominantly qualitative rather than quantitative (consider prepositions
such as ‘in’, ‘on’ and ‘through’). Another large and growing application area
is Geographical Information Systems (GIS): there is a need for qualitative
spatial query languages for example (Clementini, Sharma and Egenhofer
1994) and for navigation (Schlieder 1993). Other applications include spec-
ifying the syntax and semantics of Visual Programming languages (Gooday
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and Cohn 1995, Gooday and Cohn 1996b).

This chapter is devoted largely to presenting one particular formalism
for QSR, the RCC! calculus which has been developed at the University of
Leeds over the last few years in a series of papers including (Randell, Cui
and Cohn 1992, Cui, Cohn and Randell 1992, Cohn, Randell, Cui and Ben-
nett 1993, Cui, Cohn and Randell 1993, Bennett 1994b, Gotts 1994b, Cohn
and Gotts 1996a, Gotts, Gooday and Cohn 1996, Cohn 1995), and indeed
is still the subject of ongoing research. One interpretation of the acronym
RCC is ‘Region Connection Calculus’: the fundamental approach of RCC is
that extended spatial entities, i.e. regions of space, are primary rather than
the traditional mathematical dimensionless point. The primitive relation
between relations is that of connection, thus giving the language the ability
to represent the structure of spatial entities.

There are a number of reasons for eschewing a point-based approach
to qualitative spatial representation and indeed simply using the standard
tools of mathematical topology. Firstly, regions give a natural way to repre-
sent a kind of indefiniteness that is germane to qualitative representations.
Moreover the space occupied by any real physical body will always be a
region rather a point. Even in natural language, the word “point” is not
usually used to mean a mathematical point: a pencil with a sharp point
still draws a line of finite thickness! It also turns out that it is possible to
reconstruct a notion of mathematical point from a primitive notion of re-
gion (Biacino and Gerla 1991). The standard mathematical approaches to
topology, general (point-set) topology and algebraic topology, take points
as the fundamental, primitive entities and construct extended spatial en-
tities as sets of points with additional structure imposed on them. How-
ever, these approaches generalize the concept of a ‘space’ far beyond its
intuitive meaning; this is particularly true for point-set topology but even
algebraic topology, which deals with spaces constructed from ‘cells’ equiv-
alent to the n-dimensional analogues of a (2-dimensional) disc, concerns
itsell chiefly with rather abstract reasoning concerning the association of
algebraic structures such as groups and rings with such spaces, rather than
the kinds of topological reasoning required in everyday life, or those which
might illuminate the metaphorical use of topological concepts such as ‘con-
nection’ and ‘boundary’. The case against using these standard point based
mathematical techniques for QSR is made in rather more detail in (Gotts
et al. 1996), where it is argued that the distinction between intuitive and
counter-intuitive concepts is not easily captured and that the reasonable
desire (for computational reasons) to avoid higher order logics does not
mesh well with quantifying over sets of points.

Of course, it might be possible to adapt the conventional mathematical
formalisms for our purposes, and indeed this strategy is sometimes adopted
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(see, for example (Egenhofer and Franzosa 1991, Egenhofer and Franzosa
1995, Worboys and Bofakos 1993)). However, because we take the view that
much if not all reasoning about the spaces occupied by physical objects
would not, a priori, seem to require points to appear in one’s ontology, we
do not follow this route but rather prefer to take regions as primitive and
abandon the traditional mathematical approaches.

In fact there is a minority tradition in the philosophical and logical lit-
erature that rejects the treatment of space as consisting of an uncountably
infinite set of points and prefers to take spatially extended entities as primi-
tive. Works by logicians and philosophers who have investigated such alter-
native approaches (‘mereology™ or ‘calculus of individuals’) include (White-
head 1929, Lesniewski 1927-1931, Leonard and Goodman 1940, Tarski 1956,
de Laguna 1922) and more recently (Clarke 1981, Clarke 1985) — Clarke
developed the the immediate ‘ancestor’ of RCC — (Simons 1987, Casati
and Varzi 1994, Smith 1994). Simons’ book contains a review of much of
the earlier work in this area.

Because RCC is closely based on Clarke’s system, it is worth briefly
presenting the main features of this system. Clarke (1981, 1985) presents
an extended account of a logical axiomatization for a region-based spatial
(in fact Clarke’s intended interpretation was spatio-temporal) calculus; he
gives many theorems as well to illustrate the important features of the
theory. The basis of the system is one primitive dyadic relation C(z,y)
read as “x connects with y.”

If one thinks of regions as consisting of sets of points (although we have
indicated above that this is not our preferred interpretation), then in terms
of points incident in regions, C(z, y) holds when at least one point is incident
in both # and y. There are various axioms which characterize the intended
meaning of C (for example, two such axioms state that C is reflexive and
that it is symmetric). In Clarke’s system it is possible to distinguish regions
having the properties of being (topologically) closed or open. A closed re-
gion is one that contains all its boundary points (more correctly all its limit
points), whereas an object is open if it has no boundary points at all. Many
topological relations (for example, regions touching or being a tangential
or non tangential part) are defined in Clarke’s system and many properties
are proved of these relations. Clarke defines many other useful concepts
including quasi-Boolean functions, topological functions (interior and clo-
sure), and in his second paper provides a construction for points in terms
of regions following earlier work by Whitehead (1929). This, however, is
faulty; a correction is provided by (Biacino and Gerla 1991).

While on the subject of related work it is certainly worth mentioning
the work done on interval temporal logics for two reasons; first, because
the style of much of the work on QSR closely mirrors this work on inter-
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A<B | A || B | ‘A before B’
B>A ‘B after A’
AmB — A | B . ‘AmeetsB’
BmiA ‘B met-by A’
AoB }A—¢ ‘A overlaps B’
Boi A }#{ ‘B overlapped-by A’
AsB A . ‘Astarted-by B’
BsA ‘B starts A’
B
AdiB | A | ‘A contains B’
BdA }T{ ‘B during A’
AfiB A | ‘Aended-by B’
BfA ‘BendsA’
B
| A |
A=B : : ‘A equalsB’
I 1
B

Figure 1. Allen’s thirteen interval-interval relations

val temporal logic and indeed can be naturally seen as the extension of
these ideas from the temporal to the spatial domain; secondly, of course
it is possible to use this work directly by reinterpreting the calculus as a
one-dimensional spatial calculus, though there are problems with doing so.
Allen’s interval calculus (Allen 1983) is best known within Al; however,
the credit for inventing such calculi is not due to him; Van Benthem (1983)
describes an interval calculus, while (Nicod 1924, chapter 2) is probably
the earliest such system. Allen’s logic defines thirteen Jointly Exhaustive
and Pairwise Disjoint (JEPD) relations for convex (one-piece)® temporal
intervals (see Fig.1). Various authors including Mukerjee and Joe (1990)
have used Allen’s system for spatial reasoning, using a copy of the calculus
for each dimension; however, although attractive in many ways, this has
the fundamental limitation that it forces rectangular objects, and is thus
not very expressive: consider the configuration in Fig.2.

The structure of the rest of this chapter is as follows. First we present
the basic topological part of the calculus in some detail, although space
precludes a full exposition. Then we turn to presenting some basic reason-
ing techniques including a qualitative spatial simulator. Following this we
then extend the calculus with an additional primitive to allow a much finer-
grained representation than a purely topological representation allows. Up
to this point the representation is in a first-order logic; we then show how
much of the calculus can be re-expressed in a zero-order logic to a com-
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Figure 2. Allen’s calculus can be used for reasoning about each spatial dimension, but
it forces rectangular objects aligned to the chosen axes. In the diagram above, the two
rectangles are not so aligned, and although the smaller one is part of the larger one when
projected to each axis individually, this is not so in two dimensions; but this cannot be
detected by comparing the one-dimensional projects.

putational benefit. A few possible application areas are then mentioned
followed by an extension to handle regions with uncertain boundaries. We
conclude by mentioning some current and future research and summarizing
our work.

2. An Introduction to the Region Connection Calculus (RCC)

The original motivation for this work was an essay in Naive Physics (Hayes
1985b, Hayes 1985a), We were interested in developing a theory for repre-
senting and ultimately reasoning about spatial entities; the theory should
be expressed in a language with a clean well-understood semantics. Our de-
sire was principally to create an epistemologically adequate formal theory
(rather than necessarily a cognitively valid naive theory).

We should make precise exactly what counts as a region. In our in-
tended interpretation the regions may be of arbitrary dimension, but they
must all be the same dimension and must not be of mixed dimension (for
example, a region with a lower dimensional spike missing or sticking out
is not intended). Such regions are termed regular. Normally, of course our
intended interpretation will be 3D, though in many of the figures in this
chapter, for ease of drawing, we will assume a 2D world (as is also usual in
GIS applications). We will deal with the question of whether regions may
be open, closed or both below. We also intend regions to really be spatially
extended, i.e. we rule out the possibility of a region being null. Other than
these restrictions, we will allow any kind of regions, in particular they may
be multipiece regions, have interior holes and tunnels.

Our initial system was reported in (Randell and Cohn 1989), which
followed Clarke’s system closely. However, in (Randell, Cui and Cohn 1992)
we presented a revised theory that deviates from Clarke’s theory in one
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important respect, which has far-reaching implications. The change is to the
interpretation of C(z,y): Clarke’s interpretation was that the two regions
x and y share at least one point whereas our new interpretation is that the
topological closures of the two regions share at least one point. Because
we consider two regions to be identical if they are conected to exactly
the same set of regions, so we could regard regions as equivalence classes
of point-sets whose closures are identical. We also, require regions to be
of uniform dimension and in terms of point-set topology this means that
all the sets in these equivalence classes should have regular closures. From
within the RCC theory it is not possible to distinguish between regions that
are open, closed or neither but have the same closure, and we argue that
these distinctions are not necessary for qualitative spatial reasoning. Such
regions occupy the same amount of space and, moreover, there seems to be
no reason to believe that some physical objects occupy closed regions and
others open, so why introduce these distinctions as properties of regions?
Moreover, Clarke’s system has the odd result that if a body maps to a closed
region of space then its complement is open and the two are disconnected
and not touching! Another peculiarity is that, if a body is broken into
two parts, then we must decide how to split the regions so formed: one will
have to have be open (at least along the boundary where the split occurred)
whilst the other must be closed and there seems to be no principled reason
for this assymetry.* Thus we argue that, from the standpoint of our naive
understanding of the world, the topological structure of Clarke’s system is
too rich for our purposes, and in any case appearing in this formal theory,
it poses some deep conceptual problems. Furthermore, is it necessary to
understand sophisticated topological notions such as interior and closure
to create a theory of ‘commonsense’ qualitative space?

It should be noted that the absence of the open/closed distinction from
our theory does not make it incompatible with interpretations in terms of
standard topology. A particularly straightforward model is that the regions
of our theory are the (non-null) elements of the regular open Boolean algebra
over the usual topology on ®”. In such an algebra the Boolean product
operation is simply set intersection, while Boolean complement corresponds
to the interor of the set complement (hence, by DeMorgan, the (regular
open) Boolean sum of two (open) sets is the interior of the sum of their
closures). Thus all regions are identified with regular open sets.” We can
then say that two regions are connected if the closures of the (regular open)
sets identified with the regions share a point. So, although openness and
closure figure in the model theoretic interpretation of the theory, they are
not properties of regions and indeed have no meaning within the theory
itself.

Hard-line critics of point-based theories of space might still argue that
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giving a point-set-theoretic semantics for our theory of regions is unsat-
isfactory. An alternative interpretation of C might be given informally by
saying the distance between the two regions is zero. To do this formally
would obviously require some (weak) notion of metric space definable on
regions but we have not yet attempted to formally specify a semantics of

this kind.

Insofar as openness and closedness are not properties of our regions,
our theory is simpler than theories such as Clarke’s, and hence, we believe
that it will also prove to be more suitable for computational reasoning. Fur-
thermore, we believe that the loss of expressive power resulting from our
simplification does not restrict the utility of our theory as a language for
commonsense reasoning about spatial information. It might be argued that
without the open/closed distinction, certain important types of relation be-
tween regions cannot be differentiated. For example, Asher and Vieu (1995)
have distinguished ‘strong’ and ‘weak’ contact between regions. In the for-
mer case the regions share a point, whereas in the latter they are disjoint
but their closures share a point. Two bodies may then said to be ‘joined’ if
the regions they occupy are in strong contact but merely ‘touching’ if their
regions are in weak contact. Whilst we acknowledge that the distinction
between bodies being joined and merely touching is important, we believe
that these relations are not essentially spatial and therefore should not be
embodied in a theory of spatial regions. They should rather be modeled
within a more general theory of relationships among material substances,
objects and the regions they occupy.

To formalize our theory we use a sorted first-order logic based on the
logic LLAMA (Cohn 1987), but the details of the logic need not concern
us here. The principal sorts we will use are Region, NULL, and PhysOb.
Notice that with this sort structure we distinguish the space occupied by a
physical object from the physical object itself, partly because it may vary
over time which we represent via a function space(z,¢).% The sort NULL is
true of regions that are not spatially extended and is used to model the
intersections of disoint regions or the spatial extent of physical objects that
do not exist at a particular time for example.

In fact, the axiomatic theory we have developed so far deals only with
relationships between entities of sorts Region and NULL. Axiomatization
of relations involving physical objects would be part of the more general
theory of material substances in space, which was mentioned above. So, at
present, the sort PhysOb and the space(z,t) merely serve to indicate how
our theory would be incorporated into this much broader theory.
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2.1. AXIOMS FOR C

Since our interpretation of C has changed, we need to re-axiomatize it and
redefine many of the relations Clarke defined which we still want to use.
The two main axioms expressing the reflexivity and symmetry of C in fact
remain unchanged:

(1) Va[C(z, z)]
(2) VaVy[C(z,y) — C(y, 7)]

Using C(z,y), a basic set of dyadic relations are defined (Randell, Cui and
Cohn 1992, section 4). Definitions and intended meanings of those used here
are given in table 1. Unless otherwise specified, the all arguments to the
functions and predicates we define are of sort Region. The relations P, PP,
TPP and NTPP being non-symmetrical support inverses. For the inverses

we use the notation @i, where ® € {P, PP, TPP, NTPP}, for example, TPPi.

TABLE 1. Some relations definable in terms of C

11) TPP(z,y) = is a tangential proper part of y PP(z,y) A 3z[EC(z,z) A EC(z, y)]
12) NTPP(z,y) z is a nontang’l proper part of y PP(z,y) A =3z[EC(z,z) A EC(z,y)]

Relation  interpretation Definition of R(z,y)
(3) DC(z,y)  w is disconnected from y =C(z,y)
(4) P(z,y) x is a part of y Vz[C(z,z) — C(z,y)]
(5) PP(z,y) x is a proper part of y P(z,y) A =P(y, z)
(6) EQ(z,y) =z is identical with y P(z,y) AP(y,z)
(7) O(z,y) % overlaps’y Az[P(z,z) A P(z,y)]
(8) DR(z,y) =z is discrete from y —0(z,y)
(9) PO(z,y) =z partially overlaps y O(z,y) A =P(z,y) A =P(y, )
(10) EC(z, y) x is externally connected to y C(z,y) A =0(z,y)
(
(

Of the defined relations, those in the set {DC, EC, PO, EQ, TPP, NTPP,
TPPi and NTPPi} (illustrated in Fig.3) are provably JEPD (Jointly Ex-
haustive and Pairwise Disjoint). We refer to the theory comprising this set
of eight relations (and the quasi-Boolean functions to be defined below) as
RCCS8®. The complete set of relations described above can be embedded
in a relational lattice. This is given in Fig.4. The symbol T is interpreted
as tautology and the symbol L as contradiction. The ordering of these re-
lations is one of subsumption with the weakest (most general) relations
connected directly to top and the strongest (most specific) to bottom. For
example, TPP implies PP, and PP implies either TPP or NTPP. A greatest
lower bound of bottom indicates that the relations are mutually disjoint.
For example with TPP and NTPP, and P and DR. This lattice corresponds
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@@
ONONGRODECOROINOND),

DC(ab) EC(ab) PO(ab) TPP(ab) TPPi(ab) NTPP(ab) NTPPi(ab) EQ(ab)

Figure 3. Illustrations of eight JEPD relations

to a set of theorems (such as Vay[PP(z,y) <+ [TPP(z,y) vV NTPP(z, y)]])

which we have verified.

Figure 4. A subsumption lattice of dyadic relations defined in terms of C

Clarke axiomatized a set of function symbols in terms of C; the topo-
logical ones (interior, exterior, closure) we omit since (as already discussed)
we do not wish to make these distinctions. However, he also defined a set of
quasi-Boolean® functions which we will also require, though our definitions
differ. The Boolean functions are: sum(z,y), the sum of z and y; u, the
universal region; compl(z), the complement of z; prod(z,y), the product
(intersection) of z and y; and diff(z, y), the difference of z and y (that is
the part of z that does not overlap y). For brevity we will often use *, 4+
and — rather than prod, sum and diff. The functions: compl(z), prod(z,y)
and diff (z, y) are partial but are made total in the sorted logic by specifying
sort restrictions and by letting the result sort of the partial functions be
REGION U NULL. Our functions obey the following axioms:

(13) VaC(z,u)
(14) Va,y, 2[C(z,sum(z,y)) = C(z,2) vV C(z,y)]
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(15) e, y{[C(y, compl(z)) = ~NTPP(y, )] A [O(y, compl(x)) = ~P(y, 2)]
(16) Va,y, 2[C(z, prod(z,y)) = Jw[P(w,z) A P(w,y) A C(z, w)]]

(17) Va,y[NULL(prod(z,y)) = DR(z, y)]

(18) Va,y, 2[C(z,diff(z, y)) = C(z, prod(z, compl(y)))]

As already mentioned, and will be clear from the fact that we have intro-
duced the sum function, regions may consist of disconnected parts. We can
easily define a predicate to test for one-pieceness:!°

(19) CON(z) =aer Vyz[sum(y, 2) =z — C(y, 2)]

A rather deep theorem of the theory is given by the formula
Va3y[NTPP(y, z)] which was demonstrated by informal argument in (Ran-
dell, Cui and Cohn 1992). Because we have so far not been able to give a
fully formal proof of this theorem we often regard the formula as an ad-
ditional axiom of the theory. This formula mirrors a formal property of
Clarke’s theory, where he stipulates that every region has a nontangential
part, and thus an interior (remembering that in Clarke’s theory a topolog-
ical interpretation is assumed).

2.2. THEOREMS OF RCCS8

In (Randell, Cui and Cohn 1992) we cite a number of important theorems
which distinguish RCCS8 from Clarke’s system. First, note that for Clarke,
two regions z and y are identical iff any region connecting with z connects
with y and vice-versa (which in effect is an axiom of extensionality for =
in terms of C), that is

(20) Vayle =y ¢ Vz[C(z, z) & Cz,9)]] -
In the new theory, an additional theorem concerning identity,
(21) Vaylz = y <> ¥2[0(z2,2) & O(z,y)]]

(= is extensional in terms of O) becomes provable, which is not a theorem
in Clarke’s theory: any region z which overlaps a closed region z will also
overlap its open interior (and vice versa), thus making them identical ac-
cording to this axiom, but Clarke distinguishes open and closed regions so
they cannot be identical, thus providing a counterexample.

Perhaps the most compelling reason that led us to abandon Clarke’s
semantics for C is the following theorem which expresses an everyday in-
tuition about space, that, given one proper part of a region, then there is
another, discrete from the first:

(22) Vay[PP(z,y) — 32[P(z,y) A =0(z, z)]] .
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This is provable in the new theory, but not in Clarke’s: the interior of a
closed region is a proper part of it, but there is no remaining proper part,
since in Clarke’s (and our) system the boundary of a region is not a region.
A related theorem is the following;:

(23) Vay[PO(z,y) — [F2[P(z,y) A =O(z, z)] A Fw[P(w, z) A =0 (w, y)]]],

which again is a theorem in the new theory but not in Clarke’s. A counter-
example arises in Clarke’s theory where we have two semi-open spherical
regions, z and y (with identical radii), such that the northern hemisphere
of z is open and the southern hemisphere is closed, and the northern hemi-
sphere of y is closed and the southern hemisphere open. If z and y are
superimposed so that their centers and equators coincide, then z and y will
partially overlap, but no part of z is discrete from y, and vice-versa.

Another key distinction between our theory and Clarke’s concerns the
connection between a region and its complement. In the new theory,
Va[EC(z, compl(z))] holds, that is regions are connected with their com-
plements, which seems a very intuitive result, while in Clarke, a region is
disconnected from its complement: Y2[DC(z, compl(z))].

Some further theorems expressing other interesting and important prop-
erties of RCC can be found in (Randell, Cui and Cohn 1992) as can a dis-
cussion about how to introduce atomic regions into RCC. In the calculus
as presented here, they are, of course, excluded because every region has a
non-tangential proper part.

3. Expressing Topological Shape in Terms of C

So far, we have principally concentrated on binary predicates relating pairs
of regions. Of course, there are also properties of a single region we would
like to express, all of which, in some sense at least, characterize the shape
of the region. Although we have only developed topological notions there
is still quite a bit that can be said about the topological shape of a region.
For example we have already introduced the predicate CON(z) which ex-
presses whether a region is one-piece or not. We can do much more than
this however, as (Gotts 1994a, Gotts 1994b, Gotts et al. 1996, Gotts 1996¢)
demonstrates. The task set there is to be able to distinguish a ‘doughnut’
(a solid, one-piece region with a single hole). It is shown how (given cer-
tain assumptions about the universe of discourse and the kinds of regions
inhabiting it) all the shapes depicted in Fig.5 can be distinguished.

Here we just give a brief idea of how the task is accomplished, as it also
shows some of the range of predicates that can be further defined using C
alone (and thus could form the basis of RCCn (for some n > 8)).!1
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N l] /S
= 1 3 Doughnut with gap

Doughnut (or Solid Torus) Torus (topologicaly, asolid block) Cylinder-surface

Block minus block

A doughnut with a

) degenerate hole-surround
Double doughnut Loop  Two doughnuts with degenerate holes

Figure 5. 1Tt is possible to distinguish all these shapes using C(z,y) alone.

The separation-number (SEPNUM ) of a region is the maximum number!?
of mutually disconnected parts it can be divided into:

(24) SEPNUM(r,1) =4 CON(r)
o SEPNUM(r, N +1) =4 3s,t[[r=s+1] A
(25) DC(s,t) A CON(s) ASEPNUM(t, N)] .

The finger-connectivity (FCON ) of a CON region is defined!® in terms of
its possible dissections, Fig.6 illustrates three different finger connectivities.
Making use of an easily definable predicate MAX_P (z,y), asserting that
is a maximal one-piece part of y, FCON can be defined as follows:

FCON(r,N) =4 CON(7) A

da, z,b][r =a+ z +b] A CON(a) A CON(b) A
DC(a,b) ASEPNUM(z, N) A
(26) Vz[MAX_P(z,2) — EC(a, z) NEC(2,b)]] A
=Ja,y,b[(r=a+ y+b) A CON(a) A CON(b) A
DC(a,b) A SEPNUM(y, N +1) A
Vz[MAX_P(z,y) — EC(a, z) A EC(2,b)]] .

Gotts goes on to define a predicate to count the number of boundaries

two regions have in common. Using these definitions a doughnut can be

Figure 6. Dissection-graphs and dissections: finger-connectivities 1, 2 and 3




