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1. Introduction

Qualitative Reasoning is concerned not only with capturing the everyday common-sense knowl-
edge of the physical world, but also the myriad equations used by engineers and scientists to
explain complex physical phenomenon while creating quantitative models [180]. The principal
goal of Qualitative Reasoning is to make explicit this knowledge, so that given appropriate rea-
soning techniques, a computer could make predictions, diagnose and explain the behaviour of
physical systems in a qualitative manner! without recourse to an often intractable or perhaps
unavailable quantitative model.

The essence of qualitative reasoning is to find ways to represent continuous properties of the
world by discrete systems of symbols. One can always quantize something continuous, but not
all quantizations are equally useful. One way to state the idea is the relevance principle: the
distinctions made by a quantization must be relevant to the kind of reasoning performed [76].
The resulting set of qualitative values is termed a quantity space, in which indistinguishable
values have been identified into an equivalence class?. There is normally a natural ordering
(either partial or total) associated with a quantity space, and one form of simple but effective
inference is to exploit the transitivity of the ordering relation; another is to devise qualitative
arithmetic algebras [180]; typically, these may produce ambiguous answers. Much research in
the Qualitative Reasoning literature is devoted to overcoming the detrimental effects on the
search space resulting from this ambiguity.

Another important aspect of work in traditional qualitative reasoning worth noting here is
the standard assumption that change is continuous. A simple consequence is that while changing,
a quantity must pass through all the intermediate values. For example, in the frequently used
quantity space {—, 0,4}, a variable cannot transition from ‘=’ to ‘+’ without first going through
value 0. This notion is also exploited in the work on qualitative spatial reasoning.

2. What is Qualitative Spatial Reasoning ?

Spatial reasoning, in our every day interaction with the physical world, in most cases is driven
by qualitative abstractions rather than complete a priori quantitative knowledge. Therefore, QR
holds promise for developing theories® for reasoning about space. This justifies the increasing
interest in the study of spatial concepts from a cognitive point of view which provoked the birth

"Note that although one use for qualitative reasoning is that it allows inferences to be made in absence of
complete knowledge, it does this not by probabilistic or fuzzy techniques (which may rely on arbitrarily assigned
probabilities or membership values) but by refusing to differentiate between quantities unless there is sufficient
evidence to do so.

2The case where the indistinguishability relation is not an equivalence relation has not been much considered,
except by [121, 116]. However, an important characteristic of perceptual acuity is that a series of small changes,
each imperceptible, may combine to form a perceptible change. Then the indistinguishability relation though
reflexive and symmetric, is not transitive, which can lead to a paradox of perception. Placing a non-transitive
theory of indistinguishability within a possible-worlds theory of perception and knowledge, [48] presents ways of
avoiding the paradox.

®The word theory is used in its logical/mathematical context i.e., a set of formal axioms which specify the
properties and relations of a collections of entities, not in the natural scientist’s sense of an empirically testable
explanation of observed regularities.



of Qualitative Spatial Reasoning (QSR) within Al and also GIS.

Space being multidimensional, is not adequately represented by a single scalar quantity. The
multidimensional nature of space has been ill-addressed in QR despite some early forays such
as Hayes’ Naive Physics Manifesto [111, 77]. However, this neglect can be partially attributed
to the ‘poverty conjecture’ [180]. Although purely qualitative representations were reasonably
successful in reasoning about many physical systems [180], there was much less success in de-
veloping purely qualitative reasoners about spatial and kinematic mechanisms and the poverty
conjecture [77] is that this is in fact impossible — there is no purely qualitative spatial reasoning
mechanism. Forbus et al. correctly identify transitivity of values as a key feature of qualitative
quantity spaces but doubt that this can be exploited much in higher dimensions and conclude
that the space of representations in higher dimensions is sparse and for spatial reasoning nothing
weaker than numbers will do.

The challenge of QSR then is to provide calculi which allow a machine to represent and
reason with spatial entities without resort to the traditional quantitative techniques prevalent
in, for e.g. the computer graphics or computer vision communities.

There has been an increasing amount of research over the last couple of years which tends
to refute, or at least weaken the ‘poverty conjecture’. Qualitative spatial representations ad-
dressing many different aspects of space including topology, orientation, shape, size and distance
have been put forward. There is a rich diversity of these representations and they exploit the
transitivity as demonstrated by the relatively sparse composition tables (cf the well known table
for Allen’s interval temporal logic [180]) which have been built for these representations.

This paper is an overview of the major qualitative spatial representation and reasoning tech-
niques. In section 3 we will mention some possible applications of qualitative spatial reasoning.
Thereafter, in section 4 we survey the main aspects of the representation of qualitative spatial
knowledge including ontological aspects, topology, distance, orientation and shape. The next
section discusses qualitative spatial reasoning including reasoning about spatial change. Finally,
the paper concludes with a presentation of theoretical results and a glimpse at future work. The
paper is a revised and condensed version of [33, 34].

3. Applications of Qualitative Spatial Reasoning

Research in QSR is motivated by a wide variety of possible application areas including Geo-
graphic Information System (GIS), robotic navigation, high level vision, spatial propositional
semantics of natural languages, engineering design, common-sense reasoning about physical sys-
tems and specifying visual language syntax and semantics. There are numerous other application
areas including qualitative document-structure recognition [81], the notion of a niche (e.g. in
biology [168]) and domains where space is used as a metaphor, e.g. [125, 147].

Even though GIS are now a commonplace, the major problem is that of interaction. With
gigabytes of information stored either in vector or raster format, present-day GISs do not suf-
ficiently support intuitive or common-sense oriented human-computer interaction. Users may
wish to abstract away from the mass of numerical data and specify a query in a way which is
essentially, or at least largely, qualitative. Arguably, the next generation GIS will be built on
concepts arising from Naive Geography [65]. Much of naive geography should employ qualitative



reasoning techniques, perhaps combined with the provision of “spatial query by sketch”[59].

Although robotic navigation ultimately requires numerically specified directions to the robot
to move or turn, hierarchical planning with detailed decisions (e.g. how or exactly where to move)
being delayed until a high level plan have been achieved has been shown to be effective [172].
Further, the robot’s model of its environment may be imperfect, leading to an inability to use
standard robot navigation techniques. Under such circumstances, a qualitative model of space
may facilitate planning. One such approach is the development of a robust qualitative method
for robot exploration, mapping and navigation in large-scale spatial environments described in
[124]. A qualitative solution to the well known ‘piano mover’s problem’ is [72].

QSR has been used in computer vision for visual object recognition at a higher level which
includes the interpretation and integration of visual information. Using qualitative symbolic
projections, it is possible to reason about the shape of objects to match geographical objects.
QSR technique have been used to interpret the results of low-level computations as higher level
descriptions of the scene or video input [73]. The use of qualitative predicates helps to ensure
that scenes which are semantically close have identical or at least very similar descriptions.

In natural language, the use and interpretation of spatial propositions tend to be ambigu-
ous. There are multiple ways in which natural language spatial prepositions can be used (e.g.
[115] cites many different meanings of “in”); herein lies the motivation of qualitative spatial
representation for finding some formal way of describing these prepositions (e.g. [4, 159])

Engineering design, like robotic navigation, ultimately normally requires a fully metric de-
scription. However, at the early stages of the design process, a reasonable qualitative description
would suffice. The field of qualitative kinematics (e.g. [71]) is largely concerned with supporting
this type of activity.

Finally, visual languages, either visual programming languages or some kind of represen-
tation language, lack a formal specification of the kind that is normally expected of a textual
programming or representation language. Although some of these languages make metric dis-
tinctions, the bulk of it is often predominantly qualitative in the sense that the exact shape,
size, length etc. of the various components of the diagram or picture is unimportant — rather,
what is important is the topological relationship between these components. Therein lies the
promise of a theory of qualitative spatial reasoning in specifying such languages [95, 107].

4. Aspects of Qualitative Spatial Representation

Representing space has a rich history in the physical sciences — and serves to locate objects in
a quantitative framework. At the other extreme, spatial expressions tend to operate on a loose
partitioning of the domain. Representation for this less precise description of space proliferated,
more or less on an ad hoc basis until the emergence of qualitative spatial reasoning whereafter
the partitioning was done more systematically [135].

There are many different aspects to space and therefore to its representation. Not only do
we have to decide on what kind of spatial entity we will admit (i.e. commit to a particular
ontology of space), but also we can consider developing different kinds of ways of describing
the relationship between these kinds of spatial entities; for example we may consider just their
topology, or their sizes or the distance between them, their relative orientation or their shape.



4.1. Ontology

Traditionally, in mathematical theories of space, points are considered as primary primitive
spatial entities (or perhaps points and lines), and extended spatial entities such as regions
are defined, if necessary, as sets of points. A minority tradition (‘mereology’ or ‘calculus of
individuals’) regards this as a philosophical errorf. Within the QSR community, there is a
strong tendency to take regions of space as the primitive spatial entity — see [177]. Even though
this ontological shift means building new theories for most spatial and geometrical concepts,
there are strong reasons for taking regions as the ontological primitive. If one is interested
in using the spatial theory for reasoning about physical objects, then one might argue that the
spatial extension of any physical object must be region-like rather than a lower dimension entity.
Further, one can always define points, if required, in terms of regions [13]. However, it needs to
be admitted that at times it is advantageous to view a 3D physical entity as a 2D or even a 1D
entity. Of course, once entities of various dimensions are admitted, a pertinent question would
be whether mixed dimension entities are allowed. Further discussion of this issue can be found
in [41, 35, 103, 143]

Another ontological question is what is the nature of the embedding space, i.e. the universal
spatial entity? Conventionally, one might take this to be R™ for some n, but one can imagine
applications where discrete (e.g. [66]), finite (e.g. [102]), or non convex (e.g. non connected)
universes might be useful. There is a tension between the continuous-space models favoured by
high-level approaches to handling spatial information and discrete, digital representations used
at the lower level. An attempt to bridge this gap by developing a high-level qualitative spatial
theory based on a discrete model of space is [88]. For a recent investigation into discrete vs
continuous space, see [133].

Once one has decided on these ontological questions, there are further issues: in particular,
what primitive “computations” should be allowed? In a logical theory, this amounts to deciding
what primitive non logical symbols one will admit without definition, only being constrained by
some set of axioms. One could argue that this set of primitives should be small, not only for
mathematical elegance and to make it easier to assess the consistency of the theory, but also
because this will simplify the interface of the symbolic system to a perpetual component because
fewer primitives have to be implemented. The converse argument might be that the resulting
symbolic inferences may be more complicated or that it is more natural to have a large and rich
set of concepts which are given meaning by many axioms which connect them in many different
ways [110].

One final ontological question is how to model the multi dimensionality of space? One ap-
proach is to model space by considering each dimension separately, projecting each region to
each of the dimensions and reasoning along each dimension separately. However, this approach
is grossly inadequate, as two objects overlap when projected on to both the z and y axes indi-
vidually, when in fact they may not overlap at all and only useful in domains with rectangular,
orthogonally aligned objects [179]

*Simons [164] says : “No one has ever perceived a point, or ever will do so, whereas people have perceived
individuals of finite extent”.



4.2. Topology

Topology is perhaps the most fundamental aspect of space. It is clear that topology must form
a fundamental aspect of qualitative spatial reasoning since topology certainly can only make
qualitative distinctions. Although topology has been studied extensively within the mathemat-
ical literature, much of it is too abstract to be of relevance to those attempting to formalise
common-sense spatial reasoning. Although various qualitative spatial theories have been influ-
enced by mathematical topology, there are number of reasons why such a wholesale importation
seems undesirable in general [103].

Moreover, we are interested in qualitative spatial reasoning and not just representation, and
this has been paid little attention in mathematics. Neither point-set nor algebraic topology is
particularly well-adapted to reasoning of the forms such as: Given that a region a is in relation
Ry to region b, and region b is in relation Ry to region c¢; what relations may or must hold
between a and ¢? Of course, it might be possible to adapt the conventional mathematical
formalisms, and indeed this strategy has been adopted [60, 64, 184]. One existing approach
to topology which has been espoused by the QSR community is the work to be found in the
philosophical logic community [181, 51, 183, 23, 24, 13]. This work has built axiomatic theories
of space which are predominantly topological in nature, and which take regions rather than
points as primitive - indeed, this tradition has been termed as “pointless geometries” [90]. In
particular the work of Clarke [23, 24] has lead to the development of the so called RCC systems
[152, 151, 150, 148,47, 36, 7, 98, 32, 103, 41, 35] and also has been developed further e.g. [176, 3].
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Figure 1 2D illustrations of the relations of RCC-8 calculus and their continuous transitions
(conceptual neighbourhood).

Clarke took as his primitive notion the idea of two regions z and y being connected (sharing a
point, if one wants to think of regions as consisting of sets of points): C(z,y). In the RCC system
this interpretation is slightly changed to the closures of the regions sharing a point. Actually,
given the disdain of the RCC theory as presented in [151] for points, a better interpretation,
given some suitable distance metric, would be that C(z,y) means that the distance between z
and y is zero, c.f. [170]. This has the effect of collapsing the distinction between a region, its
closure and its interior, which it is argued has no relevance for the kinds of domain with which
QSR is concerned. C(z,y) is surprisingly powerful: it is possible to define many predicates and
functions which capture interesting and useful topological distinctions. The set of eight jointly
exhaustive and pairwise disjoint (JEPD) relations illustrated in Figure 1 are one particularly
useful set (often known as the RCC-8 calculus).

A formal semantics for RCC has been given by [99, 52, 170]. Furthermore, a canonical



model for arbitrary ground Boolean wffs over RCC-8 atoms has been proposed [154] which
is then utilised in a procedure to generate an actual 2D or 3D interpretation. Moreover this
ensures (contrary to [3, 176]), that an individual is connected to its complement, and that the
principle of supplementation [164] holds. The work of [176, 3] mentioned above is also based on
Clarke’s Calculus. The original interpretation of C(z,y) is retained, though the fusion operator
is discarded, it is made first order and several errors are corrected. Contrary to the RCC
interpretation, [3] argue that differentiating between an individual, its closure and its interior
is cognitively important: material objects are closed individuals and their complements are
open ones, so their interpretations do not share any points. A framework wherein the different
notions of connection in the literature are analyzed is presented in [45, 44]. Three dimensions
of variation are considered: whether or not the closure of a region is considered; whether the
connection is point or line/surface-like; the degree of connection amongst the components of
multipiece regions.

4.2.1. Expressiveness of C(z,y)
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Figure 2. It is possible to distinguish all the above shapes using C(z,y) alone.

Taxonomies of topological properties and relations can be defined using the single predicate
C(z,y). Apart from the simple RCC-8 relations, the predicate C(z,y) can be used to define
many more predicates. For example one could define predicates which counted the number of
times two regions touch. In a series of papers, [97, 98, 103, 101], Gotts sets himself the task of
distinguishing a ‘doughnut’ (a solid one piece region with a single hole). It is shown how under
a restrictive set of assumptions about the topological properties of the regions in general, and
the target region in particular, all shapes depicted in Figure 2 can be distinguished.

Another range of topological distinctions between one-piece (CON) regions can be made
(under certain assumptions) using C. As shown in Figure 3, a region, if it is connected, may
or may not be interior connected (INCON); meaning that the interior of the region is all of one
piece. It is relatively easy to express this property (or its converse) in RCC terms. However
INCON(r) does not rule out all regions with anamolous boundaries, and in particular does not
exclude the regions (d,e,f) of Figure 2, which do have one-piece interiors, but which nevertheless
have boundaries which are not (respectively) simple curves or surfaces, having ‘anomalies’ in the
form of points which do not have line-like (or disc-like) neighbourhoods within the boundary (i.e.
which are locally Euclidean). It appears possible using C(z,y) to define a predicate (WCON)



that will rule out the anomalous cases of Figure 2, but it is by no means straightforward®, and
it is not demonstrated conclusively in [98] that the definitions do what is intended.

] ||

CON, INCON and WCON CON, not INCON or WCON CON and INCON, not WCON

Figure 3. Different types of CON Region

One source of the difficulties arising is the fact that within RCC, since all regions in a
particular model of the axioms are of the same dimensionality as the universal region, u, assuming
u itself to be of uniform dimensionality (this follows from the fact that all regions have a NTTP),
there is no way to refer directly to the boundary of a region or to the dimensionality of the shared
boundary of two EC regions, or to any relations between entities of different dimensionalities.
There has been a tendency in much of the work involving qualitative spatial reasoning to assume,
if only implicitly, that the spatial entities considered in any one theory should have the same
dimension. In cases where reasoning about dimensionality becomes important, RCC and related
systems based on the C(z,y) predicate are not very powerful®. The INCH calculus [100] treats
points and spatially extended entities as specializations of the more general notion of a ‘spatial
extent’. It aims to improve on the expressiveness of connection-based calculi such as RCC, while
avoiding the counterintuitive consequences of a point-set approach.

Fleck argues that standard models of space and time based on segmenting R” have the wrong
topological structure at object, event or region boundaries [74]; and illustrates how to modify
an R™ model to have an appropriate topological structure. Another proposal addressing the
problem of representing and reasoning about regions of differing dimensionality (though still
not of mixed dimensionality) is [85]. Using a variant of the Classical Extensional Mereology
originating in the work of Lesniewski (as recounted in [164]), through use of the mereological
part relation P(z,y) and a topological boundary primitive, B(z,y) — z is the boundary of y (z
being a region of one dimension less), leads towards the desired intuitive picture of a strictly
linear hierarchy of dimensions. Other theories which introduce the notion of boundaries of
regions explicitly include [166, 175, 152, 167].

4.2.2. Topology via “n-intersections”

An alternative approach to representing and reasoning about topological relations has been
promulgated via a series of papers [57, 60, 58, 26, 61, 64]. Three sets of points are associated
with every region - its interior, boundary and complement. The relationship between any two
region can be characterized by a 3x3 matrix” called the 9-intersection. Although it would seem

5Note, however, that this task becomes almost trivial once the conv(z) primitive is introduced - see Section 4.4.3.

6To reason about regions of different dimensionality is impossible without imposing a sort structure and
essentially taking a copy of the theory for each dimension-sort.

"Actually, a simpler 2x2 matrix [60] known as the 4-intersection featuring just the interior and the boundary
is sufficient to describe the eight RCC relations. However the 3x3 matrix allows more expressive sets of relations
to be defined as noted below since it takes into account the relationship between the regions and its embedding
space.



that there are 29 = 512 possible matrices, after taking into account the physical reality of 2D
space and some specific assumptions about the nature of regions, it turns out that the there are
exactly 8 remaining matrices corresponding to the RCC-8 relations. One can use this calculus
to reason about regions which have holes by classifying the relationship not only between each
pair of regions, but also the relationship between each hole of each region and the other region
and each of its holes [63].

Different calculi with more JEPD relations can be derived by changing the underlying as-
sumptions about what a region is and by allowing the matrix to represent the codimension
of intersection. For example, one may derive a calculus for representing and reasoning about
regions in Z2 rather than R? [66]. Alternatively, one can extend the representation in each
matrix cell by the dimension of the intersection rather than simply whether it exists or not [27].
This allows one to enumerate all the relations between areas, lines and points and is known as
the “dimension entended method” (DEM). A very large number of possible relationships may
be defined in this way and a way termed as the “calculus based method” (CBM) to generate all
these from a set of five polymorphic binary relations between a pair of spatial entities  and vy :
disjoint, touch, in, overlap, cross has been proposed [25]. A complex relation between z and y
may then be formed by conjoining atomic propositions formed by using one of the five relations
above, whose arguments may be either z or y or a boundary or endpoint operator applied to z
or y. For the most expressive calculus (either the CBM or the combination of the 9-intersection
and the DEM) there are 9 JEPD area/area relations, 31 line/area relations, 3 point/area rela-
tions, 33 line/line relations, 3 point/line relations and 2 point/point relations giving a total of
81 JEPD relations [25].

4.3. Modes of Overlap

There are a variety of ways in which two regions can partially overlap each other [87]. In most
previous work (an exception is [42]), partial overlap has always been taken to be a single relation
(usually denoted as PO(z,y)), just as connection itself is usually taken to be a single relation.
Whilst realizing that there are potentially infinitely many varieties of partial overlap relation,
Galton parameterized these using a matrix notation:

r @
b o
where z, a, b and o are the numbers of connected components of Ny, z\y, y\z, compl(zUy).

He investigates all matrices with numbers no greater than two; of the 54 theoretical possibilities,
just 23 are physically realisable.

4.3.1. Mereology and Topology

Varzi [175, 174] presents a systematic account of the subtle relations between mereology and
topology. He notes that whilst mereology is not sufficient by itself, there are theories in literature
which have proposed integrating topology and mereology. There are three main strategies of
integrating the two :



e Generalize mereology by adding a topological primitive. Borgo et. al. [16] add the
topological primitive SC(z), i.e., z is a self connected (one-piece) spatial entity to the
mereological part relation. Alternatively a single primitive can be used as in [175]: “z and
y are connected parts of z”. The main advantage of separate theories of mereology and
topology is that it allows collocation without sharing parts which is not possible in the
second two approaches below.

e Topology is primal and mereology is a sub theory. For example in the topological theories
based on C(z,y), such as those mentioned above, one defines P(z,y) from C(z,y). This
has the elegance of being a single unified theory, but colocation implies sharing of parts.
These theories are normally boundaryless (i.e. without lower dimensional spatial entities)
but this is not absolutely necessary [152, 100].

e The final approach is that taken by [67], i.e. topology is introduced as a specialised domain
specific sub theory of mereology. An additional primitive needs to be introduced. The idea
is to use restricted quantification by introducing a sortal predicate Region(z). C(z,y) can
then be defined thus: C(z,y) =4.r O(z,y) A Region(z) A Region(y).

4.4. Between Topology and Fully Metric Spatial Representation

Mereology and Topology can be seen as perhaps the most abstract and most qualitative spatial
representations. However, although potentially useful there are many situations where mereo-
topological information alone is insufficient. The following sections explore the different ways in
which other qualitative information may be represented.

4.4.1. Orientation

Orientation relations describe where objects are placed relative to one another, and can be
defined in terms of three basic concepts: the primary object, the reference object and the frame
of reference. Thus, unlike the topological relations on spatial entities described in the preceding
sections, orientation is not a binary relation i.e., if we want to specify the orientation of a primary
object(PO) with respect to a reference object(RO), then we need to have some kind of a frame
of reference(FofR). This characterization manifests itself in the display of qualitative orientation
calculi to be found in the literature: certain calculi have an explicit triadic relation while others
presuppose an extrinsic frame of reference [78, 113].

Of those with explicit triadic relations it is especially worth mentioning the work of Schlieder
[160], following earlier work by [96], who develops a calculus based on function which maps
triples of points to one of three qualitative values, +,0 or —, denoting anticlockwise, collinear
and clockwise orientations respectively. This can be used for reasoning about visible locations in
qualitative navigation tasks or for shape descriptions [162]. Schlieder develops a calculus [161]
for reasoning about the relative orientation of pairs of line segments.

A triadic orientation calculus, based on a relation CYCORD(z,y,z) which is true (in 2D)
when z, y, z are in a clockwise orientation, shows how a number of qualitative calculi can be
translated into the CYCORD system [158], whose reasoning system (implemented as a constraint
logic program) can then be exploited. The disadvantage of the CYCORD theory is that reasoning
in it is NP complete. A refinement of the theory, leading to an algebra of ternary relations for



cyclic ordering of 2D orientations contains 24 atomic relations, hence 224 general relations, of

which CYCORD relation is one [117]. However, the propogation algorithm is polynomial®, and
complete for a subclass including all atomic relations.

4.4.2. Distance and Size

Spatial representation of distance can be divided into two main groups: those which measure on
some “absolute” scale, and those which provide some kind of relative measurement. Of course,
since traditional Qualitative Reasoning [180] is primarily concerned with dealing with linear
quantity spaces, the qualitative algebras and the transitivity of such quantity spaces mentioned
earlier can be used as a distance or size measuring representation.

Also of interest in this context are the order of magnitude calculi [134, 144] developed in
the QR community. Most of these traditional QR formalisms are of the “absolute” kind of
representations? as in the delta calculus of [186] - which introduces a triadic relation: z(>,d)y
to note that z is larger/bigger than y by an amount d; terms such as z(>, y)y mean that z is
more than twice as big as y.

Of the “relative” representations specifically developed within the qualitative spatial rea-
soning community, perhaps the earliest is the triadic CanConnect(z, y, z) primitive [51] — which
is true if body z can connect y and z by simple translation (i.e., without scaling, rotation or
shape change). From this primitive it is easy to define notions such as equidistance, nearer
than and farther than. This primitive allows a simple size metric on regions to be defined: one
region is larger than another if it can connect regions that the other cannot. Another method
of determining the relative size of two objects relies on being able to translate regions (assumed
to be shape and size invariant) and then exploit topological relationships — if a translation is
possible so that one region becomes a proper part of another, then it must be smaller [136].

Distance is closely related to the notion of orientation: e.g. distances cannot usually be
summed unless they are in the same direction, and the distance between a point and a region
may vary depending on the orientation. Thus it is perhaps not surprising that there have been
a number of calculi which are based on a primitive which combines distance and orientation
information. One straightforward idea [78] is to combine directions as represented by segments
of the compass with a simple distance metric (far, close). A slightly more sophisticated idea is
to introduce a primitive which defines the position of a third point with respect to a directed
line segment between two other points [187]. Another approach that combines knowledge about
distances and positions in a qualitative way - through a combination of the Delta-calculus [186]
and orientation is presented in [185].

Liu [129] explicitly defines the semantics of qualitative distance and qualitative orientation
angles and formulates a representation of qualitative trigonometry. He defines composition tables
for the calculus to combine both types of information and suggests computing a quantitative
visualization by simulated annealing.

Of particular interest is the framework for representing distance [114] which has been ex-

8 Complexity results for some other QSR calculi are presented in Section 5.2
?Actually it is straightforward to specify relative measurements given an “absolute” calculus: to say that
r >y, one may simply write ¥ —y = +.



tended to include orientation [31]'9. A distance system is composed of an ordered sequence of
distance relations and a set of structure relations which give additional information about how
the distance relations relate to each other. Each distance has an acceptance area; the distance be-
tween successive acceptance areas defines sequence of intervals: &1, ds, ... The structure relations
define relationships between these ¢;. Typical structure relations might specify a monotonicity
property (the §; are increasing), or that each §; is greater than the sum of all the preceding é;.
The structure relationships can also be used to specify order of magnitude relationships, e.g.
that 6; + d; ~ 6; for j < ¢. The structure relationships are important in refining the composi-
tion tables''. In a homogeneous distance system all distance relations have the same structure
relations; however this need not be the case in a heterogeneous distance system. The proposed
system also allows for the fact that the context may affect the distance relationships: this is
handled by having different frames of reference, each with its own distance system and with
inferences in different frames of reference being composed using articulation rules (cf. [116]).
One obvious effect of moving from one scale, or context to another, is that qualitative
distance terms such as “close” will vary greatly; more subtly, distances can behave in various
“non-mathematical” ways in some contexts or spaces: e.g. distances may not be symmetrical'?.
Another “mathematical aberration” is that in some domains the shortest distance between two
points may not be a straight line (e.g. because a lake or a building might be in the way).

4.4.3. Shape

Shape is perhaps one of the most important characteristics of an object, and particularly difficult
to describe qualitatively. In a purely topological theory very limited statements can be made
about the shape of a region: whether it has holes, or interior voids, or whether it is one piece
or not. It has been observed [83] that one can (weakly) constrain the shape of rigid objects by
topological constraints using RCC-8 relations.

However, if an application demands finer grained distinctions, then some kind of semi-metric
information has to be introduced'®. For an explicit qualitative shape description one needs to go
beyond topology, introducing some kind of shape primitives whilst still retaining a qualitative
representation. Of course, as [30] note: the mathematical community have developed many
different geometries which are less expressive than Euclidean geometry, for example projec-
tive and affine geometries, but have not necessarily developed efficient computational reasoning
techniques for them!4.

Of the qualitative approaches to shape description, approaches which work by describing
the boundary of an object include those that classify the sequence of different types of bound-

"Whereas [31] combines qualitative orientation and absolute distance knowledge, [118] combines qualitative
orientation [117] and relative distance information. Another example of a combined distance and position calculus
is [68].

Gection 5 introduces composition tables

12F.g. because distances are sometimes measured by time taken to travel, and an uphill journey may take
longer than a return downhill journey [114].

130f course, orientation and distance primitives as discussed above already add something to pure topology,
but as already mentioned these are largely point based and thus not directly applicable to describing shape of a
region.

" Though see [5, 6].



ary segments [157] or by describing the sequence of different types of curvature extrema [126]
along its contour. Another technique is described by [120] who uses a slope projection ap-
proach to describe polygonal shape: for each corner one describes whether it is convex/concave,
obtuse/right-angled /acute together with a qualitative representation of the direction of the cor-
ner (chosen from a set of nine possible values), as well as the multi-resolution approach of [22].
Alternatively one might construct a complex shaped region out of simpler ones along the lines
of constructive solid geometry, but starting from a more qualitative set of primitives [156].

A dichotomy can be drawn between representations which primarily describe the boundary
of an object compared to those which represent its interior. Arguably the latter techniques are
preferable since shape is inherently not a dimensional concept [17]. A version of the medial
axis transform, defining grain of a region within a shape, leads to a modified version of the
traditional skeleton, called the angular skeleton [56]. Shape description using volume components
is exemplified by the work of [132, 14].

The shape abstraction primitives such as the bounding box or the convex hull have been
considered briefly within the 9-intersection model [29] whilst the latter technique has been
investigated extensively within the RCC calculus [32, 42, 50]. RCC theory has shown that many
interesting predicates can be defined once one take the notion of a convex hull of a region (or
equivalently, a predicate to test convexity) and combines it with a topological representation. By
computing the topological relationships between the shape itself and the different components
of the difference between the convex hull and the shape, one can distinguish many different
kinds of concave shapes [32]. A refinement to this technique exploits the idea of recursive
shape description [165] to describe any non convex components of the difference between the
convex hull and the shape. The convex hull is clearly a powerful primitive and in fact it has
recently been shown [50] that this system essentially is equivalent to an affine geometry: any
two compact planar shapes not related by an affine transformation can be distinguished by a
constraint language of just EC(z,y), PP(z,y) and conv(z).

Before leaving the topic of shape description we should point out the work of [30] on describ-
ing shape via properties such as compactness and elongation by using the minimum bounding
rectangle of the shape and the order of magnitude calculus of [134]: elongation is computed via
the ratio of the sides of the minimum bounding rectangle whilst compactness by comparing the
area of the shape and its minimum bounding rectangle. The notion of a voronoi hull has also
been used [55].

4.5. Vagueness, Uncertainty and Granularity

Vagueness, Uncertainty and Granularity are features of information which permeate almost
every domain of knowledge representation. Uncertainty and vagueness are endemic in many
applications, for example because of indeterminate region boundaries. Granularity follows from
the notion that for some purposes only very general descriptions are required'®, whereas in other
cases one would like as much precision as possible.

Vagueness of spatial concepts can be distinguished from that associated with spatially sit-
uated objects and the regions they occupy. An adequate treatment of vagueness in spatial

15 A theory of abstraction [91] - i.e, going from detailed to general information — has received particular attention
from the Al community.



information will need to account for vague regions as well as vague relationships [40]. Although
there has been some philosophical debate concerning whether vague objects can exist [70], formal
theories dealing with vagueness of extent are not well-established.

As for uncertainty, it is always possible to glue on some standard numerical technique for
reasoning about uncertainty (e.g. [82]), but there has also been some research on extending ex-
isting qualitative spatial reasoning techniques to explicitly represent and reason about uncertain
information. Proposed extensions of the RCC calculus [39] and the 9-intersection [28] take a
very similar approach. The former approach which is continued in a series of papers [37, 38, 40]
postulates the existence of non crisp regions in addition to crisp regions and then adds another
binary relation to RCC - z is crisper than region y. A variety of relations are then defined in
terms of this primitive and this extended theory is then related to what has become known as
the “egg-yolk” calculus, which originated in [125], to represent and reason about indefiniteness
of a region’s boundaries. Essentially, it models regions with indeterminate boundaries as a pair
of regions. As shown in Figure 4, the yolk represents a minimum extension of the indefinite
region, whilst the egg represents its maximum extension. It turns out that if one generalizes
RCC-8 in this way [40] there are 252 JEPD relations between non crisp regions which can be
naturally clustered into 40 sets.

Egg —
Yolk

Crisping
Figure 4. An egg-yolk structure for regions with indeterminate boundaries.

The extension of the 9-intersection [28] looks very similar to the egg-yolk calculus but does
not consider such fine granularity of relations; it postulates 44 JEPD relations, also clustered
into groups (18 in their case) but using a more ad hoc technique to achieve this. An interesting
extension to this work [29] shows that this calculus of regions with broad boundaries can be used
to reason not just about regions with indeterminate boundaries but also can be specialised to
cover a number of other kinds of regions including convex hulls of regions, minimum bounding
rectangles, buffer zones and rasters!®.

Another notion of indefiniteness relates to locations. Bittner [15] deals with the notion of
exact, part and rough location for spatial objects. The exact location is the region of space
taken up by the object. The notion of part location (as introduced by [19]) relates parts of a
spatial object to parts of spatial regions. The rough location of a spatial object is characterized
by the part location of spatial objects with respect to a set of regions of space that form regional
partitions. Consequently, the notion of rough location links parts of spatial objects to parts of
partition regions.

Bittner [15] argues that the observations and measurements of location in physical reality
yield knowledge about rough location: a vaguely defined object o is located within a regional

Y6 This last specialization generalises the application of the n-intersection model to rasters previously undertaken
[66].



partition consisting of the three concentric regions: ‘core’, ‘wide boundary’ and ‘exterior’. In this
context, the notion of rough location within a partition consisting of the three concentric regions
coincides with the notion of vague regions introduced by [39]. A calculus for representing and
reasoning about the location of rigid objects which may move within some region is presented
in [46] which presents an axiomatisation for congruence, defines the notion of a mobile part,
describes a subset of morpho-mereological relations suitable for representing spatial locations,
and analyzes the computational complexity of this set. Further work based on congruence is
[11, 12].

It is worth noting the similarity of these ideas to rough sets [53], though the exact rela-
tionship has yet to be explored. Other approaches to spatial uncertainty are to work with an
indistinguishability relation which is not transitive and thus fails to generate equivalence classes
[173, 121] and the development of nonmonotonic spatial logics [163, 2].

5. Qualitative Spatial Reasoning

Much of the work in QSR has concentrated on representational aspects. Nevertheless, various
computational paradigms are also being investigated including constraint based reasoning (e.g.
[113]). The most prevalent form of qualitative reasoning is based on the composition table!”.

A compositional inference is a deduction, from two relational facts of the form R;(a,b)
and Ry (b,c), of a relational fact of the form Rs(a,c), involving only @ and ¢. The validity of
compositional inferences does not depend in many cases on the constants involved but only on
the logical properties of the relations. In such a case the composition of pairs of relations can be
maintained for table look up as and when required. This technique is of particular significance
when we are dealing with relational information involving a fixed set of relations. Given a set of
n JEPD relations, one can store in a n x n composition table the relationships between z and z
for a pair of relations R;(z,y) and Ra(y, z). In general, each entry will be a disjunction because
of the qualitative nature of the calculus.

For a representation using a limited set of binary relations, the simplicity of the compositional
inference makes it an attractive means of effective reasoning. Since their introduction, compo-
sition tables have received considerable attention from researchers, e.g. [178, 60, 79, 149, 158,
36, 161]. Most of the calculi mentioned in this paper have had composition tables constructed
for them, though it has at times posed something of a challenge [149].

A reformulation of the RCC first order logic into a zero order representation'® [7] in which
intuitionistic propositional formulae represent constraints on possible situations was able to
generate the composition table as shown in Table 1 automatically!®.

Composition tables do not necessarily subsume all forms of desired reasoning. An interest-
ing question than arises: exactly when is a composition table reasoning a sufficient inference

17Originating in Allen’s analysis of temporal relations and called the ‘transitivity table’ [1], now more appro-
priately renamed ‘composition table’ since more than one relation is involved and it is the composition of the
relations that is being represented rather than the transitivity of individual relations.

'8This reformulation is interesting in that it becomes a true spatial logic, rather than a theory of space: the
“logical symbols” have spatial interpretations, e.g. implication is interpreted as parthood and disjunction as the
sum of two regions.

19 Another approach for automatic generation of composition tables uses a zero order modal logic [9].



R2(b,c)

Ri(a,b, DC EC PO TPP NTPP TPPi NTPPi EQ
DC no.info DR,POPP  [DR,PO,PP |DR,PO PP DR,PO,PP |DC DC DC
Ec _ [pr,PO

DR,PO,PPi | 1ppyp; DR,PO,PP |EC,PO,PP PO,PP DR DC EC
K K R ~ | DR.PO
PO DR,PO,PPi  [DR,PO,PPi [no.info PO,PP PO,PP DR,PO.PPi | oo PO
DR,PO DR,PO
TPP DC DR DR,PO,PP |PP NTPP TPP.TPi PPi PP
NTPP DC DC DR,PO,PP |NTPP NTPP DR,PO,PP no.info  |NTPP
TPPi DR,PO,PPi [EC,PO,PPi  |PO,PPi PO,TPP,TPi |PO,PP PPi NTPPi TPPi
NTPPi  |DRPO,PPi [PO,PPi PO,PPi PO,PPi o NTPPi NTPPi NTPPi
EQ DC EC PO PP NTPP TPPi NTPPi EQ

Table 1. Composition table for the RCC-8 relations

mechanism (i.e for which theories is it complete)? This has been taken up in [54] and in [10] it
has been suggested that the formalism of relational algebra is particularly suited to representing
compositional reasoning and deserves further study and wider application.

For cases when composition based reasoning is not sufficient, then other more general con-
straint based reasoning may be sufficient [113, 106] or as in [69] where QSR is seen as a constraint
satisfaction problem?°. More generally, one may resort to theorem proving, or preferably, some
kind of specialised theorem proving system, [7, 158, 108] for example.

5.1. Reasoning about Spatial Change

So far we have been concerned purely with static spatial calculi. However it is important to
develop calculi which combine space and time in an integrated fashion. Topological changes in
‘single’ spatial entity include: change in dimension (this is usually ‘caused’ by an abstraction
or granularity shift rather than an ‘actual’ spatial change®!'); change in number of topological
components (e.g. breaking a cup, fusing blobs of mercury); change in the number of tunnels
(e.g. drilling through a block of wood); change in the number of interior cavities (e.g. putting
a lid on a container).

In many domains we assume that change is continuous??, as is the case in traditional qualita-
tive reasoning, and thus there is a requirement to build into the spatial calculus which changes
in value will respect the underlying continuous nature of change, and this requirement is of
course common to all the different kinds of spatial change we have mentioned above. It is
thus important to know which qualitative values or relations are neighbours in the sense that
if a value or predicate holds at one time, then there is some continuous change possible such
that the next value or predicate to hold will be a neighbour. Continuity networks defining
such neighbours are often called conceptual neighbourhoods in the literature following the use

20 As a consequence of this, the treatment of several aspects of space (such as orientation following the Freksa and
Zimmermann’s approach [80], cardinal directions following Frank’s approach [78] and qualitative named distances
[80] could be integrated into the same spatial model.

2'F.g. we may view a road as being a 1D line on a map, a 2D entity when we consider whether it is wide
enough for an outsize load, and a 3D entity as we consider the range of mountains it passes over, or the potholes
and a particularly delicate cargo.

228ometimes change is discontinuous, e.g. when political fiat moves the boundaries of geopolitical entities in a
discontinuous manner.



of the term [79] to describe the structure of Allen’s 13 JEPD relations [1] according to their
conceptual closeness??(e.g. meels is a neighbour of both overlaps and before). As illustrated in
Figure 1 above, most of the qualitative spatial calculi reported in this paper have had conceptual
neighbourhoods constructed for them??.

5.1.1. Qualitative Simulation

Perhaps the most common form of computation in the traditional QR literature is qualitative
simulation; using conceptual neighbourhood diagrams it is easy to build a qualitative spatial
simulator [47]. Such a simulator takes a set of ground atomic statements describing an initial
state?® and constructs a tree of future possible states — the branching of the tree results from
ambiguity of the qualitative calculus. Of course, continuity alone does not provide sufficient
constraints to restrict the generation of next possible states to a reasonable set in general —
domain specific constraints are required in addition.

A desirable extension by analogy with earlier QR work would be to incorporate a proper
theory of spatial processes couched in a language of QSR. Some work in this direction is: a field
based theory of spatial processes such as heat flow [130]; an analysis of which traversals of a
topological conceptual neighbourhood diagram correspond to processes such as expansion of a
region, rotation of a region etc [62]; how the processes of protrusion and resistance cause changes
in a boundary based shape description language — given two shapes one can infer sequences of
processes which could cause one to change into the other [126]. Also worthy of note is the
qualitative spatial simulation work of [145] based on the QSIM system [180].

5.1.2. Qualitative Motion

Inspite of a large amount of work in mereo-topological theories as a basis for common-sense
reasoning, very little work has been done on motion in a qualitative framework. Representation
of motion as in [146, 112] is in a Newtonian/Cartesian framework. Some work [75, 49] insist
more on the concept of dynamic processes; elsewhere [163, 109] there is research on default
reasoning in metric spaces that are not really clearly characterized.

Motion is nevertheless a key notion in our understanding of spatial relations. RCC relations
form “conceptual-neighbourhoods” via potential motion, but continuity remains an implicitly
assumed notion. One problem is that the conceptual neighbourhood is usually built manually
for each new calculus — potentially an arduous and error prone operation if there are many
relations. Techniques to arrive at these automatically would be very useful. An analysis of the
structure of conceptual neighbourhoods reported by [127] goes some way towards this goal. A
more fundamental approach which exploits the continuity of the underlying semantic spaces [86]

22 Note that one can lift this notion of closeness from individual relations to entire scenes via the set of relations
between the common objects and thus gain some measure of their conceptual similarity as suggested by [18].

21A closely related mnotion is that of “closest topological distance” [62] — two predicates are neighbours if
their respective n-intersection matrices differ by fewer entries than any other predicates; however the resulting
neighbourhood graph is not identical to the true conceptual neighbourhood or continuity graph - some links are
missing.

2The construction of an envisioner [180] rather than a simulator would also be possible of course. See also the
transition calculus approach of [94].



not only allows the construction of a conceptual neighbourhood for a class of relations from a
semantics, but also infers which relations dominate other relations: Ry dominates Ry if Ry can
hold over an interval followed/preceded by R; instantaneously. E.g. in RCC-8 TPP dominates
NTPP and PO, while EQ dominates all its neighbouring relations. Dominance is analogous to
the equality change law to be found in traditional QR [180] and allows a stricter temporal order
to be imposed on events occuring in a qualitative simulation. Motivated by the desire to exploit
decidable modal logics for spatio-temporal qualitative reasoning, a series of rather expressive
such calculi have been proposed [182] in which it is possible easily to represent restrictions on
continuous motion.

An approach to automatically inferring continuity networks has been proposed by Muller
[138, 139, 137]. Taking up the idea of spatio-temporal histories [111], he enriches a theory
intended for spatial entities to achieve a formal theory for reasoning about motion and presents
a mereo-topological model in which the primitive entities are spatio-temporal regions, on which
spatio-temporal and temporal relations are defined. The expressive power of the theory allows
for the definition of complex motion classes such as those expressed by motion verbs in natural
language. Properties usually assumed as desirable parts of any space-time theory of motion
are recovered from their model, thus giving a sound theoretical basis for a natural, qualitative
representation of motion. An alternative approach is [12] which explores the expressive power
of Region-Based Qualitative Geometry [11] to the problem of representing and reasoning about
the motion of rigid bodies within a confining environment?6.

5.2. Theoretical Results in QSR

Even though much work has been done in generating spatial representational calculi, there
remain a number of theoretical questions. Not all calculi has been given a formal semantics by
their inventors. Even for those that has been given, there is the question of whether it is the
best or simplest semantics. Further, given a semantics one can ask whether the task of showing
a set of formulae is consistent or whether one set entails another is decidable, and if so, what
is the complexity of the decision procedure. One can ask if the theory is complete, either in
the weak sense of every true formula being provable, or in the stronger sense of whether every
formula is made either true or false in the theory. Any complete, recursively axiomatizable
theory is decidable. Finally, there is the property of being categorical, i.e. whether all models
are isomorphic? Since theories may have models of various cardinalities, and models of different
cardinalities cannot by definition be isomorphic, a more interesting property is ¥y categoricity
i.e. whether all countable models are isomorphic, since these are perhaps the most useful models
from the user’s viewpoint.

A question arises as to whether there is something special about region based theories from
the ontological viewpoint? The answer is in the negative, at least for 2D mereotopology [142]:
they show, under certain assumptions, that the standard 2D point based interpretation is the

26The approach is based on the morpho-topological approach in [16] but has some significant advantages.
Firstly [11] assume only parthood and a morphological primitive (which may be either the sphere predicate or
the congruence relation), whereas [16] employ an additional topological primitive (‘simple region’). Topological
concepts are nevertheless definable in [11] and they also prove categoricity by a more direct encoding of Tarski’s
geometry axioms into the language.



simplest model (prime model); the only alternative models involve regions with infinitely many
pieces. But it may be argued that it is still useful to have region based theories even if they are
always interpretable point set theoretically.

A fundamental result on decidability which has widespread applicability in qualitative spatial
theories is that of [105] which shows that although Boolean algebra is decidable; adding either
a closure operation or an external connection relation results in an undecidable system since
one can then encode arbitrary statements of arithmetic. This implies that Clarke’s calculus and
all related calculi such as the first order theory of RCC, and the calculi of [3] and [16] are all
undecidable.

The question then becomes whether there are any decidable subsystems?”? The constraint
language of RCC-8 has been shown to be decidable [7] — this was achieved by encoding each
RCC-8 relation as a set of formulae in intuitionistic proportional calculus which is a decidable
calculus. This language was subsequently shown to be tractable [140] — in fact the satisfaction
problem is solvable in polylogarithmic time since it is in the complexity class NC. However the
constraint language of oRCC-8 (i.e where constraints may be arbitrary disjunctions of RCC-8
relations) is not tractable.

A maximal tractable subset (containing 148 relations) of the constraint language of gRCC-8
has been identified and furthermore have shown that path consistency is sufficient for deciding
consistency in this case [155]. If an appropriate size constraint is introduced between two regions
then all reasoning in 2RCC-8 effectively becomes polynomial [89].

More recently, a complete classification of the tractability of RCC-8 has been made [153].
It turns out that there are two further maximal tractable subsets (containing 158 and 160
relations respectively) and these three subsets are the only such sets for RCC-8 that contain all
base relations. Further work on the complexity of RCC includes [45].

As far as the complexity of non topological theories is concerned, [117] presents and analyses
an orientation calculus and determines polynomial subsets (including all the base relations),
whilst determining satisfiability in the general algebra is NP complete. Similarly [128] shows
that whilst the general consistency problem in the algebra of cardinal directions is NP complete,
consistency for the preconvex relations is polynomial and this set is a maximal tractable subset.
A complexity analysis of an morphological calculus based on congruence is [119].

Also of interest is the analysis of [104] which considers an RCC-8 like calculus and two
simpler calculi and determines which of a number of different problem instances of relational
consistency and planar realizability are tractable and which are not — the latter is the harder
problem. It has also been shown that the constraint language of EC(z,y), PP(z, y) and conv(z)
is intractable (it is at least as hard as determining whether a set of algebraic constraints over
the reals is consistent) [50].

Clarke’s system [24] has been given a semantics (regular sets of Euclidean space are models)
and has shown to be complete in the weak sense [13]. Unfortunately it turns out that contrary to
Clarke’s intention, only mereological relations are expressible! The theory in fact characterises
a complete atomless Boolean algebra. The system of [3] which corrects the problems in Clarke
as mentioned above, is given a semantics and shown to be complete by the authors but their

2TRather in the same manner as the description logic community have sought to find the lines dividing decid-
ability from undecidability and tractability from intractability [21].



inclusion of the notion of ‘weak connection’ forces a non standard model since models must be

non dense?®.

A completeness result (in the strong sense) has been derived for a complete 2D topological
theory whose elements are 2D finite (polygonal) regions and whose primitives are: the null and
universal regions, the Boolean functions (+,#,—) and a predicate to test for a region being
one piece [142]; the theory is first order but requires an infinitary rule of inference. This is
not surprising in view of the undecidability of first order topology mentioned above [105]. The
infinitary rule of inference guarantees the existence of models in which every region is sum of
infinitely many connected regions. The resulting theory is complete but not decidable.

Notwithstanding the attempt [8] to derive a complete first order topological theory, it is now
clear that no first order finite axiomatisation of topology can be complete or categorical because
it is not decidable.

6. Final Comments

An issue that has not been much addressed yet in the QSR literature is the issue of cognitive
validity. Claims are often made that qualitative reasoning is akin to human reasoning, but with
little or no empirical justification. One exception to this is the study made of a calculus for
representing topological relations between regions and lines [131]. Another study is [123] that
have investigated the preferred Allen relation (interpreted as a 1D spatial relation) in the case
that the composition table entry is a disjunction. Perhaps the fact that humans seem to have
a preferred model explains why they are able to reason efficiently in the presence of the kind of
ambiguity engendered by qualitative representations. In [122] they extend their evaluation to
RCC-theory and Egenhofer’s approach to topological relations.

In this paper we have surveyed many of the key ideas and results in the QSR literature, but
space has certainly not allowed an exhaustive survey. As in so many other fields of knowledge
representation it is unlikely that a single universal spatial representation language will emerge
— rather, the best we can hope for is that the field will develop a library of representational
and reasoning devices and some criteria for their most successful application. Moreover, as in
the case of non spatial qualitative reasoning, quantitative knowledge and reasoning must not be
ignored — qualitative and quantitative reasoning are complementary techniques and research is
needed to ensure they can be integrated — for example by developing reliable ways of translating
between the two kinds of formalisms 2°. Equally, interfacing symbolic QSR to the techniques
being developed by the diagrammatic reasoning community [92] is an interesting and important
challenge.

22 This enforced abondonment of R™ as a model leads one to question whether it is indeed a good idea to try
to model the proposed distinction between strong and weak connection topologically in a purely spatial theory,
rather than in an applied theory of physical objects and material substances together with the regions they occupy.
They do propose an extension to their theory in which they allow the spatial granularity to be varied; as finer
and finer granularities are considered, so fewer instances of weak connection are true and in the limit the theory
tends to the classical topological model.

2*Some existing research on this problem includes [77, 73, 169].
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