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Abstract. In this paper, we present a spatial logic which can be used
to reason about topological and spatial relationships among objects in
spatial databases. The main advantages of such a formalism are its rigor-
ousness, clear semantics and sound inference mechanism. We also show
how the formalism can be extended to include orientation and metrical
information. Comparisons with other formalisms are discussed.

1 Introduction

A formal theory of space and time has always been an important issue in Ar-
tificial Intelligence. Recently, its importance in spatial databases has been rec-
ognized (Egenhofer 1989, 1991, Egenhofer and Herring 1990, and Pullar and
Egenhofer 1988). Advances of database technology have required a database not
only to store, to retrieve and to update data, but also to reason about the re-
lationships among its data, and to have production rules and triggers. A formal
theory of data models is important in securing the data consistency in such
situations. A deductive database should allow its users to formulate complex
queries based on simple facts (relations), otherwise it is difficult to meet the
requirements of many applications.

Geographic information systems, image data bases, and CAD/CAM systems
are often based upon the relationships among spatial objects. Although some
query languages support queries with some spatial relationships; however, the
diversity, semantics, completeness and terminology of these relationships vary
dramatically (eg Egenhofer and Frank 1988, Roussopoulos, Faloutsos and Sellis
1988, Guenther and Buchmann 1990, Giting 1988). In general, the underlying
basis of most existing spatial databases seems to be that of point set geometry,
perhaps with some application specific ontology in addition (eg Rawlings 1985).

However, many explanations of phenomena and descriptions of the relation-
ship between objects in informal discourse appeal to relatively high level qual-
itative spatial information, in particular, topological information. Much of this
appears to be done unconsciously, but little reflection on our use of language

% This work has been partially funded by the SERC under grant no. GR/G36852



(particularly the use given to prepositions and prepositional phrases) reveals
how important this information is. While we need not assume that linguistic
descriptions necessarily uncover those entities represented and exploited by the
brain in all such activity (eg. in the encoding and representation of perceptual
information), the design of formal spatial query languages which mirror the on-
tology used in informal discourse may ease the use of such a language. Thus there
is a need to develop a unified theory on topological relations. Egenhofer(1991,
1989) has proposed a topological relationships based on point set combinatori-
cal topology. However, it relies on relatively sophisticated mathematics concepts
such as open and closed regions. The main purpose of this paper is to present
a higher level, axiomatic approach (Randell and Cohn 1989, Randell et al 1992)
to representing and reasoning about qualitative (including topological) spatial
information and to discuss the application of the language to spatial databases.
A distinguishing feature of our approach is that our basic ontology is that of a
regton, thus abstracting away from point set semantics, which may indeed be a
model for our formalism but is not presupposed.

The other main advantages of this approach are its logical rigorousness and its
foundation in first order predicate calculus allowing well investigated inference
rules and many different theorem proving technologies to be readily used to
prove theorems, make inferences and test consistency and constraints of the
databases. Moreover the ontological commitments required are few: two basic
primitive notions allow an arbitrarily complex taxonomy of qualitative spatial
relationships and concepts to be defined (Cohn, Randell and Cui 1993).

The remainder of this paper is structured as follows: first we present the ex-
tant formalism and discuss how the calculus can be easily used to check database
consistency and constraints. Then we show how the formalism can be extended
to incorporate notions of orientation and direction. Related works are discussed,
mainly in the context of the formalisms developed by Egenhofer (1991) and
Freksa (1991); finally we mention some current and future work and summarise
the paper.

2 The Extant Formalism

The basic ontological entity we consider® is a region; note that boundaries, lines
and points are not regions.>. Regions are non empty. Regions in the theory sup-
port either a spatial or temporal interpretation, though we will only consider
the spatial interpretation here. Informally, these regions may be thought to be
potentially infinite in number, and any degree of connection between them is

4 Most of the material in this section can be found in (Randell, Cui and Cohn 1992) but
we review it here for convenience and to make this paper more self contained. Pre-
viously we have also considered a temporal interpretation of the formalism (Randell
and Cohn 1989, 1992) but we concentrate on the spatial case here.

5 However we believe that from a modelling point of view at least for commonsense
reasoning, such mathematical abstractions are not necessary and one can use special
kinds of regions such as skins and atoms — see (Randell, Cui and Cohn 1992)



allowed in the intended model, from external contact to identity in terms of
mutually shared parts. The formalism supports two or three dimensional in-
terpretations (or higher dimensions!) and is based upon Clarke’s (1981, 1985)
calculus of individuals based on “connection”; it is expressed in the many sorted
logic LLAMA (Cohn 1987).5

The basic part of the formalism assumes one primitive dyadic relation: C(z, y)
read as ‘x connects with y’. The relation C(z,y) is reflexive and symmetric. We
can give a topological model to interpret the theory, namely that C(z,y) holds
when the topological closures of regions z and y share a common point.” Two
axioms are introduced.

(1) VaC(z, z)
(2) Vay[C(z, y) — C(y, z)]

Using C(z,y), a basic set of dyadic relations are defined: ‘DC(z,y)’ (‘z is
disconnected from y’), ‘P(z,y)’ (‘z is a part of y’), ‘PP(z, y) (‘2 is a proper part
of ¥'), ‘@ = ¥y’ (‘x is identical with y’), ‘O(z,y)’ (‘z overlaps y’), ‘DR(z,y) (‘z
is discrete from y’) ‘PO(z,y)’ (‘z partially overlaps y’), ‘EC(z,y)’ (‘z is exter-
nally connected with y)’, “TPP(z,y)” (‘z is a tangential proper part of y’) and
‘NTPP(z,y) (‘z is a nontangential proper part of y’). The relations: P,PP, TPP
and NTPP being non-symmetrical support inverses. For the inverses we use the
notation ®~!, where @ € {P,PP,TPP and NTPP}. In order to save space we will
not give the definitions for any of the inverse predicates as they are all of the form
@1z, y) =45 P(y, z). Of the defined relations, DC,EC,PO,=,TPP,NTPP and
the inverses for TPP and NTPP are provably mutually exhaustive and pairwise
disjoint.

(3) DC(z,y) =aer ~Cl(z,y)

(4) P(z,y) =dey V2[C(2,2) — C(2,y)]

(5) PP(2,4) Za.7 P(a, ) A ~P(y,2)

(6) 2 =y =45 P(z,y) APy, 2)

(7) O(z,y) =dey 32[P(2,2) AP(2,y)]

(8) PO(z,y) =4es O(x,y) A =P(z,y) A =P(y, z)

(9) DR(z, y) =dey —O(z,y)

(3) TPP(z,y) =4ef PP(z,y) A F2[EC(z, z) A EC(z, y)]
(10) EC(z,y) =aey Cz,y) A—O(2,y)

(11) NTPP(z,y) =4ey PP(z,y) A =32[EC(z, 2) AEC(z, y)]

A pictorial representation of the relations defined above is given in Figure 1.

6 Although we use a sorted logic, for the most part this need not concern us here;
important sortal restrictions will be mentioned as appropriate.

7 In Clarke’s theory and in our original theory (Randell and Cohn 1989, 1992), when
two regions z and y connect, they are said to share a point in common; thus the
interpretation of the connects relation here and in (Randell, Cui and Cohn 1992)
is weaker. Alternative models for the C relation not relying explicitly on point set
semantics are that it is true when the distance between the two regions is zero, or
that no other region can be ‘fitted’ between them.



Cxy) DC(xy) P(xy) PP(xy) O(xy) DR(xy) EC(xy) TPP(xy) NTPP(xy) PO(X.y)

Fig. 1. A set of sample configurations (in 2D) modelling the defined relations.

The Boolean functions® are: ‘sum(z, y)’ which is read as ‘the sum of z and
y’, ‘us’ as ‘the universal (spatial) region’, ‘compl(z)’ as ‘the complement of z’,
‘prod(z,y)’ as ‘the product (i.e. the intersection of z and y’ and ‘diff(z,y)’ as
‘the difference of z and y’. The functions: ‘compl(z)’, ‘prod(z, y)’ and ‘diff(z, y)’
are partial but are made total in the sorted logic by simply specifying sorts
restrictions and by introducing a new sort called NULL. The sorts NULL and
REGION are disjoint.

sum(z, y) =def Ly[VZ[C(Z, y) - [C(Z: l‘) v C(Z, y)]]]

compl(z) =4ef wy[V2[[C(z,y) & "NTPP(z,2)]A [O(z,y) < —P(z, z)]]]
us =qe7 y[Vz[C(z, y)]]

prod(z,y) =des t2[Vu[C(u, z) — Fv[P(v,z) A P(v,y) A C(u, v)]]]
diff(z, y) =4ey tw[Vz[C(2z, w) — C(z, prod(z, compl(y)))]]
Vzy[NULL(prod(z,y)) < DR(z, y)]

An additional axiom is also required which stipulates that every region has
a nontangential proper part:®

(12) Yz3y[NTPP(y, z)]

8 a(T) =aes ty[P[a(y)] means VZ[P(a(Z)]]; thus, e.g., the definition for prod(z,y) is
translated out (in the object language) as: Vzyz[C(z,prod(z,y)) — Jw[P(w,z) A
P(w,y) A C(z,w)]].

9 A consequence of this axiom is that there can be no atomic regions, i.e. regions which
contain no subparts. For a discussion of how such regions can be introduced into the
language, see Randell, Cui and Cohn (1992).



This axiom mirrors a formal property of Clarke’s theory, where he stipulates
that every region has a nontangential part, and thus an interior (remembering
that in Clarke’s theory a topological interpretation is assumed).

2.1 One piece regions

Clarke’s theory supports a model where regions may topologically connected
(i.e.in one piece) or disconnected (in more than one piece). This naturally arises
given the above definitions for Boolean functions: the sum of two regions will
be disjoint unless they are connected. Such scattered regions may be used to
model, for example, a cup broken into several pieces. The definition CON(z) (z
is connected one piece region) simply states that an individual region is connected
if it cannot be split into parts whose union is that region, and where these parts
are not connected to each other.

CON(z) =ges Yyz[sum(y, z) = ¢ — C(y, 2)]

2.2 Concavity and Convexity

A primitive function ‘conv(z)’ (‘the convex-hull of z’) is defined and axiomatised.!°
Informally this function generates the region of space that would arise by com-
pletely enclosing a body in a taught ‘cling film’ membrane. This function pro-
vides a very intuitive notion for describing objects that may be considered inside,
partially inside or outside another object without forming part of that object.
Figure 2 gives sample configurations. We also can define a predicate CONV(z)
which is true for convex regions.

Fig. 2. Illustrations of the convex hull: a is a region (shaded area), its convex-hull is
the area enclosed by outer line including the dotted line; b is the shaded area and its
convex-hull is the area enclosed by the outer oval.

10 The fourth of these axioms is different to our previous publication (Randell, Cui
and Cohn 1992), as we have recently discovered a counterexample to the old axiom
— originally the axiom was VzVy[[P(z,conv(y)) A P(y, conv(z))] — O(z,y)]. Also, it
should be noted that whereas we previously assumed (eg Randell, Cui and Cohn
1992) that conv is only well sorted when defined on one piece regions, we have now
dropped this restriction since on consideration the axioms for conv are also clearly
true for non one piece regions.



VzP(z, conv(z))

VzP(conv(conv(z)), conv(z))

VaVyVz[[P(z, conv(y) A P(y, conv(z))] — P(z, conv(z))]
VaVy[[P(z, conv(y)) A P(y, conv(z))] — C(z, y)]

VaVy[[DR(z, conv(y)) A DR(y, conv(z))] < DR(conv(z), conv(y))]
CONV(z) =gey « = conv(z)

Note that a consequence of these axioms is that the universal region, us, is
convex since us is not a proper part of any other region and thus conv(us)=us.

We use conv to define a set of relations which describe regions being inside,
partially inside and outside, e.g. ‘INSIDE(z, y)’ (« is inside y’), ‘P-INSIDE(z, y)’
(‘z is partially inside y’) and ‘OUTSIDE(z, y)’ (‘z is outside y’), each of which
also has an inverse. Two functions!'! capturing the concept of the inside and the
outside of a particular region are also definable (where ‘inside(z)’ is read as ‘the
inside of z’, and ‘outside(z)’ as ‘the outside of z’ respectively.

INSIDE(z, y) =4c DR(z,y) A P(z, conv(y))

P-INSIDE(z, y) =4. DR(z,y) APO(z, conv(y))

OUTSIDE(z, y) =4.; DR(z, conv(y))

inside(z) =4e5 y[V2[C(2,y) < FW[INSIDE(w, z) A C(z, w)]]]
outside(z) =ge5 ty[V2[C(2,y) — Fw[OUTSIDE(w, 2) A C(z, w)]]

This particular set of relations refines DR(z, y) in the basic theory. In (Ran-
dell, Cui and Cohn 1992, Randell, Cohn and Cui 1992) we generated a pairwise
disjoint and mutually exhaustive set of relations by taking the relations given
above, their inverses, and the set of relations that result from non-empty in-
tersections. The set of base relations for this particular set were then finally
generated by defining an EC and DC variant for each of these relations.

A new set of base relations (using the relations defined immediately above)
are constructed according to the following schema:

afy(z,y) Zaep alz,y) A B(z,y) Ay(2,y)
where: o € {INSIDE, P-INSIDE, OUTSIDE}, # € {INSIDE-!, P-INSIDE~",
OUTSIDE=!}, and v € {EC, DC} excepting where o = INSIDE and 3 =INSIDE~!

This give a total of 22 base relations instead of the original 8.

2.3 Bodies v. Regions

We make an ontological distinction between physical objects (bodies) and the
regions of space they occupy. Bodies and regions are represented in the formal
theory as disjoint sorts. The mapping between the two is done by introducing
a transfer function ‘space(z,y)’ read as ‘the space occupied by z at y’, which
takes a body at a given moment in time, and maps this to the region of space
it occupies. If the body does not exist at a particular moment, then it will be
mapped to the sort NULL.

11 Note that it does not really make much sense to define a functional analogue of
P-INSIDE as this would simply be the sum of the inside and the outside, i.e. the
complement of x!



3 Inferences and Constraints

Efficient inferences can be made by exploiting the structures of the formalism.
The computational cost of using uncontrolled inference within computational
logics for non-trivial domain problems is well known. Various hybrid represen-
tation and reasoning systems have recently gained much interest among Al re-
search workers in an attempt to meet such difficulties (see eg. Frisch and Cohn
1990). The basic idea involves factoring out distinct ways to represent knowl-
edge structures and assigning each “factor” to a subsystem in which specialised
inference is done. It should be apparent that our representation is naturally hy-
brid. Although keeping (sorted) first order logic as the main language, we have
knowledge about sorts, subsumption relationships (of both sorts and sets of rela-
tions) and continuity restrictions, all of which may be represented and reasoned
about by special means. In (Randell and Cohn 1992) we discuss various inference
mechanisms for our spatial logic. We review and discuss the most important of
these here and relate them to databases.

The first point to note is that the relations naturally form a lattice structure
(Figure 3) which can be exploited by any ‘clash’ based inference mechanism
(such as a resolution based deductive engine) via theory resolution (Stickel 1990,
Randell and Cohn 1992).12 Moreover, both facts and queries can be expressed
at the most appropriate level of abstraction with respect to the hierarchy. Such
a lattice can be used to derive relations efficiently. At its simplest, such a lattice
can be used to answer queries such as ‘is b connected to ¢?’ (ie C(b, ¢)) given that
the database contains the entry TPP(¢, b), very efficiently (the answer being ‘yes’
in this case, since TPP(c, b) is equivalent to TPP~1(b,¢) and TPP~! is below
C in the hierarchy. Similarly the lattice can also be used for integrity checking
when entering new data. For example it may already be known that P(b,¢); an
update of TPP(b,¢) would be consistent with this but an update of EC(c,¥b)
would not, because the greatest lower bound in the latter case is L but is not L
in the former case.

3.1 Composition Tables

For the temporal interval logic (Allen 1983), a composition table!3 has been used
extensively for many purposes. Such a table has also been constructed for the
initial eight'* base relations in our spatial logic (Randell 1991, Randell, Cohn
and Cui 1992) — see Table 1 and, independently, by Egenhofer (1991) for his
closely related formalism.

Each entry of the form Ri(a,b) and Ra(b, ¢) is mapped to a disjunctive set
of base relations, corresponding to a theorem and no redundant base relations

12 We have extended the LISP implementation of LLAMA in this way, using a bit-
encoding of the lattice to allow lattice operations to be efficiently implemented — cf
(Ait-Kaci 1989).

13 Allen originally used the term transitivity table.

14 See later for our progress in building tables for the extended set of relations.
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Fig.3. A lattice defining the subsumption hierarchy of the dyadic relations defined
solely in terms of the primitive relation C(z,y).

are given (ie. there is a model for each of the disjunctions). Although the com-
position table is only given for the base relations, non-base relations may ap-
pear in the target set (eg. PP(a,b) and PP(b, ¢)) so in these cases the following
calculation is performed. Firstly we use the lattice L (see figure 3) to com-
pute the set of base relations each relation covers (in this case {TPP(a,b) ,
NTPP(a,b)} and {TPP(b,c), NTPP(b,c)} — remembering that Vey[PP(z,y) —
[TPP(z,y) V NTPP(z,y)]]). Next we take each Ri(a,b), Ra(b,c) pair, where
Ri(a,b)€ {TPP(a,b), NTPP(b,¢)} and Ra(b,c) € {TPP(b,c), NTPP(b,¢)} and
form the union of all disjunctive sets of base relations each Ry (a,b) , Ra(b, ¢) pair
yields using the composition table. In this case this would be [TPP V NTPP](q, ¢)
or simply PP(a, ¢). So given PP(a, b) and PP(b, ¢) we deduce PP(a, c).

An interesting open question is whether and when the composition table is
sufficient to check for consistency. For example in our qualitative spatial simu-
lation program (Cui, Cohn and Randell 1992a) a state is a conjunction of n?/2
ground atoms whose predicates are the relation symbols presented here, and
where there is exactly one atom R(a,b) or R(b,a) for each pair of regions a,b
where n is the total number of regions in the state. Potential new states are
generated by ‘envisioning rules’ (see below) and these must be checked for con-



R2(b,c)

-1 -1
R1(a,b) DC EC PO TPP NTPP TPP NTPP =
DC no.info DR,PO,PP |DR,PO,PP|DR,PO,PP DR,PO,PP|DC DC DC
1|DR,PO
EC DR,PO,PP” | 1pp 1p? DR,PO,PP|EC,PO,PP PO,PP DR DC EC
-1 1 . -1 DR,FO
PO DR,PO,PP" |DR,PO,PP" |no.info PO,PP PO,PP DR,PO,PP" | pp° PO
DR,PO 4 DR PO
TPP DC DR DR,PO,PP|PP NTPP TPP, TP PP TPP
NTPP DC DC DR,PO,PP|NTPP NTPP DR,PO,PP no.info NTPP
-1 -1 -1 -1 -1 -1 -1 -1
TPP DR,PO,PP” |EC,PO,PP™ |PO,PP PO, TPP, TP  |PO,PP PP NTPP TPP
1 1 1 1 1 1 1 1
NTPP DR,PO,PP” |PO,PP PO,PP PO,PP o NTPP NTPP NTPP
-1 -1
= DC EC PO TPP NTPP TPP NTPP =

Table 1. Composition table for the 8 basic relations. If R1(a,b) and R2(b,c), it follows that

”

Rs (a,c) where R3 is looked up in the table. “no info.” means that no base relation is excluded.

Multiple entries in a cell are interpreted as disjunctions. Note that DR stands for DC and EC,
PP for TPP and NTPP, PP! for TPP ! and NTPP~!, TP~ for TPP~! and =, and O for
PO, TPP, NTPP, TPP~!, NTPP!, and =.

sistency with respect to our spatial theory. At present this is done simply by
checking all triples of atoms of the form R;(a,b), Ra(b, ¢), Rs(a,c¢) in the state
against the composition table. We believe that this is sufficient in that despite
extensive search we cannot find a counterexample. If one restricts the intended
interpretation then it is clear that such ‘triangle checking’ is not sufficient in
general; for example if all regions are intended to be circles of the same size,
then at most six distinct circles can EC with a particular circle, but this fact
will not be detected by triangle checking. Similarly, also in two dimensions, the
maximum number of regions that can be mutually partially inside each other
(a relationship defined in a following section) is four, and again this cannot be
verified by triangle checking. However in the general case, it would appear that
triangle checking is sufficient, but we have been unable, despite extensive effort,
to formally verify this conjecture to date. Formally stated, the conjecture is as
below; readers are invited to contact any of the authors with a counterexample
or proof! The conjecture is stated just for the simple case of the 8 basic pair-
wise disjoint and mutually exhaustive predicates, but we believe the result also
holds for the extended case where the relations defined in terms of conv(x) are
included.

Conjecture

I' ' |=False iff &, IT |= False where I is the set of axioms and definitions
(1) to (12) in section 2 above (including the implicit definitions for
the inverse relations), ¥ is a conjunction of ground atomic formulae
whose predicate symbols are only drawn from the set of eight base
relations and whose arguments are constants, and I is the set of
theorems expressed by table 1.



3.2 Continuity Constraints

Assuming continuous motion, there are constraints which can be imposed upon
the way the base relations of L can change over consecutive moments in time
for any pair of spatial regions. Intuitively, this is best illustrated by the pictorial
representation in figure 4.1% These transitions are alternatively expressed as ‘en-
visioning axioms’ (Randell 1991).1¢ These continuity networks have been used
as the basis of a qualitative spatial simulation program (Cui, Cohn and Randell
1992a), or in the present context of spatial databases could be used to perform
consistency checks on the movement of regions in a spatio-temporal database.
The construction of such continuity networks for the extended sets of relations is
discussed in (Cohn, Randell and Cui 1993). It may also be noted that Egenhofer
and Al-Taha (1992) have independently formulated topological change diagrams
very similar to ours. They also consider various specialisations where further
information is known about the regions in question, as does Galton (1993).

: e a i
- - < =3 K > @ -
@ )
0 u |
PO

Fig.4. A pictorial representation of the base relations and their direct topological
transitions.

We now turn to consider the continuity network required when we include
the predicates defined in terms of conv(x). It is easiest to specify the possible
transitions using relatively high level predicates rather than in terms of the base
predicates. First we will consider the transitions whose name includes QOUTSIDE,
P-INSIDE, INSIDE. The transition network for these predicates is displayed in
figure 5.

In order to determine the possible transitions for a predicate with a multipart
name (such as OUTSIDE_P-INSIDE~!_EC) one simply determines the allowable

transitions for each part of the name; thus in the above example, OUTSIDE can

15 These continuity networks are closely related to what Freksa (1992) calls conceptual
neighbourhoods.

16 Each link in the diagram corresponds to an axiom which expresses that if R1(x,y)
is true then either R1(x,y) will continue to be true for ever, or x or y will disappear
(become NULL) or R2(x,y) will be the next relationship to be true of x and y in the
future.



OUTSIDE <=----- > P-INSIDE <---- = INSIDE

Fig.5. The transition network for the 3 high level inside/outside relations.

only transition to P-INSIDE, P-INSIDE~! to INSIDE~! or to OUTSIDE~! and
EC to PO or DC. In the case that a sub-name transitions from EC to PO,
then of course the rest of the sub-names are dropped, e.g. OUTSIDE_CONT-
INSIDE~!_EC can transition to EC.

4 Extensions to the Expressive Power

4.1 Refining Inside and Outside

In a previous section the DR relation was specialised to cover relations describing
objects being either inside, partially inside or outside other objects. However
this ignores some useful distinctions that can be drawn between different cases
of bodies being inside another. In this case we can separate out the case where
one body is topologically inside another, and where one body is inside another
but not topologically inside — this we call being geometrically inside (Randell,
Cui and Cohn 1992). The important point of one body being topologically inside
another is that one has to ‘cut’ through the surrounding body in order to reach
and make contact with the contained body. In the geometrical variant this is not
the case — see figure 6.

Fig. 6. The distinction between being topologically and geometrically inside. The dot-
ted lines appearing here and in subsequent figures indicate the extent of the convex
hull of the surrounding bodies.

TOP-INSIDE(z, y) =4
INSIDE(z, y) AVz[[CON(2) A C(z,z) A C(z, outside(y))] — O(z, y)]
GEO-INSIDE(z, y) =4. INSIDE(z, y)A ~TOP-INSIDE(z, )

It is also possible to specialise the relation of being geometrically inside — in
this case setting up definitions to distinguish between the pictorial representa-
tions in Figure 7.



Fig.7. Two variants of being geometrically inside. In the right hand figure the two
‘arms’ meet at a point.

In order to make this formal distinction we first set up a stronger case of a
connected or one-piece region to that assumed above. The important part of the
following definition is the P(conv(sum(v, w)), z) literal in the consequent of the
definiens. This condition ensures that the connection between any two parts of
a region whose sum equals that region, is not point or edge connected. That is
to say it ensures a ‘channel’ region exists connecting any two connected parts.
This notion of being connected mirrors and simplifies our previous definition of
a quasi-manifold — in this case we use the concept of a convex body rather than
use topological and Boolean concepts in the earlier definition — see Randell and
Cohn (1989).

CON'(z) =4e5 CON(z)A
Vyz[[sum(y, z) = — C(y, 2)] —
Fvw[P(v,y) A P(w, z) A P(conv(sum(v, w)), z)]]

Now we give the formal distinction between the two cases of being geometrical
inside. In the first case a ‘channel’ region exists connecting the outside of the
surrounding body with the contained body, in the second case the surrounding
body has closed forming (in this case) a point connection. In both cases we can
see how in contrast with the notion of being topologically inside, it is possible
to construct a line segment that connects with both the surrounding body and
the contained body without cutting through the surrounding body. Definitions
distinguishing between the two cases are as follows, where the open and closed
variants respectively refer to the first and second cases described above.

GEO-INSIDE-OPEN(z, y) =4.; GEO-INSIDE(z, y)A
CON'(sum(inside(y), outside(y)))
GEO-INSIDE-CLOSED(z, y) =4.s
GEO-INSIDE(z, y)A
CON (sum(inside(y), outside(y)))A
—CON’(sum(inside(y), outside(y)))

This technique of refining a base relation into a set of finer grained mutally
exhaustive and pairwise disjoint specialised relations can be continued as often
as required for a particular application. In Cohn, Randell and Cui(1993) we show
how the set of base relations can be expanded to some 100 relations and point
to ways in which the process can be continued. We also discuss criteria to help
decide when such refinements are worthwhile.



4.2 Orientations and Directions

Thus far we have only considered the relationship between two regions based on
essentially topological notions. However, it is often useful to be able to express
and reason about the relative or absolute orientation of two regions. In the
temporal version of our calculus (Randell and Cohn 1989, 1992) we introduce
an additional primitive B(z, y) which is true when the temporal region (period)
z 1s entirely before y. Of course it is natural to introduce this to the spatial
calculus as well, although we have thus far not done this. We therefore introduce
three more primitives: By, B, and B3. These are analogues of the three axes of
the Cartesian coordinate scheme and are axiomatized below. Conventionally, we
will arbitrarily associate B; and Bs with the horizontal axes and Bz with the
vertical axis (though other interpretations are of course possible apart from this
intended interpretation).

Ve—B;(z, z)
Veyz[Bi(z, y) A Bi(y, z) — B;(z, 2)]
Vay[Bi(z,y) — Vauy [(P(z1,2) AP(y1,y) — Bi(z1, y1)]]

These relationships are transitive, but one often requires a non transitive relation
(eg ‘directly below’ in the sense that a gravity vertical would intersect both
regions). We can thus define D-B;(z, y), D-Ba(z,y), D-Bs(z, y):'*

D-Bi(z,y) Zdey Bi(z,y) A =Bjt1(z,y) A =Bjt1(y,z) A =Bjta(z,y) A =Bjta2(y, z)

These relationships are illustrated in Figure 8.

2D
D

Ce D

Fig. 8. The following are true in the above figure: Bz (a,b), Ba(b,c), Bs(a,c), D-Bs(a,b),
D-Bs(b,c), but =D-Ba(a,c).

17 In the definition ‘j+1’ and ‘j+2’ denote modulo arithmetic, eg 3+1=1, 34+2=2.



Related to these notions are the functional terms denoting the extremities of
an object in a particular direction'® eg the top or bottom of a region. Thus we
may define a set of monadic function symbols extremey, extremefl, extremes,
extreme;l, extremes, extremegl. To do this we define a set of correspond-
ing binary relations, Extreme, Extremel_l, Extremes, Extremeg_l, Extremes,

Extremeg L

Extreme;(y, r) =4er P(y,r) AVz[[P(z,r) A=(z = y)] — Bi(y, z)]
extreme;(r) =4e5 ty[Extreme;(y, r) A Vaz[Extreme;(z,7) — P(z, y)]]
Extreme; ' (y,7) =45 P(y, ) AV2[[P(z,7) A =(z = y)] — Bi(y, z)]
extreme; ! (r) =4 ty[Extreme; ! (y, r) A Vz[Extreme; ! (z,r) — P(z,y)]]

Note that it is not difficult to see that these definitions presuppose a notion
of atomic region, i.e. a region which has no proper subparts. The calculus
as presented thus far does not admit atomic regions because of the axiom
Vz3y[NTPP(y,z)]. However, in Randell, Cui and Cohn (1992), we discussed
a number of ways to modify the calculus to allow atomic regions.

Given our intended interpretation, more natural names for extremes(z) and
extremes () would be top(x) and bottom(x). In a particular context one may
wish to rename the other relations and functions just defined as well. For ex-
ample, one might want to name B; as EastOf, B1_1 as WestOf, B, as NorthOf
and B;l as SouthOf. Or if one assumes a particular viewpoint, then these four
relations may be more naturally named LeftOf, RightOf, Behind and InFrontOf.
Of course, rather than regard the viewpoint as fixed, one may want to add an
extra argument to give the viewpoint and define, eg, LeftOf(z,y, z), meaning
z is to the left of y when viewed by/from z. In this case we do not need to
assume a fixed cartesian coordinate scheme. Interestingly, Behind(z, y, z) and
InFrontof(z, y, z) are actually definable from C(z,y) and conv(z) alone, without
recourse to the additional B; primitives (see Figure 9). However, the other 3
place relative relations do seem to require the relevant additional primitives.

InFrontof(z,y, ) =4.; DR(z, y) A DR(y, z) ADR(z, z) A
Jw EC(w, z) AEC(w,y) A CONV(w) A O(z, w) A P(w, inside(sum(z, y)))
Behind(y, z, z) =4.; InFrontof(z, y, z)

4.3 Integrating metric and scalar information

So far we have principally concentrated on developing a purely qualitative calcu-
lus. However this can never be a replacement for metric information, but rather
should complement a metric representation. Indeed Forbus et al (1991) have ar-
gued that there is no purely qualitative representation of space — their so called
‘poverty conjecture’. Joskowicz (1992) has also argued that there is no general

18 Remember that we allow multipiece regions and the extremity of a concave region
may well be a multipiece region.



Fig.9. Defining a relative notion of InFrontof. x1, x2 and x3 are all in front of y when
viewed from z. The definition rules out the possibility that x4 and x5 are in front of y
when viewed from z because w has to be convex (one piece) region touching both y and
z. Arguably x2 and x3 should not be regarded as being in front of y when viewed from
z; to achieve this the definition should be strengthened so that the conjunct O(z,w) is
replaced by P(z,w)

purpose commonsense spatial reasoning and representation mechanism and that
a hybrid representation is necessary. We do not have space here to describe our
approaches to integrating metric information with our qualitative calculus. Some
of our initial ideas can be found in (Randell and Cohn 1989, Randell 1991). We
have also recently integrated our purely qualitative spatial simulator (Cui, Cohn
and Randell 1992a) with QSIM (Kuipers 1986) which allows both region based
spatial knowledge and scalar quantities (eg the qualitative distance between two
regions) to be reasoned about together (Cui, Cohn and Randell 1992b).

5 Related Work

We have already mentioned Clarke’s calculus of individuals, our earlier work on
which this present theory is based, and Allen’s work on interval logics. The other
work of which we are aware, that uses Clarke’s theory for describing space, is
Augnague(1991) and Vieu(1991). Other work on the description of space using a
body rather than a point based ontology, can be found in Laguna(1922), Tarski
(1965) and Whitehead (1978). There have been some attempts in the qualita-
tive spatial reasoning literature to employ Allen’s interval logic for describing
space, see for example Freska (1990), Mukerjee and Joe (1990) and Hernan-
dez(1990,1992), but here a stronger primitive relation is used, which does not
allow the full range of topological relationships to be formally described as given
in both Clarke’s and our original and new theories. Apart from the question
raised by adding atoms to the theory, we are currently working on the ques-
tion as to what a decidable subset the new theory supports. We have already
indicated some extensions to this new logic above. For other extensions to the
spatial theory itself, work described in Randell (1991) can also be included. For
example, we could add a metric extension to the theory, using a ternary rela-
tion (along the lines of Van Benthem 1982, appendix A) that gives comparative



distances between objects.

Egenhofer’s work (1991) on topological relations has similar relations to ours,
though we have an extended set owing to the relations defined in terms of
conv(x). However, we draw distinction between physical objects and regions;
intuitively, a region of space may be likened to a space that could be conceivably
occupied by a physical body. We restrict our interpretation of time and space so
that time is treated as a one-dimensional region, and space a three-dimensional
region. In Egenhofer’s work, the usual concepts of point-set topology with open
and closed sets are assumed. For the corresponding part of his theory, we only
use one primitive C. Open, closed, etc concepts can be defined in our theory
(see Randell et al 1989, 1992) although in the theory presented above, we as-
sumed no distinctions between open and closed regions because we believe that
applications, and reasoning about physical objects and commonsense reasoning
in particular, do not need to differentiate between open and closed regions. An-
other difference is that we do not have a notion of points in the theory,'® nor do
we view an arbitrary set of points as a region. Finally we introduce the convex
hull operator allowing many more base relations to be defined.

In both theories, eight disjoint base relations are defined. There is a one
to one correspondence between the base relations: DC (disjoint), EC (meet),
= (equal), TPP (coverBy), PO (overlap), NTPP (inside) TPP~! (covers) and
NTPP~! (contain). One minor difference is between EC and meet. In our theory,
if the sum of two regions equals the universe (assuming universe is continuous),
the two regions EC, whereas the two regions do not meet in Egenhofer’s (as
they did not in our original theory which distinguished between open and closed
regions).

The composition table in both theories is the same although we used a combi-
nation of theorem proving and model building (Randell, Cohn and Cui 1992b) to
derive the composition table whilst Egenhofer used exhaustive search by PRO-
LOG. Egenhofer used matrix representations of the base relations in the theory
and this obviously provides a model for his theory. We have investigated a linear
bitmap representation in calculating and constructing the composition tables
(Randell, Cohn and Cui 1992b). In Randell, Cohn and Cui (1992), we proposed
calculating an extended composition table. The task is formidable. We have in
fact constructed the table for 22 x 22 case. This took some 2 days of cpu time
on a Sparc IPC. For an even larger table (Cohn, Randell and Cui 1993), this
becomes more difficult. It would be very interesting to investigate whether an
extension of Egenhofer’s matrix method could be used.

Perhaps the most important work in qualitative spatial orientation is that
of Freksa(1991), who also surveys the existing work in this area. The princi-

pal tenets of his approach are that he just treats points rather than regions?®,

19 In the earliest version we did include points (Randell and Cohn 1989) but have since
abandoned them as pragmatically unnecessary (Randell et al 1992) though they
could be reintroduced if necessary (Randell, Cui and Cohn 1992a).

20 Freksa does remark that regions may be treated as points at a certain level of
abstraction.



orientations are relative and are terms in his language rather than relations as
outlined in our approach above; he then uses qualitative relations to compare ori-
entations (eg he would say same(ab,cd) meaning that the directions from a to b
and from c to d are identical). Other relations include additional ezact directions
(such as ’opposite’) and inexact relations (such as ’left’; which cover a segment
of directions. Further refinements of these relations allow a notion of relative
qualitative distance to be expressed as well. He also defines a composition table
on his qualitative directions.

The inferential power of his approach relies crucially on having some exact
directions (as compared eg to Hernadez (1990, 1992)). An interesting question
arises as to whether it is possible to integrate Freksa’s calculus with a region
based approach (whilst retaining Freksa’s inferential power). We speculate that
this may be possible using either atomic regions (Randell, Cui and Cohn 1992a)
or by defining ’strong’ versions of D-B;. The relations defined in this paper are
‘weak’in the sense that, for example, D-Bg(b, ¢) is true if some part of b is directly
above some part of ¢. A strong version would only be true if every part of b was
directly above some part of ¢ (or, perhaps, some part of b was above every part of
¢). These ideas need further investigation but should allow a sufficient notion of
transitivity to be gained (the transitivity of exact directions are most important
to Freksa’s calculus). Also worthy of investigation is the extension of Freksa’s
calculus to 3D (at present he only considers the 2D case).

We conclude this discussion of qualitative orientation by noting that the
purpose of the exposition of qualitative orientation in the body of this paper was
not to give a definitive axiomatisation, but rather to show how such information
might be axiomatised, defined and related to the rest of the calculus.

6 Conclusion

We have presented a spatial logic based on a primitive notion of connection.
Eight mutually exclusive and pairwise disjoint relations were defined giving an
alternative formulation of Egenhofer’s calculus. By introducing a further prim-
itive, more expressive calculi can be defined. A number of inference techniques,
dealing with both static and dynamic spatial configurations were outlined which
may be efficiently implemented and their relevance to databases was discussed.
Of course many questions remain unanswered and deserve further research. We
have mentioned some of these above.
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