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Abstract

Spatial reasoning is essential for many AI applications. In most existing systems the representation
is primarily numerical, so the information that can be handled is limited to precise quantitative data.
However, for many purposes the ability to manipulate high-level qualitative spatial information in
a flexible way would be extremely useful. Such capabilities can be proveded by logical calculi; and
indeed 1st-order theories of certain spatial relations have been given [20]. But computing inferences
in 1lst-order logic is generally intractable unless special (domain dependent) methods are known.

0-order modal logics provide an alternative representation which is more expressive than classical
0-order logic and yet often more amenable to automated deduction than 1st-order formalisms. These
calculi are usually interpreted as propositional logics: non-logical constants are taken as denoting
propositions. However, they can also be given a nominal interpretation in which the constants stand
for some kind of object. I show how 0-order logics can be given a spatial interpretation: constants
denote regions and logical operators correspond to operations on regions which are important for
characterising spatial situations.

Representing certain spatial concepts requires the introduction of modal operators, interpreted
as functions generating regions related in specific ways to those denoted by their arguments. A
significant example is the convez-hull operator whose value is the smallest convex region containing
its argument. I investigate how this this operator can be captured in a multi-modal logic.

Keywords: spatial reasoning

1 Introduction

Spatial reasoning has a wide variety of potential applications in Al systems (e.g. spa-
tial information plays a crucial role in robotics, geographical information systems,
CAD/CAM, and systems used for medical analysis and diagnosis). In most existing
computer systems representation and manipulation of spatial data is done numeri-
cally. Objects and regions are represented by sets of coordinates and information is
extracted from this data by means of arithmetic and trigonometrical computations.

Numerical representation may be well suited for some purposes, in particular where
the spatial information precisely describes some definite situation and where the out-
put required from the system is itself primarily numerical. However, in many cases,
useful spatial information does not describe a unique physical situation but qualita-
tively characterises a situation as being of a particular type. Extracting information
from such data requires logical reasoning about the concepts involved in describing
a situation; and hence requires a rigorous (formal) theory of qualitative spatial rela-
tionships.

It is not true that spatial reasoning has been neglected by mathematicians. Indeed
the fields of geometry and topology are extremely well developed and are of direct
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24 Modal Logics for Qualitative Spatial Reasoning

relevance to automated reasoning about spatial situations. But the problem with
nearly all mathematical theories is that they are too complex to reason with effectively.
Topology is built upon a large amount of set theory so any naive reasoning algorithm
based on standard formulations of topology will have as its search space virtually all
of mathematics. Whilst rather more succinct axiomatisations of elementary geometry
exist [23] these are still far too complex to be tackled by existing theorem proving
techniques.

From a computational point of view, qualitative theories of spatial relations are
relatively undeveloped. Nevertheless some significant work has been done. Randell
and Cohn [19] and Randell et al. [20] specify a 1st-order theory of spatial regions
based on a primitive relation of connectedness, C(z,y), together with a number of
(quasi-Boolean) functions. Despite containing very few non-logical primitives this
theory has been found to be quite expressive: indeed a large number of significant
spatial relations can be defined exclusively in terms of the C relation [10]. Egenhofer
[6] presents a much more limited framework in which a number of topological relations
can be represented. He also shows how some simple inference rules can be used to
generate the composition of any pair of these relations.!

The major problem in developing a useful formalism for reasoning about spatial
information (indeed for any domain) is the trade off between expressive power and
computational tractability. Whilst Egenhofer’s representation does allow for certain
inferences to be computed effectively, the scope of the theory is limited. On the other
hand, although the formalism presented by Randell et al. [20] is very expressive,
since it is presented in 1st-order logic, reasoning in the calculus is extremely difficult
(however the use of pre-calculated composition tables for relations definable in the
theory does enable certain kinds of inference to be computed efficiently).

The principal aim of this paper is to explore a framework for representing spatial
information which is both expressive enough to be useful for solving real problems and
is in some sense tractable. The formalisms which I suggest will provide such flexible
and yet practical reasoning systems are multi-modal 0-order logics. Such calculi are
normally regarded as propositional logics but as we shall see, a spatial interpretation
of expressions in these formalisms can be given in which the non-logical constants
refer to spatial regions rather than propositions.

It is common in computer science to equate tractability with polynomial-time com-
putability. But to a logician this will probably seem an overly harsh restriction, since
proof procedures in nearly all interesting logics are at least exponentially hard. Nev-
ertheless, the formalisms presented here are decidable and hence far better to reason
with than 1st-order theories (such as that given in [20]). Towards the end of this pa-
per I shall suggest how modal representations could be utilised in effective reasoning
systems by restricting the range of relations which can be expressed and customising
proof procedures to limited classes of formulae.

The domain which we shall be concerned with is a limited but significant sub-
domain of spatial reasoning. Initially we shall look at formalisms which can represent
topological relations such as those shown in figure 1 as well as Boolean-like relations
between combinations of regions (e.g. z is the sum of y and z). In the latter half

1Given any two relations Ry and Rg taken from a set B of pairwise disjoint and mutually exhaustive relations.
The composition, Ry o Ry, of R and Rg is the disjunction/sum of all those relations R3 € B such that given
Rq(=z,y) and Ra(y, z) it is possible that R3(z, z).
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030

DC(A,B) EC(A,B) TPP(4,B) TPP~'(4,B)

PO(A B) EQ(A B) NTPP(A,B) NTPP !(A4,B)

F1G. 1. An exhaustive set of disjoint relations definable in terms of C.

of the paper we shall examine the notion of convexity, which can be used to define
various concepts of containment.

I shall explicitly refer to the relations shown in figure 1. These are: Dis-Connection,
External Connection, Partial Overlap, Tangential Proper Part, Non-Tangential Proper
Part and Equality. The notations used for these relations are given under the dia-
grams. The part relations, being asymmetric, have inverses denoted, R~!. We shall
also use some more general relations:

DR(z,y) = DC(z,y) V EC(z,y),

PP(z,y) = TPP(z,y) V NTPP(z,y),
P(z,y) = PP(z,y) V EQ(z,y) and

TP(z,y) = TPP(z,y) V EQ(z,y).

2 Models for modal logics

Currently the best known interpretations of modal logics are those in terms of Kripke
semantics [12]. In Kripke semantics a model consists of a set of possible worlds to-
gether with an accessibility relation — a binary relation between worlds — associated
with each modal operator. Propositions denote sets of possible worlds (the set of
worlds in which they are true). A Kripke model, M, is thus a structure (W, R, P),
where W is a set of worlds, R is the accessibility relation, P is a mapping from natural
numbers to subsets of W. P acts as an assignment to a denumerable set, {po,p1,. ..}
of propositional constants indexed by the natural numbers.

Such a model determines the truth of each modal formula at each possible world.
Classical formulae are interpreted as follows:

e Atomic formulae, p; are true in exactly the worlds in the set P(i).
e Conjunctions, ¢ A 1, are true in worlds where both ¢ and 4 are true.
¢ Disjunctions, ¢ V 9, are true in worlds where either ¢ or ¢ (or both) is true.
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e Negations, —¢, are true in worlds where ¢ is not true.

We write EM ¢ to mean that formula ¢ is true at world « in model M. A modal
operator, [, is then interpreted as follows: in a model M = (W, R, P)

EMOe iff ) ¢ forall e W st. R(a,p)

A vast spectrum of different modal operators can be specified by placing more or less
general restrictions on the corresponding accessibility relation (often such restrictions
are thought of as defining a logic rather than an operator but this is misleading
since the possible worlds semantics allows any number of different operators to be
encompassed in a single logical language). Furthermore, Kripke semantics allows one
to specify operators whose logic seems to correspond well with intuitive properties of
modal concepts employed in natural language. Indeed, a number of logics proposed
for natural language modalities, which were originally specified proof theoretically
(by axiom schemas intended to capture intuitive properties of modal concepts) can
be captured very easily within the Kripke paradigm by quite simple restrictions on
the accessibility relation.

Nevertheless, the apparent power and flexibility of Kripke style possible worlds
semantics can be misleading. Many researchers in both AI and philosophical logic
tend to think of possible worlds semantics as essentially based upon accessibility
relations. However, whilst Kripke models may be appropriate for certain types of
modal operator, in other cases a quite different structuring of possible worlds may be
more natural.

2.1 Minimal and algebraic models

In this section I shall define an algebraic model structure, which will be the basis
of the spatial logics developed in the rest of the paper. But first I present minimal
model semantics as described by Chellas [4]. These are actually equivalent to alge-
braic models although they are more similar in structure to Kripke models; thus are
intermediate between relational and algebraic models.

A minimal model is a structure M = (W, N, P), where:

e W is a set of possible worlds.
e NV maps each world to a set of sets of worlds.

e P maps each natural number (indexing a propositional constant) to a set of pos-
sible worlds.

The semantics of the classical connectives are as in the Kripke models but the
interpretation of the modal operator O is as follows: If a is a world in a minimal
model M = (W, N, P) then

Ex'Oe it {B] E5' ¢} € N(a)

The set {3 | =41 ¢} is the set of all worlds at which ¢ is true. This is called
the truth set of ¢. We may also regard this set of worlds as the denotation of the
formula ¢. I shall adopt this terminology and write d(¢) to refer to the denotation of
¢ (for atomic propositions d(p;) = P(¢)). Furthermore if formulae are also supposed
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to denote propositions then propositions become identified with the set of worlds in
which they are true. Thus, if our modal operator is, for example, intended to be a
necessity operator, the function N associates with each world the set of propositions
(each of which is identified with a set of worlds) which are necessary at that world.

An algebraic model is similar to a minimal model but instead of having a function
N mapping worlds to sets of sets of worlds, it has a function O mapping sets of
worlds to sets of worlds. An algebraic model A = (W, O, P) defines a modal operator
according to the stipulation that:

EA O¢ iff a€0(d(9)

where d(¢) is again the denotation/truth-set of ¢. This can be specified more suc-
cinctly simply as
d(0¢) = O(d(¢))

Each such model can be associated with a modal algebra [14]. This is a structure
(A,N, —, n), where (A, N, —) is a Boolean algebra and n is an extra (modal) operator.>
An algebraic model (W, O, P) corresponds to an assignment of elements of the modal
algebra (2", N, —, O) to the propositions in P — the elements of the algebra being
sets of possible worlds.

Minimal and algebraic models are equivalent in that given a minimal model we can
straightforwardly construct an algebraic model in which the same formulae are true
at each world and vice versa. From the two definitions of O¢ we see that if a minimal
and algebraic model agree on the denotations of all propositions at all worlds then
d(¢) € N(a) iff & € O(d(¢)). Therefore, N(a) = {S | S C W A «a € O(S)} and
O(S)={a|aeW A S € N(«)}. However, algebraic models are more uniform than
minimal models because the semantics of modal operators are specified in essentially
the same way as the classical connectives. They also seem to be more natural from
the point of view of spatial interpretations.

Algebraic semantics is actually the oldest formal interpretation for modal logics:
an algebraic interpretation of S4 was given by Tarski [24]; but, since Kripke’s results
[12], relational semantics has been given far more attention. The relationship be-
tween algebraic semantics and Kripke models was first studied by Lemmon [14, 15],
who introduced the term ‘modal algebra’ (however, a theory of ‘Boolean algebras
with additional operators’ had already been given by Jénsson and Tarski [11] and
modal algebras are essentially a special case of these). More recently, Goldblatt [9]
gives a detailed examination of different kinds of semantics for modal logics and the
relationships between them.

2.2  Denotation based algebraic models

Since in an algebraic semantics the denotation function is of central importance it will
be convenient to use in the sequel an alternative formulation of model in which this
function occurs as a primary element. Thus, a (denotation based) algebraic model
for a logic £ is a structure (U, C,d) where:

e U{is a (non-empty) set

2 A modal algebra (A, N, —,n) is normal iff n(zNy) = n(z) Nn(y) and n(1) = 1. Lemmon [14] shows how normal
modal algebras correspond to Kripke models. Further results linking these structures are given by Goldblatt [9].
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¢ C is a denumerable set of constants — the non-logical constants of £

e d is a denotation function mapping (well-formed) formulae of £ to subsets of U.

d maps atomic formulae (i.e. elements of C) to subsets of U; and the denotations of
complex formulae are determined by the denotations of the atomic formulae by means
of recursive definitions of the logical connectives in £. Formally

d(Q(¢17 cee 7¢n)) = fQ(d(¢1)v s 7d(¢n))

where ) is an n-ary connective in the language £ and fo maps n-tuples of subsets
of U to subsets of U. Characterising the semantics of a logical language £ consists in
specifying (meta-mathematically) permissible values of d for atomic propositions and
the functions fq corresponding to each connective Q in L.

3 Spatial interpretation of 0-order calculi

By far the best known interpretations of 0-order calculi are as propositional logics:
the non-logical constants are regarded as denoting propositions and the connectives
as operating on their (propositional) arguments to form more complex propositions.
Within such a conception, the classical connectives are interpreted as expressing truth-
functional combinations of their arguments, whilst modal operators are taken as as-
serting more subtle (non-truth functional) properties of their arguments. Many kinds
of propositional modality have been studied: alethic modalities (necessity, possibil-
ity, contingency); propositional attitudes (knowledge, belief, certainty, etc.); deontic
modalities (obligation, permission).

However, taking non-logical constants as denoting propositions is not the only way
that O-order calculi can be interpreted. Bennett [2] points out and makes use of
non-propositional interpretations of both the standard classical 0-order calculus and
also the O-order intuitionistic calculus. Under these interpretations, the non-logical
constants denote regions and the connectives correspond to operations forming new
regions from their arguments. In fact this interpretation is compatible with many well
known model theoretic accounts of 0-Order calculi, in which propositions are taken
as denoting sets. These sets are often thought of as sets of possible worlds in which a
proposition is true but they can also be regarded as sets of points (or atoms) making
up a spatial region.

3.1 The classical calculus

In the case of the 0-order classical calculus (henceforth Cy) such a semantics can be
formally characterised as follows: a model for the logic Cg is a structure, (U, P,d),
where U is a non-empty set, P is a denumerably infinite set of constants, and d is a
denotation function which assigns to each constant in P a subset of &//. The domain
of d is extended to all Cy formulae formed from the constants by stipulating that:

1. d(-P) = d(P)
2.d(P A Q) =d(P)Nd(Q)
3.d(PV Q) =d(P)Ud(Q)
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where for any set S, S is the set of all elements of &/ which are not elements of S.
Under this interpretation it can be shown that all tautologies denote the universe, U,
whatever the assignment of sets to the non-logical constants.

3.2  The intuitionistic calculus

Tarski [21] gives similar but slightly more complex semantics for the 0-order intuition-
istic logic (henceforth Zy). In addition to the usual set operators of union, intersection
and complement, this requires an additional interior function, 3. This is constrained
to obey the axioms (see e.g. [13]) of an interior function, as employed in point-set
topology; so the semantics can be seen as a topological interpretation of intuitionistic
logic. A model for Zy is then a structure (U, i, P, d) where d now assigns to each con-
stant an open subset of U (a set X such that i(X) = X) and its domain is extended
to all Zy formulae as follows:

1.d(~P)=i(d(P))

2.d(P A Q) =d(P)Nd(Q)

3.d(PV Q)=d(P)ud(Q)

4.d(P=Q)=1i(d(P)UdQ))
This denotation function is such that all intuitionistic theorems denote U under any
assignment of open sets to non-logical constants. Note that I use distinct symbols
for negation and implication in the classical and intuitionistic languages (for classical
implication I shall write ¢ — ’) but for conjunction and disjunction I use the same
symbols, since their interpretations are the same in both systems.

3.3 Semantic correspondence to proof theory

For a semantic interpretation to be faithful to a logic, the property of theoremhood
and the relation of entailment must be definable in the semantics and these concepts
must be shown to coincide with the corresponding proof-theoretic concepts. In the
context of the algebraic set semantics considered here this will amount to establishing
the following correspondences:?

CT ¢ if = d()=U
CE 41,....0n k¢ iff d)=U,...,dW)=U E d¢)=U

where * |’ is the derivability relation of the logic and ‘=’ is the entailment relation
between properties of the algebraic model structures. CT and CE hold for both
Co and Zp under the interpretations given above (see [2] for further details).

These correspondences mean that the logic can straightforwardly be used to deter-
mine entailments between constraints on possible models which are specified in terms
of equations of the form 7= U/ where 7 is a set-term corresponding to some formula,
¢, in the logic (i.e. 7 = d(¢)). For example,

d(A)Nd(B) =U, d[CYUd(A)=U [ d(C)Nd(B)= U

3A remark about CE: For most semantics we will also be able to establish a stronger characterisation of entail-

ment:

Viron Fé = (A1) N... N d($n)) C d(4)
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because =(A A B),C - A + —(C A B) in Cp.

3.4 Representing spatial relationships

In the languages Cq and Z [2] constraints on the relative extensions of spatial re-
gions are expressed by 0-order formulae. Each formula (of Cy or Zy) corresponds (in
accordance with the semantics given above) to a set-term in which constants denoting
regions (sets of points) are combined by various set operators (the Boolean operators
and, in Zg , also the interior operator). Formulae are interpreted as describing spatial
situations by placing constraints on possible values of the constants. Each formula
is given either a positive or a negative interpretation depending upon whether it is a
model or an entailment constraint (the reason for this terminology will be made clear
below). In the former case the interpretation is that, in the situation being described,
the denotation of the set-term equals the entire universe.

Table 1 shows how four spatial relations can be characterised with model constraints
stated in terms of the classical propositional calculus.

TABLE 1. Definitions of Four Topological Relations in Cg

| Relation | Description | Set Equation | Model Constraint |
DR(X,Y) | X and Y are discrete XnY=U (X AY)
P(X,Y) X is part of Y XuyY=u X =Y
P~1(X,Y) | Y is part of X XuY=U Y - X
EQ(X,Y) | X and Y are equal (Xuy)n(XuY)=Uu XoY

In terms of this representation, we can see that the example given at the end of the
last section corresponds to the inference:

DR(A4, B) A P(C,A) + DR(C,B)

3.5 Entailment constraints

A formula can also be given a negative interpretation by specifying it as an entailment
constraint rather than a model constraint. The meaning of an entailment constraint
is that the corresponding set-term does not denote the universe. Such negative con-
straints are essential for describing certain spatial situations in terms of the logics
Car and ISF . For example if we want to say that one region, A is a proper part of
another region, B, we specify that AU B= U but BUA # U. Thus (again us-
ing Cp) we would have =A V B as a model constraint and =B V A as an entailment
constraint. (Note that the latter inequality could not be expressed by the model
constraint —=(—B V A) because this corresponds to the constraint BN A= U which
is much stronger than what is required.)

An important use of entailment constraints is to ensure that regions involved in
a situation description are non-null. If null-regions are allowed they have properties
which may seem counter-intuitive (for example the null region is both part of and
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disconnected from any other region) and many useful and apparently sound inferences
may not hold if it is allowed that one of the regions involved may be null. The
requirement that a region is non-null is expressed by the inequality X # U, which
corresponds to the entailment constraint =X (in Cp).

Since, specification of a spatial situation will generally require both positive and
negative constraints, a situation description is represented by a pair of sets of formulae,
(M, &), where M is a set of model constraints and € is a set of entailment constraints.
Thus ‘A is a proper part of B’ (where A and B must be non-null) is represented by
the expression

<{—|A \Y B}, {_LB Vv A, —lA, —|B})

If £ is a 0-order logic then the language obtained by extending the representation in
this way will be called £t.

3.6 Spatial interpretation of the intuitionistic calculus

The intuitionistic calculus Zy is particularly expressive for describing spatial relations.
This is because the interior function in the semantics enables one to use Zy formulae
to specify constraints which distinguish between two regions being connected from
their overlapping. This distinction is made possible by the following interpretation of
the notions of region, overlap and connection:

e A region is identified with an open set of points. (So regions are denoted by
propositional letters in the Zy representation.)

e Regions overlap if they share at least one point.

e Regions are connected if their closures share at least one point.

This interpretation is in accord with that suggested for the RCC theory in [20].
There is also a dual interpretation (which will be used in section 5.1) under which
regions are identified with closed sets, which are connected if they share a point and
overlap if they share an interior point. Table 2 shows how the set of eight relations
shown in figure 1 can be represented by sets of model and entailment constraints
specified by means of Zy formulae interpreted in accordance with the semantics given
in section 3.2.

Let us consider, for example, the representations of the relations DC(X,Y) and
EC(X,Y). If two regions share no points they cannot overlap (although they may be
connected). In such a case the equation i( X N'Y )= U must hold; this can be repre-
sented by the Zg formula ~(X A'Y). In 7 (unlike Co) this formula is not equivalent
to~X V ~Y. The latter corresponds to the set-equation i( X )Ui( Y )= U, which
says that the union of the exteriors of two regions exhaust the space. If the regions
touch at one or more points, then these points of contact will not be in the exterior of
either region so this equation will not hold. Hence the second (stronger) formula can
be employed as a model constraint to describe the relation DC(X,Y"). If the relation
EC(X,Y) holds then the weaker constraint ~(X A Y) holds but ~X V ~Y must
not hold, so this stronger formula is an entailment constraint.

The table also shows how the fundamental relation, C, of the RCC theory can be
represented as well as the quasi-Boolean function sum (see [20]).
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TABLE 2. Some RCC Relations Defined in Z; (including the 8 relation basis)

Relation Model Constraint Entailment Constraints
DC(X,Y) ~XVv ~Y ~X, ~Y
EC(X,Y) ~(XAY) ~XVv ~Y, ~X, ~Y
PO(X,Y) — ~(XAY), X=Y, Y=X,~X,~Y
TPP(X,Y) X=Y ~XVY, Y=X,~X,~Y
TPP_I(X,Y) Y=>X ~YVX, X=Y,~X,~Y
NTPP(X,Y) ~XVY Y=X,~X,~Y
NTPP~'(X,Y) ~Y VX X=Y,~X,~Y
EQ(X,Y) X&eY ~X,~Y

C(X,Y) — ~XV ~Y,~X,~Y
EQ(X,sum(Y, Z)) Xe YV 2 ~X,~Y ~Z

3.7 Extended 0-order calculi (EZOCs)

The interpretation of formulae as constraints can be applied to many logical calculi.
And if the denotations of the constants are taken to be spatial regions (sets of atoms
or points) then these constraints can be regarded as specifying spatial relationships
between the regions. Whether these relationships are useful in describing spatial
situations will depend upon whether the semantics of the logic reflects some structure
which is relevant to significant features of the situations we wish to describe. If we
have such a logic it is very likely that we will sometimes want to specify situations
not only in terms of the constraints they satisfy but also in terms of their failure to
satisfy certain constraints.

In this section I show how a logic can be extended to a language whose expressions
consist of pairs of sets of formulae from the language of the original logic; one of these
sets being interpreted as positive constraints and the other as negative constraints.
I give definitions of consistency and entailment for the extended language in terms
of entailments in the original logic and specify the conditions under which these
definitions are correct.

Given a 0-order calculus £y whose formulae can be interpreted as algebraic functions
of sets, we can define an extension L7, whose expressions are pairs (M, £), where M
and & are interpreted respectively as sets of constraints of the forms 7= U and 7 # U.
Thus the expression is consistent unless the following entailment holds:

mlzu,...,mj:u |=S elzuv...Vek:L{ (E)

For most 0-order calculi it turns out that such an entailment can hold only if
one of the disjuncts on the r.h.s. is itself entailed by the equations on the Lh.s..
The property of a theory/logic where disjunctions are only entailed if at least one
disjunct is entailed is known as convezity [18]. If this convexity is established then
one can check the entailment by checking whether any of the entailment constraints
is individually entailed by the model constraints; and if the semantics is faithful to
the logic Lo then the correspondence CE enables this entailment to be determined by
checking the associated entailment in Lg. I shall now give a general condition under
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which a logic has the required convexity property. This guarantees that the method
of using model and entailment constraints presented in [2] can be applied to many
other 0-order calculi.

3.8 Models and convezity

The proof of convexity will generally involve showing that, for any entailment of the
form E, if for each disjunct on the r.h.s. there is counter-model that shows that that
equation is not entailed by the Lh.s., there exists a counter-model to the entailment
as a whole. I shall call a counter-model for a disjunct a DCM and a counter-model for
the whole entailment an ECM. The obvious way to carry out such an existence proof
is to show how given DCMs for each of the disjuncts we can somehow construct an
ECM. It could be that there are logics for which such a construction is very complex
but we shall see that for a large class of well-known logics a very simple construction
is possible.
A model for an arbitrary 0-order language Lo will be a structure

(U, F,P,d) where F = {fa,,..., fa,)

Each operator ; in the language will be interpreted as the function fo,.* These
functions are mappings from subsets of U to subsets of U. (For example, the classical
negation is associated with the function from each set X (C U) to the set {y | y €
U Ny ¢ X}.) Inorder to reflect the intended meanings of the operators, the structure
(fay,-- -, fa,) must satisfy certain axioms ®. I shall write ®(F) to mean that F (a
tuple of functions) satisfies these axioms.

To form an ECM from a set of DCMs we can often just gather the DCMs together
to form a model which includes the DCMs as ‘non-interacting’ sub-models. The
domain of the ECM will simply be the union of the domains of the DCMs. We
will also have to construct new functions for the operators and for the assignment of
sets to the atomic constants. The most straightforward way to interpret a function
whose values are sets over a union of two domains is to simply evaluate it as the
union of its denotations in each of the component domains. Given f; : 24 — 2W
and fy : 242 — 2%2. T define (f; ® fp) : 2UaU2) 4 9(WhULe) 6 be the function such
that (f1 ®f2)(X) = fl(Xl) U fQ(XQ), where X; = {.Z' | e XNzx € Ul} and
Xo={x |z € X Az els}. Iwrite (Fi ® F>) to denote the n-tuple resulting from
applying ‘@’ to corresponding pairs of functions in the n-tuples F; and Fo.

Using this notation we can define a disjoint combination of two models as follows:

(U1, F1,P,di) ® (Us, Fo,Pydr)) = (U U, F1 ® F2, P, d ® d)

By successive application of this operation we can combine any finite number of
models. The key feature of these constructed models is that the denotation of any
term with respect to the combined model is simply the union of its denotation in the

4This characterisation of the semantics of operators is quite general because even if the operators are not nor-
mally interpreted directly with respect to an axiomatised set function the semantics can easily be recast in this

> and

form. For example in section 3.2 the only function in the model structures is 7 and the interpretations of ‘~
‘=’ are defined indirectly in terms of further functions of i; but we can easily axiomatise fo by f~(z) = i(=Z)
together with the usual axioms for 7 and similarly for the other connectives. An Zp model will then be a structure

U (fAsfvs fms ), P, d).
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component models. This means in particular that if 7= U/ in all component models
then 7= U in the combined model and, if 7 # U in any component, 7 # U in the
combination. Consequently it is clear that combining DCMs for an entailment of the
form E will produce an ECM for this entailment.

However, for this construction to be permissible, we must ensure that in joining
models together we get an admissible model for the logic — i.e. a model that satisfies
the axioms ®. Thus if we are to use this method of model combination to show the
convexity of the model theory of a logic with respect to entailments of the form E we
need to show that:

If (I)(fl) and ‘}(.7:2) then (I)(<.7:1 ®F2)) (P)

In practice it seems that this property P holds for most well-known logics. The
case of classical logic is trivial because all its connectives are interpreted by pure set
functions, which always distribute over sub-domains in the desired way. For logics
interpreted with respect to an interior function, P can be seen to hold as long as
the space is allowed to contain disconnected subspaces. P also holds for modal log-
ics with a Kripke semantics in which the accessibility relation can be disconnected.
The common feature of the all these logics is that their models may contain essen-
tially independent sub-models, such that denotations of operators are unions of their
denotation in each sub model.?

3.9 An extended 0-order reasoning algorithm (EZORA)

If the operators of Ly satisfy the property P then consistency of the expressions of
LJ can be defined in terms of the entailment relation, =, of Lo as follows:

(M, €) is consistent iff there is no formula p € £ such that M =, p
Otherwise it is inconsistent, in which case we write (M, €) =+ L
0

This should make clear why the formulae in £ are called ‘entailment constraints’.
We can also define entailment between £ expressions. (M, €) | ct (M',E" holds
if the following entailment between set equations holds:

m1:Z/{/\.../\thU/\el#U/\.../\ei¢u

=

my=UAN...Am;=UNey ZU N ... Nep, #U

This will be valid iff each of the conjuncts on the r.h.s. is entailed by the Lh.s. and
such a conjunct will be entailed iff its negation is inconsistent with the L.h.s. (negating
a constraint is achieved by changing its status from model constraint to entailment
constraint or vice versa). This leads to the following definition of entailment in £g:

(M, E) |=£Sr (M',&") if and only if:
for all p € M’ we have (M, E U {p}) |:E§ 1
and for all ¢ € &' we have (M U {q}, &) |=L0+ 1

5Determination of convexity properties of logics would probably be clearer and more decisive if conducted in
terms of algebraic structures and their direct products. Goldblatt [9] has defined the disjoint union of modal frames

and related it to products of modal algebras; but his analysis is limited to normal modalities.
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The procedure for determining entailments in an EZOC (including consistency
checking as a special case) will be be called the Extended Zero-Order Reasoning
Algorithm — EZORA for short.

4 Eliminating entailment constraints

The procedures for consistency checking and determination of entailments for the
constraint calculi described above rely on the use of simple meta-level reasoning. In
this section I explain how, by introducing into a 0-order calculus £y a new operator,
O, reasoning can be conducted at the object level of the enriched language. This
language will be called £§

In reasoning with an extended O-order language £ the meanings of the two types
of constraint are handled at the meta-level: Determination of entailments in these
languages involves checking a number of different object-level entailments in the logic
Ly. A situation description is consistent if and only if none of its entailment con-
straints is entailed by the set of all model constraints. A natural question regarding
these representations is whether it might be possible to extend the calculi involved
so that the semantics of the two types of constraint was built directly into the object
language. This would mean that computation of entailments could be carried out
entirely at the object level.

Since in the original notation a model constraint X is interpreted as X = i/ an
obvious solution is simply to introduce a new (modal) operator, 00, such that O X
is interpreted as X = U . An operator of this kind can be very easily characterised
in terms of the algebraic semantics for modal logics described above. If d(a) is the
denotation of a formula a, what we need is simply the operator such that:

ed(@a)= U iff d(a)=U.
e d(@a)=0iff dla)#U.

This operator is an S5 modal operator, since a formula O« is true in a model
iff the formula is true at every point/world in the model. I shall call it a strong-
S5 operator because it does not allow the possibility, arising in the slightly weaker
Kripke characterisation of S5, that there are worlds/points which are not relevant to
evaluating the O at a particular world (because the set of worlds is partitioned into
clusters which are not accessible to each other).® With such an operator we can write
O« to assert that « is a model constraint and — [0 « to assert that « is an entailment
constraint.

Let us look at a simple example of spatial reasoning carried out in the classical
0-order calculus supplemented with a strong-S5 box operator. We shall consider the
transitivity of the proper part relation, PP.

PP(a,b) A PP(b,c) = PP(a,c)

PP(z,y) holds when ZUy= U but gUz # U. We also require that x and y are
non-null (see [2]). Non-null constraints on regions can now be expressed as -] —X for

6In most circumstances the strong and weak S5 operators cannot be distinguished at the object level. But the
difference may sometimes be significant. For example a multi-modal logic may contain several distinct weak-S5

modalities but only one strong-S5 operator.
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any region X (this could be written more succinctly as ©X but this notation would
complicate the explanation of the following example). Thus the modal representation
of PP(A, B) is:

OA—->B)A-0OB —= A A-O-AA-0O-B
Hence the transitivity of PP corresponds to the entailment:

D(A—)B) /\ﬁD(B —)A), D(B—)C) /\ﬁD(C—)B), -O0-A, ~O-B, ~O-C
|: D(A—)C)/\—!I:](C—)A)/\—!\:]—!A/\—!\:]—!C

In testing the validity of this entailment it is natural to proceed as follows. Since
the r.h.s. is a conjunction, the sequent is valid iff each of the four sequents with the
same lLh.s. but just one conjunct on the r.h.s. is valid. Of these four sequents, the
two with =[0—-A and -0 —C on the r.h.s. are trivially valid because these formulae
also occur on the Lh.s.. To prove the validity of the other two, it is convenient to
move all conjuncts on the L.h.s. which have an initial negation over to the right. We
shall then have the following two sequents:

O(A—= B)A OB = C) =

OA—-C)vOB—AVvVOC-—-B)VO-AVO-BY O-C

(A—= B)A OB = C)A OC = A) =

OB - A) v OC - B)vVO-AvV O-BvV O-C

We can verify this proof-theoretically by the application of just one modal rule
(together with ordinary classical reasoning). This is the rule RK which holds in any
normal modal logic:

(PPN ...NP)—> P
(P A ...ANOPR,)— OP

[RK]

This rule together with the deduction theorem means that
if p,...,P,EP then opf,...,.0P, EOP
Application of this principle validates both of our sequents, since
A->B, B-CEFA—-C ad A—-B B—-C, C—>AEB-—A

Introduction of the new box operator to enable positive and negative constraints
to be distinguished gives us a more uniform representation since, whereas previously
the meaning of an expression was tied up essentially with the reasoning methods
employed, in the new language, expressions have a clear algebraic interpretation. We
need no longer concern ourselves with the distinction between model and entailment
constraints but can now describe spatial situations simply by a set of modal formulae;
and can reason about consistency and entailment directly in this object language.

On the other hand it is not clear that this enriched language is more desirable
from the computational point of view. Introduction of the new operator makes the
language far more expressive and consequently much harder to reason with. The
effectiveness of the original Z; representation was in large point due to its lack of
expressive power.



5. THE S4 MODALITY AS AN INTERIOR OPERATOR 37

However, we have seen that as long as the new modal operator is only used to
express what was previously expressed by means of the model/entailment constraint
distinction, then all O operators will only occur either up front or negated up front
in the set of formulae describing a situation; and it seems likely that the optimal
approach to reasoning with such formula sets is to mimic the EZORA algorithm
(used for reasoning in the extended 0-order languages) described above. Specifically
this means rewriting the sequents (according to simple classical principles) to obtain
sets of sequents in which all formulae have a single (0 at the front: the Lh.s. is a
conjunction and the r.h.s. a disjunction of such formulae. Once the sequents are in
this form, it is easy to see that the sequents which correspond to entailments verifiable
by the extended 0-order reasoning algorithm can all be proved using only the modal
rule RK together with classical reasoning.

As we know that EZORA is sound and complete we can conclude that only the rule
RK is needed to prove all entailments in £§' involving formulae in which the O occurs
either up-front or negated up-front. Nevertheless the more intuitive interpretation of
the modal operator in this context is as the strong-S5 operator. Later on (section 6.1)
we shall see the strong-S5 operator used in contexts where an operator satisfying only
the RK rule would not suffice.

5 The S4 modality as an interior operator

In describing many relationships which can hold between spatial regions it is necessary
to have some means of distinguishing the surface of a region from its interior. For
instance we can say that one region is externally connected to another if the two
regions share a boundary point but do not share any interior points. If they do share
interior points we can say that they overlap. And, even if we do not want to reduce
regions to points in our representation language, we shall still need to be able to make
such distinctions.

As we saw in section 3.2 the intuitionistic calculus, Zy, can be interpreted in terms
of Boolean operators plus an interior function. This means that the calculus can be
used to represent a significant family of spatial relations. One drawback with this rep-
resentation is that no logical operator corresponding to the interior function appears
explicitly in the language: the function occurs in the interpretations of intuitionistic
negation and implication and is only referred to indirectly in logical formulae used
to represent spatial constraints. In this section I explain how the modal logic S4 can
be used as a spatial representation in which the modal operator corresponds directly
to the interior function. The topological interpretation of S4 is not new (it can be
directly inferred from the results presented in [24] and [22]), however, as far as I know
it has not actually been used as a basis for spatial reasoning.

It has long been known (see [7]) that formulae of the intuitionistic propositional
calculus can be translated into modal formulae in such a way that an intuitionistic
formula is a theorem if and only if the resulting modal formula is valid in the logic
S4. The translation can be specified in terms of a recursive function, m, as follows:
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m(p) = Op (if pis atomic)
m(~p) = O-m(p)

mpVye = mp)Vmg)
m(pAq) = m(p) Am(q)
mp=q) = 0O(m(p) = m(q))

If we compare this to the interpretation of Zy given in section 3.2 we see that it is
the same except that the O operator occurs in place of ¢ and each atomic proposition
is also preceded by an additional [0 operator. The latter difference arises because
in the interpretation of Zy it is required that all constants (and hence all formulae)
denote open subsets of the universe, whereas in a modal logic atomic formulae can
normally be assigned arbitrary sets of worlds/points. Thus intuitionistic formulae
correspond only to (a subset of) necessary S4 formulae.

TABLE 3. S$4 Encoding of some RCC Relations

Relation Model Constraint Entailment Constraints’
DC(X,Y) O-0O0X v O-0v —
EC(X,Y) O-(OX A OY) O-0X v o-0ov
PO(X,Y) — O-(O0X A 0OY), O@OX — 0OY),
o@y —» 0X)

TPP(X,Y) OOoX — Ov) O-O0X v oYy, ooy -» OoX)
TPP™(X,Y) o@yY —» OX) O-gY v oxX, goX — Ov)
NTPP(X,Y) Oo-OX v ay o@Y - OX)
NTPP~1(X,Y) Oo-gY v oxX O@OX —» OYv)
EQ(X,Y) OO X & Ov) —
C(X,Y) — O-0XV O-0Y
EQ(X,sum(Y, Z)) OoX «

(OY v O2) —

Using this interpretation the intuitionistic representation of spatial relations given
in [2] can directly be translated into an S4 modal representation. The result of such
a translation is shown in table 3. This encoding can either be used with the EZORA
reasoning algorithm or the model-constraint/entailment-constraint distinction can be
eliminated by adding an additional O operator, according to the method described
in section 4. In the latter case the additional ‘0’ operator can be treated simply as
another S4 operator, since S4 (like any normal modal logic) obeys the requisite rule
RK.

5.1 From axioms for i to modal schemata

I shall now examine the relation between S4 and topology directly — without con-
sidering their correspondence to Zy. This will enable us to see clearly the relation

7Non-null constraints have been omitted. For each region X involved in a relation we should also add the

entailment constraint [] — [ X, corresponding the intuitionistic constraint ~ X.
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between: a function constrained to obey certain 1st-order axioms; and a modal oper-
ator, in a O-order calculus, which satisfies certain modal schemata. I shall show the
properties of the interior operator, ¢, as it is conceived of in point-set topology are
mirrored by the O operator of the modal logic S4.

Point-set topology can be formulated in a number of ways. One of the most straight-
forward is to take as primitive an interior operator, ¢, which maps subsets of a topolog-
ical space to their interiors. A topological space can thus be described by a structure
(U, 7). To be an interior operator ¢ must satisfy the following axioms:

1.i(X) C X
2.4(i(X)) = i(X)

3.iU) =U

4.4(XNY) =i(X)Ni(Y)

where X and Y are any subsets of U/.

Since modal operators (under the algebraic interpretation) can be conceived of as
operators on sets, we might hope that these axioms could be translated into modal
schemas.? Indeed this is the case. To perform the translation we simply use the
interpretation of the classical connectives as set operations given in section 3.1. We
can then specify, for a new modal operator, schemata whose interpretations are exactly
the axioms given above. In the sequel I shall use the symbol ‘I’ to represent the modal
interior operator; this will avoid confusion with the strong-S5 operator, for which the
symbol ‘07" will be reserved. The properties of T can thus be stated by following
schemata:

1.IX > X

2ITIX & IX

3ITeT (where T is any tautology)
LI(XAY)o IXATIY

Each of these corresponds directly to a well-known modal schema:

T.OP - P

4.0P - QOOP

N.OT

R.OPAQ) < (OP A OQ)

T schema 2 is actually stronger than the modal schema 4 but the bi-conditional can
be weakened to a conditional in the presence of I schema 1. Also, I schema 3 is
clearly equivalent to simply T T. It is well-known (see [4]) that the weakest modal
logic containing these schemas is S4, so this is the logic we need to capture the interior
operator.

5S4 is obtained from classical propositional logic by adding the schemas:

K.OP - Q) = (OP - 0Q);

8This type of translation is related to the methods presented in [16] and [17] for finding model-theoretic con-
straints corresponding to modal schemata. However in our case we are going in the opposite direction. Another
difference is that I am working with an algebraic semantics rather than the Kripke and minimal model semantics

considered in the above cited works. It seems that the algebraic semantics makes the translation problem easier.
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T.OP - P;and 4. OP — OO P;

FP

ap
properties of the interior operator. It can also be proved (see [4] theorem 4.3 case (4))

that any modal theory containing N and R is a normal modal theory, and hence obeys

o . =P
the schema K, as long as it is closed under the rule of equivalence: _free [RE] .
FOP« OQ

Clearly any (extensional) function must conform to RE since a function applied to
two terms which have the same value must have the same result.

That the 1st-order constraints on an interior function correspond to modal schemata
defining S is not at all surprising given the relation between 7y and S4 described in
the previous section. However, the transformation of 1st-order axioms into modal
schemata is a general technique for encoding spatial (and other) concepts into 0-order
representations. This will be illustrated in the next section.

Since the S4 modality can be interpreted directly as an interior function over a
topological space, we can use this interpretation to give a more direct encoding of
the RCC relations into model and entailment constraints. For this purpose it is more
straightforward to use the dual interpretation for connectedness (as mentioned in
section 3.6), under which regions are closed sets which are connected if they share a
point and overlap if they share an interior point. (In the Zy representation the other
interpretation is more convenient because of the linkage between complementation
and the interior function under the Zy coding.) The resulting S4 representation is
shown in table 4. The new encoding is considerably simpler than that given in table 3
which was constructed indirectly via the Zg representation and the coding of Zy into
S4.

and the rule of necessitation:

[RN] . Schemas T and 4 correspond to required

TABLE 4. A simpler S4 Encoding of the RCC Relations
From ruy@di.ufpe.br Mon Jan 29 21:40:31 1996 Date: Fri, 26 Jan 96 17:15:52 EST
From: Ruy de Queiroz jruy@di.ufpe.br; To: ohlbach@mpi-sb.mpg.de Subject: PA-
PER 15 (Bennett) (b8Idefs.tex) Content-Length: 1143 X-Lines: 24 Status: RO

Relation Model Constraint Entailment Constraints
DC(X,Y) (X AY) -X, Y
EC(X,Y) -(IXAIY) (X AY), =X, Y
PO(X,Y) — ~(IXAIY),X->Y,Y->X,
-X, 7Y
TPP(X,Y) XY X—-> 1Y, Y- X, =X, 7Y
TPP’l(X,Y) Y - X Y- IX XY, =X, Y
NTPP(X,Y) X—> 1Y Y - X, =X, Y
NTPP’l(X,Y) Y>> IX XY, -X, Y
EQ(X,Y) XY -X, Y
C(X,Y) — (X AY), =X, -Y
EQ(X,sum(Y, Z)) Xo (YvVv2 -X, Y
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6 Modal representation of convexity

We have seen how the topological interior function corresponds to the S4 modal box
operator. Such a correspondence may suggest that other useful functions of spatial
regions can be captured by modal operators in a 0-order calculus. In the remainder
of this paper I shall investigate how the notion of the convez-hull (see [20]) of a region
could be represented by means of a modal operator. By the convex-hull of a region
I mean the smallest convex region of which it is a part. If one were to stretch an
elastic membrane round a region then the convex-hull would be the whole of the
region enclosed. Figure 2 shows convex-hulls of two regions in 2 dimensions (region
B is a two piece region).

F1G. 2. Ilustration of convex-hulls in 2 dimensions

Randell et al. [20] have shown how various notions of containment can be defined
in terms of convex-hull. For instance, we can say that INSIDE(X,Y") holds if X does
not overlap Y but is part of the convex-hull of Y.

Before thinking about possible modal representations, we need to have a good idea
of what properties we expect convex-hulls to exhibit. The following 1st-order axioms
specify properties of the convexity operator, ‘conv’:

1. Vz[conv(conv(z)) = conv(x)]

2. V2 TP(z, conv(z))

3. VaVy[P(z,y) — P(conv(z),conv(y))]
4. VaVy[conv(z) = conv(y) — C(z,y)]?

5. VxVy[prod(conv(x), conv(y)) = conv(prod(conv(z), conv(y)))] °

Of these the first four were presented in [2], where further comments can be found.
The fifth axiom states that the prod (i.e. intersection — see [20]) of two convex regions
is itself convex. This list is not guaranteed to be a complete axiomatisation of the conv
operator: it is very difficult to be sure that a set of axioms fully capture a concept
unless we have a formal model (or set of models) within which the concept is defined
and show that the axioms are sound and complete with respect to that model (those
models). Investigating such models is the subject of ongoing work.

9Acl:uallly this is not necessarily true for infinite regions.

1014 is possible that this may be derivable from the other axioms plus the definition of prod [20] but, if this is so,

it is not obvious.
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6.1 conv as a modal operator

We would like to represent conv as a modal operator in a 0O-order calculus. This
calculus will be a multi-modal language containing the usual classical connectives
(interpreted algebraically according to section 3.1) plus three modal operators:

I an interior operator, constrained to behave exactly as the S4 modality,
O the strong-S5 operator,
O the convexity operator, whose properties are to be specified.

To fix the meaning of the new operator, we need to find 0-order axiom schemata (or
rule schemata) to enforce the desired properties of O. These schemata will correspond
to the 1st-order axioms given above. I do not know of a general method for performing
this kind of transformation and it seems unlikely that such a method exists. However,
in each case we can see that under the algebraic interpretations of the logical operators
the schemata are equivalent to the axioms.

The schema corresponding to axiom 1 is very simple:

00X ¢ OX (Schl)

Axiom 2 is a little harder to represent as a modal schema. TP(X,Y") means that X
is a tangential part of X. This holds if either X is a tangential proper part of Y or X is
equal to Y. Thus to represent this we use the encoding for TP(X,Y) given in table 4
but drop the second entailment constraint ¥ — X which would ensure that X and
Y are non equal. Hence, using the strong-S5 [J rather than the model/entailment-
constraint distinction, axiom 2 can be represented by the schema

OX - OX) A =0OX - TOX), (Sch2)

which says that all regions are part of their convex-hull but not part of the interior of
their convex-hull. We may note that the initial O in the first conjunct is redundant,
since it is implicit in modal axiom schemata that they are true in all possible worlds
— or, in the context of algebraic semantics, that their denotation is U.

Axiom 3, which states that if X is part of Y then O X is part of OY can be
represented by

OX—-Y)— (00X —» OY). (Sch3)

This requires some explanation. In general, where we have a lst-order axiom of the
form p — ¢, this will be translated by O7(p) — 7(q¢) (where 7(«) is the represen-
tation of ), which ensures that if 7(p)= U then 7(¢) = U. Note that we do not
need O7(p) = O7(q) because the antecedent must either denote @), in which case
the schema is trivially satisfied, or it denotes ¢/, in which the consequent must also
denote U. If we were to write simply 7(p) — 7(q) this would represent the stronger
requirement that 7(p) is always a subset of 7(q) whether or not 7(p) = U.
Using a similar transformation axiom 4 can be straightforwardly represented by:

OO0X « OY) - -O~(X AY) (Sch4)

=0O-(X AY) corresponds to the entailment constraint representing C(X,Y) and
asserts that X and Y share at least one point.
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Finally axiom 5 can be straightforwardly captured by:
O(OX A OY) & (OX A OY) (Schs)

It should be noted that the strong-S5 operator, [J, is not needed if we specify the
logic by means of rule schemata rather than only aziom schemata. For example, Sch3
becomes:

FOX —» OY

which tells us that O is monotonic with respect to the part relation (i.e. — ).

The second conjunct of Sch2 would correspond to the rule:

FX—>TIOX

T [OTP]

and Sch4 to the rule:

FOX & OY)A=(X AY)
L

[+ OC(]

7 Summary

T have presented a preliminary exploration of the potential applications of modal logics
to qualitative spatial reasoning. The approach is a generalisation of the intuitionistic
representation, Igr , presented in [2] and provides a much richer language for expressing
spatial information. I have shown how the meta-level reasoning algorithm [2] can be
dispensed with by adding a new strong-S5 operator to the object language and how
a modal interior operator, I, (equivalent to the S4 ) provides for more direct
encoding of spatial relationships than Igr . Finally, T have examined how a modal
convex-hull operator could be defined by translating a 1st-order axiomatisation into
modal schemata.

8 Further work

Whilst modal representations of spatial relations can be shown to have a theoretical
advantage over 1st-order representations (namely that decision procedures are known
for the modal languages), nevertheless doubts may remain as to whether the modal
representations could ever be of practical use. After all a decision procedure does
not necessarily provide us with an effective means of computation. Ideally we would
like to have polynomial algorithms for spatial reasoning. Recently, a lot of research
has been directed towards the need for more efficient modal reasoning systems [25],
[1], [3], [5]- If the modal approach to qualitative reasoning is to be of practical use
it will be necessary to demonstrate that the modal representations can be effectively
manipulated. One way to do this would be to identify tractable sub-languages of
modal calculi, which are capable of representing significant sets of spatial relations.
Another important direction for further work is to investigate how the expressive
power of the representation can be extended. In section 6.1 I showed how properties
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of the convex-hull operator can be captured by means of modal schemata; and this
technique could be applied to other spatial concepts. However, the method is some-
what ad hoc and does not provide us with a direct interpretation of the operator, in
terms of model structures. To do this we shall need richer mathematical structures
as models. I am currently looking at how modal calculi can be interpreted in Carte-
sian spaces over Euclidean fields. These have much more structure than topological
spaces and allow many non-topological spatial relations to be defined. In particular
convex-hull can be characterised in terms of the betweenness relation which can easily
be defined in these models (see [23]).
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