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Abstract. Topological relationships between spatial objects have been
a focus of research on spatial data handling and reasoning for a long
time. Especially as predicates they support the design of suitable query
languages for spatial data retrieval and analysis in databases. Unfortu-
nately, they are so far only applicable to simplified abstractions of spatial
objects like single points, continuous lines, and simple regions, as they
occur in systems like current geographical information systems and spa-
tial database systems. Since these abstractions are usually not sufficient
to cope with the complexity of geographic reality, their generalization is
needed which especially has influence on the nature, definition, and num-
ber of their topological relationships. This paper partially closes this gap
and first introduces very general spatial data types for complex points
and complex regions. It then defines the corresponding complete sets of
mutually exclusive, topological relationships.
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1 Introduction

For a long time topological relationships have been a focus of research in disci-
plines like spatial databases, geographical information systems, CAD/CAM sys-
tems, image databases, spatial analysis, computer vision, artificial intelligence,
cognitive science, psychology, and linguistics. Topological relationships like over-
lap, inside, or meet describe purely qualitative properties that characterize the
relative positions of spatial objects and that are preserved under continuous
transformations such as translation, rotation, and scaling. They exclude any
consideration of quantitative measures like distance or direction measures and
are associated with notions like adjacency, coincidence, connectivity, inclusion,
and continuity. In particular, they are needed for spatial reasoning and in spa-
tial query languages where they are, for instance, employed as part of a filter
condition in a query.

Some well known, formal models for the definition of topological relationships
have already been proposed (see Section 2.2). But they are essentially tailored
to the treatment of simple regions and lines. Simple regions are two-dimensional
point sets topologically equivalent to a closed disc, and simple lines are one-
dimensional features embedded in the plane with two end points. Points are



not taken into account, since their interrelations are trivial. Unfortunately, the
variety and complexity of geographic entities can be hardly modeled with these
simple geometric structures. Due to a lack of space, we will confine ourselves
to points and regions in this paper. With regard to points, we will allow finite
collections of single points as point objects. With regard to regions, the two
main extensions relate to separations of the exterior (holes) and to separations of
the interior (multiple components). Both extensions ensure closure of geometric
operations and are common in geographical applications. Countries, e.g., can be
made up of multiple components (islands) and can have holes (enclaves).

The goals of this paper are twofold: first we introduce and formalize spatial
data types for complex points and complex regions. Then all possible topologi-
cal relationships between two complex points and between two complex regions,
respectively, are derived from the well known 9-intersection model. For this pur-
pose, we draw up collections of constraints specifying conditions for valid topo-
logical relationships and satisfying the properties of completeness and exclu-
siweness. The property of completeness ensures a full covering of all topological
situations. The property of exclusiveness ensures that two different relationships
cannot hold for the same two spatial objects.

The remainder of the paper is organized as follows: Section 2 discusses related
work regarding spatial objects and topological relationships. Section 3 summa-
rizes the spatial data model for which topological relationships will be investi-
gated. Section 4 explains the strategy for deriving topological relationships from
the 9-intersection model. In Section 5 all topological relationships between com-
plex points are analyzed. Section 6 does the same for complex regions. Finally,
Section 7 draws some conclusions and discusses future work.

2 Related Work

In this section we discuss some related work about spatial objects as the operands
of topological relationships (respectively corresponding predicates) (Section 2.1)
and about topological relationships themselves (Section 2.2).

2.1 Spatial Objects

In the past, numerous data models and query languages for spatial data have
been proposed with the aim of formulating and processing spatial queries in
databases (e.g., [8,9]). Spatial data types (see [9] for a survey) like point, line, or
region are the central concept of these approaches. They provide fundamental
abstractions for modeling the structure of geometric entities, their relationships,
properties, and operations. Topological predicates operate on instances of these
data types, called spatial objects. So far, rather simple object structures (like
simple points, lines, and regions) have been used as arguments of topological
predicates. In this paper, we are interested in topological predicates on complex
spatial objects for two reasons. First, from an application point of view, simple
spatial structures are insufficient abstractions of spatial reality. For example,



Italy cannot be modeled by a simple region, since it has the Vatican as a hole
and comprises islands in the Mediterranean Sea. Second, from a formal point
of view, we have to require closure properties for the spatial data types. This
means, e.g., that the geometric intersection, union, and difference of two point,
two line, or two region objects, respectively, may not leave the corresponding
type definition. Similar considerations lead to a generalization of point objects.

We will give formal definitions of these object structures in Section 3. For the
definition of a point data type we use set theory. For the definition of a region
data type and its topological predicates we employ the point set paradigm and
point set topology [7]. Regions are modeled as infinite point sets in the Euclidean
plane. Point set topology permits to distinguish different parts of the point set
of a region. Given such a point set, say A, these parts identify its boundary
0A, its interior A°, and its exterior A~, which are pairwise disjoint. The union
of A° and AA corresponds to the closure A of A. The effect of applying the
interior operation to a point set is to eliminate dangling points, dangling lines,
and boundary parts. The effect of the closure operation is to eliminate cuts and
punctures by appropriately supplementing points as well as adding the boundary.
Hence, it makes sense only to consider point sets A for which A = A° holds.
This concept of regularity avoids geometric anomalies in regions and leads to
so-called regular closed point sets respectively regions without degeneracies [10].

2.2 Topological Relationships

An important approach for characterizing topological relationships rests on the
so-called 9-intersection model [3-5]. This model allows one to derive a complete
collection of mutually exclusive topological relationships for each combination of
spatial types. The model is based on the nine possible intersections of boundary
(0A), interior (A°), and exterior (A7) of a spatial object A with the correspond-
ing components of another object B. Each intersection is tested with regard to
the topologically invariant criteria of emptiness and non-emptiness.

29 = 512 different configurations are possible from which only a certain sub-
set makes sense depending on the definition and combination of spatial objects
just considered. For each combination of spatial types this means that each of its
predicates can be associated with a unique intersection matrix (Table 1) so that
all predicates are mutually exclusive and complete with regard to the topologi-
cally invariant criteria of emptiness and non-emptiness. Topological relationships
that have been investigated so far are restricted in the sense that their argument
objects are not allowed to have the most general, possible structure. It is just
the objective of this paper to give the most general definitions of spatial objects
and to identify the topological relationships between them.

Topological relationships have been first investigated for simple regions [2—-
5]. For two simple regions eight meaningful configurations have been identified
which lead to the well known eight predicates called disjoint, meet, overlap,
equal, inside, contains, covers, and coveredBy. The 9-intersection model has
been extended with further topological invariants (like the dimension of the



A°NB°#@ A°NOB#@ A°NB” #@&
OANB°#@ O0ANJOB# @ O0ANB” #0©
ATNB°#@& AT NOB#@ A NB #4

Table 1. The 9-intersection matrix. Each matrix entry is a 1 (true) or 0 (false).

intersection components, their types (touching, crossing), the number of compo-
nents) to discover more details about topological relationships (e.g., [2]).

It is surprising that topological predicates on complex regions have so far
not been defined. But the definition of these predicates is particularly important
for spatial query languages that aim at integrating complex regions having holes
and separations. Two works have so far contributed to a definition of topological
relationships for more complex regions. In [1] the so-called TRCR (Topological
Relationships for Composite Regions) model only allows sets of disjoint simple
regions without holes. But topological relationships between composite regions
are defined in an ad hoc manner and are not systematically derived from the
underlying model. Moreover, the model is only related to but not directly based
on the 9-intersection model. In [6] topological relationships of simple regions with
holes are considered. Unfortunately, multi-part regions are not permitted. While
the authors take the number of components (area without holes, holes) of two
regions into account and consider the large number of topological relationships
between all component pairs of both regions, we pursue a global approach that
is independent of the number of components. Hence, a further goal of this paper
is to provide an integrated treatment of holes and separations for regions and to
define topological predicates on complex regions in a systematic way.

Topological predicates between simple points are trivial: either two simple
points are disjoint or they are equal. We have a more general view of point
objects and consider a complex point as a finite collection of single points. This
leads to the necessity of investigating further topological relationships.

3 Spatial Data Model

In this section we strive for a very general definition of complex spatial objects
in the Euclidean plane R?. The task is to identify those point sets that are
admissible for complex point and region objects.

A value of type point is defined as a finite set of points in the plane. Thus a
type for complex points can be specified as

point = {P C R? | P is finite}

We call a value of this type complex point. If P € point is a singleton set, i.e.,
|P| =1, P is denoted as a simple point. For a simple point p we specify Op = @
and p° = p, which is the commonly accepted definition. For a complex point
P =p, ...,pn we then obviously obtain 9P = @ and P° = (J__, pS.

Since complex regions can be arbitrary points sets but without the geometric
anomalies discussed in Section 2.1, we are now already able to give an appropriate
definition of a type for complex regions:



region = {R C R? | R is bounded and regular closed}

This definition is conceptually somehow “structureless” in the sense that only
“flat” point sets are considered and no structural information is revealed. The
“structured” view of a regular closed set is that of a region possibly consisting
of several area-disjoint components and possibly having area-disjoint holes (Fig-
ure 1). Boundary, interior, and exterior result from the corresponding operators
on arbitrary point sets.

Fig. 1. A complex region.

4 Deriving Topological Relationships from the
9-Intersection Model

Our strategy for the analysis of topological relationships between two complex
points or regions is quite simple and yet very general: instead of applying the 9-
intersection model to point sets belonging to simple spatial objects, we extend it
to point sets belonging to complex spatial objects. Due to the special features of
the objects (point, areal properties), the embedding space (here: R?), the relation
between the objects and the embedding space (e.g., it makes a difference whether
we consider a point in R or in R?), and the employed spatial data model (e.g.,
discrete, continuous), a number of topological configurations cannot exist and
have to be excluded.

Our goal is to determine for each pair of complex spatial data types the cor-
responding topological constraints or conditions that have to be satisfied; these
serve as exclusion criteria for all other impossible configurations. The approach
taken starts with the 512 possible matrices and is a two-step process:

(i) For each type combination we give the formalization of a collection of topo-
logical constraints for existing relationships in terms of the nine intersections.
For each constraint we give reasons for its meaningfulness. The evaluation
of each constraint gradually reduces the set of the currently valid matrices
by all those matrices not fulfilling the constraint under consideration.

(ii) The existence of topological relationships given by the remaining matrices
is verified by realizing prototypical spatial configurations in R?, i.e., these
configurations can be drawn in the plane.

Still open issues relate to the evaluation order, completeness, and minimality
of the collection of constraints. Each constraint is a predicate that is matched



with all intersection matrices under consideration. All constraints must be sat-
isfied together so that they represent a conjunction of predicates. To say it in
other words, constraints are all formulated in conjunctive normal form. Since the
conjunction (logical and) operator is commutative and associative, the order in
which the constraints are evaluated is irrelevant; the final result is always the
same. The completeness of the collection of constraints is directly ensured by
the second step of the two-step process. The aspect of minimality addresses the
possible redundancy of constraints. Redundancy can arise for two reasons. First,
several constraints may be correlated in the sense that one of them is more gen-
eral than the others, i.e., it eliminates at least the matrices excluded by all the
other constraints. This can be easily checked by analyzing the constraints them-
selves and searching for the most non-restrictive and common constraint. Even
then the same matrix can be excluded by several constraints simultaneously.
Second, a constraint can be covered by some combination of other constraints.
This can be checked by a comparison of the matrix collection fulfilling all n con-
straints with the matrix collection fulfilling n — 1 constraints. If both collections
are equal, then the omitted constraint was implied by the combination of the
other constraints and is therefore redundant.

5 Topological Relationships between Complex Points

We now present the constraints for two complex point objects A and B. Each
constraint is first formulated colloquially and afterwards formalized by employing
the nine intersections. Then a rationale is given explaining why the constraint
makes sense. We presuppose that A and B are not empty, because topological
relationships for empty operands are not meaningful.

Constraint 1 All intersections comprising an operand with a boundary operator
yield the empty set, i.e.,

VC € {A°,0A,A"}:CNOB =@ A VD€ {B°,0B,B~}:0AND =0

Rationale. According to the definition of a complex point 0A = 0B = @ holds.
The intersection of the empty set with any other component yields the empty
set. O

Constraint 2 The exteriors of two complex point objects always intersect with
each other, i.e.,

A NB #0

Rationale. We know that AU A~ = R? and BU B~ = R%. Hence, A~ N B~ is
only empty if either (i) A = R?, or (ii) B = R?, or (iii)) AU B = R%. All three
situations are impossible, since A, B, and A U B are finite sets and R? is an
infinite set. Thus A C R?, B C R?, and AU B C R? holds. O

Constraint 3 Fach non-empty part of a complex point intersects at least one
non-empty part of the other complex point, i.e.,



(VCe{A°, A"} :CNB°#2 V CNB~ #2) A
(VDe{B°,B~}:A°ND#2 V A"ND # 2)

Rationale. We know that A° U A~ = R? and that B° U B~ = R?. That is, the
complex point A, respectively B, together with its exterior forms a complete
partition of the Euclidean plane. Hence, and because only non-empty object
parts are considered, the interior and the exterior of A, respectively B, must
intersect at least either the interior or the exterior or both parts of B, respectively
A. O

Since 0A = 0B = &, the second row and the second column of an intersection
matrix only yield empty intersections, and we do not have to consider them any
further. The remaining intersections are those in the four corners of a matrix.
Hence, in the first and third row and in the first and third column of a matrix
at least one “corner” intersection must yield true so that we find the value 1 in
the matrix there.

It has been checked with a trivial test program that none of the three con-
straints can be omitted (otherwise we would obtain more matrices). As a result,
we obtain five remaining topological relationships between complex points. The
corresponding matrices and their geometric interpretations are given in Table 2.

Matrix No. 1 Matrix No. 2
001 o ©® 100
0 0 0 0 00
1 0 1 ® ® ® 0 01
Matrix No. 3 Matrix No. 4
100 ® o 101 o o
0 00 0 00
1 0 1 001
o o
Matrix No. b
o . component of point A
1 0 1
. component of point B
0 0 0 o o
1 01 .. o common component of both points

Table 2. The five topological relationship for complex points.

With each matrix we can associate a name for the corresponding topological
predicate. Matrix 1 describes the relationship disjoint, matrix 2 the relationship



equal, matrix 3 the relationship inside, matrix 4 the relationship contains, and
matrix 5 the relationship overlap.

6 Topological Relationships between Complex Regions

In this section we identify those topological relationships that can be realized
between two non-empty, complex regions A and B. We pursue the same strategy
as for points and first present constraints that exclude non-existent topological
configurations. Note that a part of a complex region denotes either its boundary,
interior, or exterior and that all parts are non-empty.

Constraint 1 FEach part of a complex region intersects at least one part of the
other complex region, i.e.,

(VC e {A°0A,A"}:CNB°#2 vV CNIB#2 V CNB™ #2) A
(VDe{B°,0B,B }:A°ND#@ VvV 0AND#@ VvV A" ND # Q)

Rationale. We know that A° UJAU A~ = R? and that B° UOB U B~ = R2.
That is, the complex region A, respectively B, together with its exterior forms
a complete partition of the Euclidean plane. Hence, each part of A, respectively
B, must intersect at least one part of B, respectively A. O

Constraint 2 Neither the interior nor the exterior of a complex region can be
completely contained in or equal to the boundary of the other complex region,
i.e.,

A°Z OB N A€ 9B N B°ZOA N B~ Z A
S (A°NB°#A£2 V A°NB  #28) AN (AANB°#2 V A-NB™ #9)A
(A°NB°#@3 V A ANB°# @) AN (A°NB~ #@ V A~ NB™ #9)

Rationale. The obvious reason is that the dimension of a boundary with its linear
structure is less than the dimensions of the interior and the exterior with their
areal structures. The constraint definition shows that the formalization based on
subset relationships can be transformed to an equivalent formalization based on
the nine intersections. If the interior and the exterior, respectively, of a region
is not completely contained in or equal to the boundary of the other region, it
intersects either the interior or the exterior or both parts of the other region,
and vice versa. |

Constraint 3 The exteriors of two complex region objects always intersect with
each other, i.e.,

A NB 42
Rationale. We know that AU A~ = R? and BUB™ = R®. Hence, A~ N B~
is only empty if either (i) A = R?, or (ii) B = R?, or (iii)) AU B = R?. The

situations are all impossible, since A, B, and hence A U B are bounded, but R?
is unbounded. O



Constraint 4 The boundaries of two complex regions are equal if and only if
the interiors and the exteriors, respectively, of both regions are equal, i.e.,

(PA=0B & A°=B° A A- =B7)
S(eced (e ANd) vV (-e A —d)) where
¢c=A°NOB=2 AN JANB° =92 A DANOB # @ A
0ANB =@ AN A NJOB =@ and
d=A°NB°#@ N A°NOB=@ N A°NB™ =@ A
OANB°=0 AN A NB°=9 AN JANB™ =g A
A"NOB=2@ N A ANB™ #0

Rationale. This very special constraint expresses that complex regions are
uniquely characterized by their boundaries. This is ensured by the Jordan Curve
Theorem [7]. O

Constraint 5 If the boundary of a complex region intersects the interior of the
other complex region, both its interior and its exterior intersect the interior of
the other region, i.e.,

(PANB°#£@ = (A°NB°#2 N A~ NB° #9))
(A°NdB#@ = (A°NB°#3 AN A°NB™ #)))
S ((ANB° =g vV (A°NB°#2 AN A~ NB° #9))
(A°nNoB=@ VvV (A°NB°#@ AN A°NB~ #9)))

A

A

Rationale. On each side of the boundary of a region there is either the region’s
interior or exterior (Jordan Curve Theorem). On both sides of a line intersecting
the interior of this region, we find the interior of the region. If the line is part
of the boundary of another region, we obtain the intersection of both regions’
interiors and the intersection between the interior of the first region and the
exterior of the other region. m|

Constraint 6 If the boundary of a complex region intersects the exterior of the
other complex region, both its interior and its exterior intersect the exterior of
the other region, i.e.,

(PANB- #4220 =(A°NB~ #0 AN A-NB™ #2))

(AANOB#£@=(A"NB°#@ N A-NB™ #2)))
S (ANB =g VvV (A°NB~#0 AN ATNB™ #£9)) A

(AANdB=@ VvV (ANB°#@ AN A-NB™ #9)))

A

Rationale. The argumentation is similar as for the previous constraint. On each
side of the boundary of a region there is either the region’s interior or exterior.
On both sides of a line intersecting the exterior of this region, we find the exterior
of the region. If the line is part of the boundary of another region, we obtain the
intersection of both regions’ exteriors and the intersection between the interior
of the first region and the exterior of the other region. O

Constraint 7 The boundaries of two complex regions intersect, or the boundary
of one region intersects the exterior of the other region, i.e.,



OANOB#o V 0ANB  #@ V A NOB# o

Rationale. Assuming that the constraint is false. Then neither the boundaries
of the two regions nor the boundary of one region and the exterior of the other
region intersect. Consequently, according to Constraint 1, each boundary of one
region intersects the interior of the other region. Without loss of generality, let
us consider a point p € A° N 0B and an infinite ray s emanating from p in
an arbitrary direction. Since the component of A containing p is bounded, s
encounters the boundary of A in a point, say, ¢. This boundary intersects the
exterior, the boundary, or the interior of B. According to our assumption the
first two cases cannot hold so that g must lie inside the interior of B. We obtain
a similar situation as before, except for the fact that now A and B change
their roles. We continue to observe the course of s: the ray over and over again
alternately encounters a point of A° N 9B and then a point of JA N B°. Since
the ray can be prolonged arbitrarily, A and B must be unbounded. But this is
a contradiction to the definition of the region data type. O

Constraint 8 If the interiors of two complex regions intersect, the interior of
one region also intersects the boundary of the other region, or the regions’ bound-
aries intersect, i.e.,

(A°NB°#@=(A°NOB#@ V 0ANB° # @ V 0AN OB # 2))
S (A°NB°=@ V A°NOB#@ V 0ANB°#@ V 0ANJB # @)

Rationale. Let us consider a component of the first region and a component of the
second region with intersecting interiors. We have to distinguish three situations.
First, if the interiors of both components are equal, also their boundaries are
equal and hence intersect. Consequently, also the regions’ boundaries intersect.
Second, if the interiors of both components but not their boundaries intersect,
one component is contained in the other. Since this is a proper containment
(otherwise the boundaries would intersect), the boundary of one component
must be inside the interior of the other component. Consequently, the interior
of one region intersects the boundary of the other region. Third, if the interiors
and the boundaries of the two components intersect, both conclusions of the
constraint hold. O

Constraint 9 If the interior of a complex region intersects the exterior of the
other region, either the interior of the first region intersects the boundary of the
second region, or the boundary of the first region intersects the exterior of the
second region, or both regions’ boundaries intersect, i.e.,

(A°NB- #@=(A°NdB#2 V 0ANB~ #@ V 0ANIB # @)) A
(AANB°#23=(0ANB°#@ V A~ NOB#3 V 0ANIB # 2)))
S (A°NB =0 vV A°NOB#@ V OANB #@ V 0ANOB # @) A
(

)
A NB°=@ VIANB°#2 V A NOB#2 V 0ANIB # ))



Rationale. If there is an intersection between the interior of a complex region
and the exterior of the other complex region, a few different situations for each
component causing the intersection can be distinguished. The first situation is
that a component partially intersects the interior and the exterior of the other
region. Then the boundary of the other region intersects the interior of the first
region.

The second situation is that the interior of a component lies completely inside
the exterior of the other region. Several cases can now be distinguished. The first
case is that also the boundary (and thus the entire component) lies inside and
consequently intersects the exterior of the other region. The second case is that
the boundary of a component lies only partially inside the exterior of the other
region. Again we obtain an intersection between boundary and exterior. The
third case is that the boundary of a component intersects the boundary of the
other region. Note that the boundary of the component cannot cross the interior
of the other region, since then the interior of the component would not be entirely
within the exterior of the other region. m|

An investigation of the nine constraints with the aid of a trivial test pro-
gram reveals that all of them are needed with one exception. Constraint 2 is
redundant, since the matrices it removes are also eliminated by some combina-
tion of the other constraints. Hence it can be omitted. All remaining constraints
exclude at least one matrix each. As a result, we obtain 33 topological relation-
ships between complex regions. The corresponding matrices and their geometric
interpretation are given in Table 3. The topological relationships between simple
regions correspond to the intersection matrices with the numbers 1, 4, 5, 7, 9,
19, 24, and 33.

7 Conclusions and Future Work

In this paper we have defined very general spatial data types for complex points
and complex regions in the two-dimensional Euclidean plane on the basis of
point set theory and point set topology. The increasing complexity of spatial
data types leads to a larger variety of topological relationships. The investiga-
tion and formalization of complete collections of mutually exclusive topological
relationships between complex points and between complex regions, respectively,
has been the main contribution of this paper. It has been done on the basis of
the well-known 9-intersection model. We have identified 5 binary relationships
between complex points and 33 binary relationships between complex regions.

For future work one could analyze possible topological relationships between
complex lines. This first necessitates a formal definition of a corresponding type.
Similarly, one could investigate the possible relationships between the three pairs
of mixed types. Another problem of interest is the large number of relationships.
Whereas the 5 relationships between complex points are manageable by the user,
this is not the case for the 33 relationships between complex regions. Here one
could think about clustering techniques in the sense of [2].



Matrix No. 1

Matrix No. 2

0 01 001
0 01 010
111 111
Matrix No. 3 Matrix No. 4
0 01 001
011 011
1 01 111
Matrix No. 5 Matrix No. 6
1 00 1 00
010 010
0 01 111
Matrix No. 7 Matrix No. 8
1 00 1 00
1 00 110
111 1 01
Matrix No. 9 Matrix No. 10
1 00 1 01
1 10 010 Q
111 111
Matrix No. 11 Matrix No. 12
1 01 1 01
011 011 O
001 1 01
Matrix No. 13 Matrix No. 14
01 ‘ 01
11 CD‘ 01 o

/N
—_

1

)

1

)




Matrix No. 15

Matrix No. 16

1 01 1 01
110 110
1 01 111
Matrix No. 17 Matrix No. 18
1 01 1 01
111 111
1 01 111
Matrix No. 19 Matrix No. 20
111 111
0 01 001
0 01 111 ‘
Matrix No. 21 Matrix No. 22
111 111
010 010
001 1 01
Matrix No. 23 Matrix No. 24
111 11
010 01
111 00
Matrix No. 25
111 11
011 01
1 01 11
Matrix No. 27 Matrix No. 28
111 111
1 00 1 01
111 1 01




Matrix No. 29 Matrix No. 30

o
—

—
o

111 111
1 1 1 0
1 1 1 1

Matrix No. 31 Matrix No. 32

111 111
1 10 1 11
111 1 01

Matrix No. 33

Table 3. The 33 topological relationships for complex regions.
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