
OVERVIEW OF A PATTERN
LANGUAGE FOR PARALLEL

PROGRAMMING1

Beverly A. Sanders2, Timothy. G. Mattson3, and Berna L. Massingill4

Introduction

A design pattern describes a good solution to a recurring problem. A pattern has a name and
includes, at a minimum, the problem and its context, the forces or tradeoffs that must be
addressed by the solution, and a proven solution to the problem. Generally, patterns are
presented in a prescribed format (there are several formats in common use) to make it easier
for the reader to quickly identify appropriate patterns. A pattern language is an organized
collection of patterns that deal with problems in some domain. It is called a language, because
the names of the patterns provide a vocabulary for talking about the domain. The patterns in
a language may be related in various ways, including hierarchically or compositionally, and the
structure of the language helps the designer determine how to apply the patterns. Pattern
languages are important because they document and communicate expertise so that it can be
utilized by others.

In this note, we give a brief overview of a pattern language for parallel programming5. Most
large computational problems contain exploitable concurrency. This means that a program to
solve the problem can be structured so that different parts of the problem can be solved
simultaneously on multiple processors, allowing the problem to be solved in less time and/or
enabling bigger problems to be solved than with a single processor. The difficulty is finding
this exploitable concurrency and then constructing a program to efficiently exploit it. Our
pattern language is designed to help with the entire process of constructing a parallel program,
from the high-level design, to obtaining working code.

The pattern language is organized into four design spaces, Finding Concurrency, Algorithm
Structure, Supporting Structures, and Implementation Mechanisms as shown in the figure.

Before starting to work with the patterns language, the algorithm designer should first consider
the problem to be solved and make sure the effort to create a parallel program will be justified:
Is the problem sufficiently large, and the results sufficiently significant, to justify expending
effort to solve it faster? If so, the next step is to make sure the key features and data elements
within the problem are well understood. Finally, the designer needs to understand which parts
of the problem are most computationally intensive, since it is on those parts of the problem
that the effort to parallelize the problem should be focused. Once this analysis is complete, the

1Abstract of invited talkat 4th Congress on Systems Engineering, Veracruz, Mexico. August 2004.

2Department of Computer and Information Sciences, University of Florida, Gainesville, FL 32611-6120. sanders@cise.ufl.edu

3 Intel Corporation. timothy.g.mattson@intel.com

4 Department of Computer Science, Trinity University, San Antonia, TX. bmassing@cs.trinity.edu

5 A complete description of the pattern language is given in Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill.

Patterns for Parallel Programming. Addison-Wesley. 2004. Also, see www.cise.ufl.edu/research/ParallelPatterns

patterns in the Finding Concurrency design space can be used to
identify and analyze the exploitable concurrency in the problem.
The patterns in the Algorithm Structure design space describe
strategies for mapping the concurrency onto processes or
threads. The Supporting Structures design space contains two
groups of patterns: those that address ways to organize code,
and those that represent commonly used shared data structures.
The Implementation Mechanisms design space is concerned with

how the patterns of the higher-level spaces map onto the facilities of a particular parallel
programming environment. In the rest of this note, we will briefly describe these design
spaces in more detail.

The Finding Concurrency Design Space

The patterns in this design space are used in the high-level analysis of the problem to find
exploitable concurrency. They are organized into three groups.

• Decomposition Patterns are used to decompose the problem into pieces that can
execute concurrently. The Task Decomposition pattern addresses how to decompose a
problem into tasks6, while the Data Decomposition pattern deals with decomposing a
problem’s data into chunks that can be operated on relatively independently.

• Dependency Analysis Patterns are used to group the tasks together and analyze
dependencies among them. The Group Tasks pattern considers how to group the tasks
together to make handling dependencies easier. The Order Tasks pattern deals with
ordering constraints on the task groups. The Data Sharing pattern helps the designer
analyze the way that data is shared between tasks.

• Design Evaluation is the final pattern in the Finding Concurrency space. This pattern
leads the designer through an analysis of the design so far. If the design is good
enough, it is time to move to the Algorithm Structure design space. Otherwise, the
designer will need to revisit some of the decisions already made. A goal of this pattern
is to help the designer identify problems early in the design process where they are
easier to correct.

The Algorithm Structure Design Space

After analyzing the concurrency in a problem, the next task is to refine the design and move it
closer to a program by mapping the concurrency onto multiple processes or threads. Of the
countless ways to define an algorithm structure, most follow one of the six basic design
patterns that make up the Algorithm Structure design space. Many parallel algorithm designs
make use of multiple algorithm structures combined hierarchically, compositionally, or in
sequence. One tries to identify a part of the algorithm where there is a major organizing
principle implied by the concurrency. This major organizing principle usually falls into one of
the three categories listed below and it can be used to help select an appropriate algorithm
structure pattern.

6 A task is a sequence of instructions that operate together as a group and corresponds to some logical part of an algorithm or

program.

• Organize by tasks. The Task Parallelism pattern is used when the tasks are linear.
The pattern helps the designer handle map tasks to processes or threads and deal with
dependencies between the tasks. An important special case of Task Parallelism is the
situation where the tasks are completely independent. Such problems are called
embarrassingly parallel. The Divide and Conquer pattern applies when the tasks are
recursive, for example, when tasks correspond to the function calls in a sequential
divide-and-conquer algorithm.

• Organize by data decomposition. The Geometric Decomposition pattern is likely to be
relevant when the problem data is decomposed into discrete chunks, where the
solution for each chunk can be solved using data from only a few other chunks. The
pattern helps the user organize the computation so that the data is efficiently
communicated when and where it is needed. The Recursive Data pattern is typically the
best choice when the problem involves following links through a recursive data
structure.

• Organize by flow of data. These patterns apply when the major organizing principle
is how the flow of data imposes an ordering on the groups of tasks. When the
ordering is regular, one-way, and static, the Pipeline pattern is probably a good choice.
When the flow of data is irregular or dynamic, the Event-Based Coordination pattern
should be considered. It gets its name because we can think of the arrival of data as an
event.

The Supporting Structures Design Space

This design space represents an intermediate stage between the Algorithm Structure and
Implementation Mechanisms design spaces. These patterns fall into two groups

• Program structuring patterns help organize the program code. These include the
following patterns. In the SPMD (single program multiple data) pattern, each process
or thread executes the same code using process or thread identifiers for control
decisions. Master/Worker allows the load to be dynamically balanced among the
threads or processes by putting a “master” in charge of tasks that are allocated to
“workers” to be executed. Often, this is implemented by associating the master with a
task queue from which workers retrieve a new task to execute whenever they are free.
To give one example of how the patterns in different design spaces are related,
Master/Worker is frequently used in the implementation of instances of Task Parallelism.
It, in turn may use an instance of Shared Queue. The Loop Parallelism pattern describes
how to translate a serial program whose runtime is dominated by a set of
computationally intensive loops into a parallel program by distributing the loop
iterations to multiple processes or threads. The Fork/Join pattern deals with the
situation where the number of concurrent tasks varies as the program executes and the
way the tasks are related prevents the use of simpler control structures such as parallel
loops.

• Shared data structures are common in parallel programs and several patterns in the
language provide advise for dealing with these. The Distributed Array pattern deals with
partitioning the large arrays that are common in scientific computations. The Shared
Queue pattern discusses a data structure that is often used in the implementation of
instances of the Master/Worker, Pipeline, and Event-Coordination patterns. The Shared
Data pattern provides solutions for the general case of shared data.

Implementation Mechanism Design Space

Up to this point, we have focused on designing algorithms and the high-level constructs used
to organize parallel programs. With this design space, we shift gears and consider a program's
source code and the low-level operations used to write parallel programs. Most of the
implementation mechanisms are included within the major parallel programming
environments. Hence, rather than continuing to use the formalism of patterns, we provide a
high-level description of each implementation mechanism and then an investigation of how
the mechanism maps onto three target programming environments: OpenMP, MPI, and Java.
A complete and detailed discussion of these parallel programming ``building blocks'' would fill
a large book. Fortunately, most parallel programmers use only a modest core subset of these
mechanisms. These core implementation mechanisms fall into three categories:

• Management of Processes and Threads, and in particular, their creation and
destruction, is necessary since concurrent execution, by its nature requires multiple
entities that run at the same time.

• Synchronization is used to enforce constraints on the order of events occurring in
different processes or threads. Important synchronization constructs include memory
fences, barriers, and mutual exclusion.

• Communication allows executing processes or threads to exchange information.
When memory is not shared between them, this exchange occurs through an explicit
communication event. The major types of communication events are message passing,
and collective communication. The latter involves communication between a group of
threads or processes, often all that are participating in a computation.

Summary

The pattern language for parallel programming described here provides several benefits by
providing a catalog of good solutions to important problems, an expanded vocabulary, and a
methodology for the design of parallel programs. We hope to lower the barrier to parallel
programming by providing guidance through the entire process of developing a parallel
program. In the longer term, we hope that this pattern language can provide a basis for both a
disciplined approach to the qualitative evaluation of different programming models and the
development of parallel programming tools.

