
1

On New Approaches of Assessing Network
Vulnerability: Hardness and Approximation
Thang N. Dinh, Ying Xuan, My T. Thai, Member, IEEE , Panos M. Pardalos, Member, IEEE ,

Taieb Znati, Member, IEEE

Abstract—Assessing network vulnerability before potential disruptive events such as natural disasters or malicious attacks is
vital for network planning and risk management. It enables us to seek and safeguard against most destructive scenarios in
which the overall network connectivity falls dramatically. Existing vulnerability assessments mainly focus on investigating the
inhomogeneous properties of graph elements, node degree for example, however, these measures and the corresponding
heuristic solutions can provide neither an accurate evaluation over general network topologies, nor performance guarantees
to large scale networks. To this end, in this paper, we investigate a measure called pairwise connectivity and formulate this
vulnerability assessment problem as a new graph-theoretical optimization problem called β-disruptor, which aims to discover the
set of critical node/edges, whose removal results in the sharpest decline of the global pairwise connectivity. Our results consist
of the NP-Completeness and inapproximability proof of this problem, an O(logn log logn) pseudo-approximation algorithm
for detecting the set of critical nodes and an O(log1.5 n) pseudo-approximation algorithm for detecting the set of critical
edges. Finally, we perform extensive simulation to compare our algorithms with the optimal solution found by solving Integer
Programming.

Index Terms—Network vulnerability, Pairwise connectivity, Hardness, Approximation algorithm.

F

1 INTRODUCTION

CONNECTIVITY plays a vital role in network per-
formance and is fundamental to vulnerability

assessment. Potential disruptive events, such as nat-
ural disasters or malicious attacks, which always de-
stroy a set of interacting elements or connections, can
dramatically compromise the connectivity and result
in considerate decline of the network QoS, or even
breakdown the whole network [1], [2], [3], [4], [5],
[6]. Of this concern, pre-active evaluation over the
network vulnerability with respect to connectivity, in
order to defense such potential disruptions, is quite
essential and beneficial to the design and maintenance
of any infrastructure networks, for example, commu-
nication, commercial, and social networks.

Most studies over network vulnerability abstract
the network as a graph G = (V,E), which consists of
a set of vertices V and a set of edges E representing
the communication links. Due to the inhomogeneity
of general graphs, it is often the case that removing
some vertices and edges will decrease the network
connectivity to a greater extent than removing other
ones. Therefore, these vertices and edges are more
critical to the overall graph connectivity, hence the

• T. N. Dinh, Y. Xuan, M. T. Thai are with the Dept. of Comp. & Info.
Sci. & Eng., University of Florida, Gainesville, FL, 32611.
E-mail: {tdinh, yxuan, mythai}@cise.ufl.edu.

• Panos M. Pardalos is with Industrial and System Engineering Dept.,
University of Florida at Gainesville, FL, 32611.
Email: pardalos@ufl.edu.

• T. Znati is with Computer Science Dept., University of Pittsburgh,
Pittsburgh, PA 15215.
Email: znati@cs.pitt.edu.

corresponding elements and connections in the net-
work reveal a higher risk in the front of potential
disruptions.

There have been numerous efforts on proposing
evaluation measures of the network vulnerability, as
summarized in [1]. On one hand, several global graph
measures, such as Cyclomatic number, Maximum net-
work circuits, Alpha index, and Beta index, which
investigate basic graph properties, i.e., number of ver-
tices, edges and pairwise shortest paths, are adopted
to evaluate the network vulnerability. However, these
global measures can neither be rigorously mapped to
the over network connectivity, nor reveal the set of
most critical vertices and edges, thus are not suitable
to assess the network vulnerability in terms of con-
nectivity. On the other hand, researchers focused on
local nodal centrality [7], such as degree centrality, be-
tweenness centrality and closeness centrality, in order
to differentiate the critical vertices from the others,
and further evaluate the network by quantifying such
vertices. Unfortunately, being unable to cast these
local properties to global network connectivity, these
measures fail to indicate accurate vulnerabilities and
cannot reveal the global damage done on the network
under attacks.

Instead of such detours, we model the objective
network as a connected directed graph, and directly
quantify the minimized set of vertices/edges whose
removal incurs a certain level of network disrup-
tion, i.e., reduces the overall pairwise connectivity
to some certain value as a measure for the objective
graph, where the connectivity for each vertex pair is

2

(a)

(b)

Fig. 1. After the “central” vertex (in black) with maximum out-going
degree is removed, network (a) is still strongly connected while (b)
is fragmented; however in fact, only removing one vertex (in grey) is
enough to destroy network (a).

quantified as 1 if they are strongly connected and
0 if not. The motivation behind this is to explore
the number of necessary disruptive events to incur
a certain level of disruption in the objective network,
i.e., the more vertices/edges required to be removed,
the less vulnerable the network is; conversely, the
fewer vertices/edges needed to removed, the easier
this network is to be destroyed.

Consequently, we convert the vulnerability assess-
ment into a graph-theoretical optimization problem:
finding a minimized set of vertices/edges whose removal
degrades the pairwise connectivity to a desired degree.
Considering that disrupting these vertices and edges
will considerately degrade the network performance,
we refer to them as β-disruptor throughout this paper,
where 0 ≤ β < 1 denotes the fraction of desired
pairwise connectivity (which we will define later).
Two new optimization problems β-vertex disruptor and
β-edge disruptor will be studied and proved to be NP-
complete. We addressed them with several pseudo-
approximation algorithms with provable performance
bounds, which thus ensure the feasibility and accu-
racy of this evaluation measure.

The benefit of our new measure can be briefly illus-
trated in Fig.1, compared with the assessment using
degree centrality. Notice that both networks A and B
have 7 vertices and are originally strongly connected.
According to the nodal degree centrality, removing
the black vertex with maximum outgoing degree 5 in
Fig.1-(a) leaves the network A still strongly connected
with 5 vertices; and removing the black vertex with
maximum outgoing degree 4 in Fig.1-(b) partitions
the graph into two strongly connected components.
In this sense, network A is somewhat stronger (less
vulnerable) than B. However, our model can dis-
cover that, deleting only the grey vertex in A will be
enough to decrease the overall connectivity to 0; on
the contrary, at least 3 vertices in B are required to
be removed to make overall connectivity 0. Therefore,
A is actually much more vulnerable. Apparently, our
measure provides more accurate assessment.

Furthermore, our study over the multiple disrup-
tion levels (different values of β) presents a deeper
meaning and greater potentials. Several recent studies
in the context of wireless networks have aimed to
discover the nodes/edges whose removal disconnects
the network, regardless of how disconnected it is

[8][9][10]. Apparently, this is a weaker version of our
β-disruptor, since no specification over the quantified
network connectivity is concerned. However, it is not
reasonable to limit the possible disruption to only
disconnecting the graph, ignoring how fragmented it
is. For instance, a scale-free network can tolerate high
random failure rates [11], since the destructions to
boundary vertices may not significantly decline the
network connectivity even though the whole graph
becomes disconnected. In addition, different disrup-
tion levels may require different sets of disruptor on
which our model can differentiate whereas existing
methods cannot. For example, the node centrality
method always returns a set of nodes with non-
increasing degrees regardless of the disruption level.

The main contributions of this paper are as follows:
• Providing a novel underlying framework toward

the vulnerability assessment by investigating the
pairwise connectivity and formulating it as an op-
timization problem β-disruptor on general graphs,
which consists of two versions β-vertex disruptor
and β-edge disruptor;

• Proving the NP-completeness of the two prob-
lems above and further proving that no PTAS
exists for β-vertex disruptor;

• Presenting an O(log
3
2 n) pseudo-approximation

algorithm for β-vertex disruptor, and an
O(log n log log n) pseudo-approximation
algorithm for β-edge disruptor. These solutions
can be applied to both homogeneous networks
and heterogeneous networks with unidirectional
links and non-uniform nodal properties.

The paper is organized as follows. We continue this
section with Related works, Definition, Models and
Notations. We provide the hardness results in Sec-
tion 2. The pseudo-approximation algorithms for β-
edge disruptor and β-vertex disruptor are presented in
Section 3 and Section 4 respectively. Section 5 presents
the simulation results comparing the performance of
the proposed approximation algorithms to that of the
optimal solution found by solving Integer Program-
ming. Finally, Section 6 summarizes the whole paper.

1.1 Related and Prior Works
The classic vulnerability measurements are mainly
based on the centrality of each vertex in the graph,
which consist of degree centrality, betweenness, close-
ness, and eigenvector centrality [7]. However, these
measures fail to indicate accurate vulnerabilities and
cannot reveal the global damage done on the network
under attacks.

On the other hand, the global graph measures are
mainly functions of graph properties, e.g., the number
of vertices/edges, operational O-D pairs, operational
paths, minimum shortest paths [1], [2], [3]. How-
ever, some of these attributes cannot be calculated
in polynomial-time for dense networks. In essence,

3

these functions do not reveal the set of most critical
vertices and edges, thus are not suitable to assess the
network vulnerability in terms of connectivity. Several
similar concepts with our pairwise connectivity have
been recently investigated in [12], [13], [14], where the
terms average pairwise connectivity, pairwise connected
ratio and cohesion were used. However, none of them
were able to formulate the calculation of this measure
as an optimization problem and provide the hardness
proof along with performance guaranteed approxima-
tion algorithms. Moreover, the problem β-disruptor
studied in this paper take into account the roles of all
edges and vertices in the global network connectivity,
thus provides a more essential research and thorough
analysis over the underlying vulnerability framework
established.

As a subproblem of this vulnerability assessment
problem, Critical Vertex/Edge, which are defined as
the minimum number of vertices/edges whose re-
moval disconnects the graph, are also studied and
solved using extensive heuristics, however, without
performance guarantee. Some work of this kind in
the context of wireless network are [8][9][10], never-
theless, these works consider only whether or not the
graph is disconnected and ignore how fragmental the
graph becomes. They are insufficient to evaluate the
graph vulnerability.

1.2 Model and Definitions
Besides the homogeneous network model consisting
of uniform nodes and bidirectional links, the hetero-
geneous network model, where various interacting
elements of different kinds are connected through
unidirectional links with non-uniform expenses, finds
numerous applications nowadays [15], [16], [17], but
as well, exhibits multiple difficulties for optimization
and maintenance. In the light of this, we abstract our
general network model as a directed graph G(V,E),
where V refers to a set of nodes and E refers to a set
of unidirectional links. The expense of each directed
edge (u, v) between vertex u and v is quantified as a
nonnegative value c(u, v), for all the m = |E| links
among n = |V | nodes. As mentioned above, our
evaluation over the network vulnerability is based
on the value of overall pairwise connectivity in the
abstracted graph, which is defined as follows: given
any vertex pair (u, v) ∈ V × V in the graph, we say
that they are connected iff there exists paths between
u and v in both directions in G, i.e., strongly connected
to each other. The pairwise connectivity p(u, v) is
quantified as 1 if this pair is connected, 0 otherwise.
Since the main purpose of network lies in connecting
all the interacting elements, we study on the aggregate
pairwise connectivity between all pairs, that is, the
sum of quantified pairwise connectivity, which we
denote as P(G) =

∑
u,v∈V×V p(u, v) for graph G.

Apparently P(G) is maximized at
(
n
2

)
when G is a

strongly connected graph. Based on this, we have:

Definition 1: (Edge disruptor) Given 0 ≤ β ≤ 1, a
subset S ⊂ E in G = (V,E) is a β-edge disruptor if the
overall pairwise connectivity in the G[E \S], obtained
by removing S from G, is no more than β

(
n
2

)
. By

minimizing the cost of such edges in S, we have the
β-edge disruptor problem, i.e., find a minimized β-edge
disruptor in a strongly connected graph G(V,E).

Similarly, we define β-vertex disruptor and its corre-
sponding optimization problem:
β-vertex disruptor problem: Given a strongly con-

nected graph G(V,E) and a fixed number 0 ≤ β ≤ 1,
find a subset S ⊆ V with the minimum size such that
the total pairwise connectivity in G[V \S], obtained by
removing S from G, is no more than β

(
n
2

)
. Such a set

S is called β-vertex disruptor.

2 HARDNESS RESULTS

In this section we show that both the β-edge dis-
ruptor and β-vertex disruptor in directed graph are
NP-complete which thus have no polynomial time
exact algorithms unless P = NP. We state a stronger
result that both problems are NP-complete even in
undirected graph with unit cost edges.

Note that only in this section we consider the prob-
lem for undirected graph G(V,E). All results in other
sections are studied on directed graphs, thus solving
both homogeneous and heterogeneous networks.

2.1 NP-completeness of β-edge disruptor

We use a reduction from the balanced cut problem.
Definition 2: A cut 〈S, V \ S〉 corresponding to a

subset S ∈ V in G is the set of edges with exactly
one endpoint in S. The cost of a cut is the sum of its
edges’ costs (or simply its cardinality in the case all
edges have unit costs). We often denote V \ S by S̄.

Finding a min cut in the graph is polynomial solv-
able [18]. However, if one asks for a somewhat “bal-
anced” cut of minimum size, the problem becomes
intractable. A balanced cut is defined as following:

Definition 3: (Balanced cut) An f -balanced cut of a
graph G(V,E), where f : Z+ → R+, asks us to find a
cut

〈
S, S̄

〉
with the minimum size such that |S|, |S̄| ≥

f(|V |).
Abusing notations, for 0 < c ≤ 1

2 , we also use c-
balanced cut to find the cut

〈
S, S̄

〉
with the minimum

size such that min{|S|, |S̄|} ≥ c|V |. We will use the
following results on balanced cut shown in [19]:

Corollary 1: (Monotony) Let g be a function with

0 ≤ g(n)− g(n− 1) ≤ 1

Then f(n) ≤ g(n) for all n, implies f -balanced cut is
polynomially reducible to g-balanced cut.

Corollary 2: (Upper bound) αnε-balanced cut is NP-
complete for α, ε > 0.
It follows from Corollaries 1 and 2 that for every f =
Ω(αnε) f -balanced cut is NP-complete. We are ready
to prove the NP-completeness of β-edge disruptor:

4

X1

X2

C1

C2

.

.

.
.
.
.

G(V, E)

C’1

C’2

Fig. 2. Construction of H(VH , EH) from G(V,E)

Theorem 1: (β-edge disruptor NP-completeness) β-
edge disruptor in undirected graph is NP-complete
even if all edges have unit weights.

Proof: We prove the result for the special case
when β = 1

2 . For other values of β the proof can go
through with a slight modification of the reduction.
We shall assume that n, the number of nodes is a
sufficient large number (for our proof n > 103).

Consider the decision version of the problem that
asks whether an undirected graph G(V,E) contains a
1
2 -edge disruptor of a specified size:

1

2
-ED = {〈G,K〉 | G has a

1

2
-edge disruptor of size K}

To show that 1
2 -ED is in NP-complete we must show

that it is in NP and that all NP-problems are poly-
nomial time reducible to it. The first part is easy;
given a candidate subset of edges, we can easily
check in polynomial time if it is a β-edge disruptor
of size K. To prove the second part, we show that
f -balanced cut is polynomial time reducible to 1

2 -ED

where f = bn−
√

2bn2

3 c+n
2 c.

Let G(V,E) be a graph in which one seeks to find
a f -balanced cut of size k. Construct the following
graph H(VH , EH): VH = V ∪ C1 ∪ C2 where C1, C2

are two cliques of size bn
2

3 c. Denote by N = |VH | =

2bn
2

3 c+n the total number of nodes in H . In addition
to edges in G,C1, and C2, connect each vertex v ∈ V
to bn

2

4 c+ 1 vertices in C1 and bn
2

4 c+ 1 vertices in C2

so that degree difference of nodes in the cliques are at
most one. We illustrate the construction of H(VH , EH)
in Figure 2.

We show that there is a f -balanced cut of size k
in G iff H has an 1

2 -edge disruptor of size K =

n
(
bn

2

4 c+ 1
)

+ k where 0 ≤ k ≤ bn
2

4 c. Note that the
cost of any cut 〈S, V \ S〉 in G is at most |S||V \ S| ≤
b (|S|+|V \S|)

2

4 c = bn
2

4 c.
On one hand, an f -balanced cut

〈
S, S̄

〉
of size k

in G induces a cut
〈
C1 ∪ S,C2 ∪ S̄

〉
with size exactly

n
(
bn

2

4 c+ 1
)

+ k. If we select the cut as the disruptor,

the pairwise connectivity will be at most 1
2

(
N
2

)
.

On the other hand, assume that H has an 1
2 -edge

disruptor of size K = n
(
bn

2

4 c+ 1
)

+ k. Remove
the edges in the disruptor to reduce the pairwise
connectivity to at most 1

2

(
N
2

)
. Since cutting n nodes in

C1 or C2 from the cliques requires removing at least

n(bn
2

3 c − n) > n
(
bn

2

4 c+ 1
)

+ k edges, let C ′1 ⊆ C1

and C ′2 ⊆ C2 be giant connected subsets that induce
connected subgraphs in C1 and C2. These subsets
must satisfy |C ′1| + |C ′2| > |C1| + |C2| − n. Denote by
X1, X2 the subsets of nodes in V that are connected
to C ′1 and C ′2 respectively. We have X1 ∩ X2 = ∅
otherwise C ′1 and C ′2 will be connected; then, the
pairwise connectivity will exceed 1

2

(
N
2

)
.

We will modify the disruptor without increasing its
size and the pairwise connectivity such that no nodes
in the the cliques are cut off i.e. we alter the disruptor
until C ′1 = C1 and C ′2 = C2. For each u ∈ C1 \ C ′1
remove from the disruptor all edges connecting u to
C ′1 and add to the disruptor all edges connecting u
to X2. This will attach u to C ′1 while reducing the
size of the disruptor at least (bn

2

3 c − n) − n. At the
same time select an arbitrary node v ∈ X1 and add
to the disruptor all remaining v’s adjacent edges. This
increases the size of the disruptor at most (bn

2

4 c+1)+n
while making v isolated. By doing so we decrease the
size of the disruptor by (bn

2

3 c−n)−n− ((bn
2

4 c+ 1) +
n) > 0. In addition, the pairwise connectivity will not
increase as we connect u to C ′1 and at the same time
disconnect v from C ′1.

If X1 = ∅, we can select v ∈ X2 as in that
case |C ′2 ∪ X2| > |C ′1 ∪ X1| that makes sure the
pairwise connectivity will not increase. We repeat
the same process for every node in C2 \ C ′2. Since
|(C1\C ′1)∪(C2\C ′2)| < n, the whole process finishes in
less than n steps and results in C ′1 = C1 and C ′2 = C2.

We will prove that X1∪X2 = V i.e. 〈X1, X2〉 induces
a cut in G. Assume not, the cost to separate C1 ∪X1

from C2∪X2 will be at least (bn
2

4 c+1)(|V −X1|+ |V −
X2|) = (bn

2

4 c+1)(2n−|X1|−|X2|) ≥ (bn
2

4 c+1)(n+1) >

n
(
bn

2

4 c+ 1
)

+ k that is a contradiction.
Since X1 ∪ X2 = V we have that the disruptor

induces a cut in G. To have the pairwise connectivity
at most 1

2

(
N
2

)
both (C1 ∪ X1) and (C2 ∪ X2) must

have size at least N−
√
N

2 . If follows that X1 and X2

must have size at least f(n) = bn−
√

2bn2

3 c+n
2 c. The

cost of the cut induced by 〈X1, X2〉 in G will be
n
(
bn

2

4 c+ 1
)

+ k − n(bn
2

4 c+ 1) = k.

2.2 Hardness of β-vertex disruptor

Theorem 2: β-vertex disruptor in undirected graph
is NP-complete.

Proof: We present a polynomial-time reduction
from Vertex Cover (VC), an NP-hard problem [20]:

Instance: Given a graph G and a positive integer k.
Question: Does G have a VC of size at most k?

to a decision version of β-vertex disruptor when β = 0

Instance: Given a graph G and a positive integer k
Question: Does G have a β-vertex disruptor of size

at most k when β = 0?

5

Pairwise connectivity equals zeros if and only if the
complement set of the disruptor is an independent set
or in other words the disruptor must be a VC.

Theorem 3: Unless P = NP, β-vertex disruptor can-
not be approximated within a factor of 1.36.

Proof: We use the same reduction in Theorem 2.
Assume that we can approximate β-vertex disrup-
tor within a factor less than 1.36 when β = 0. In
[21], Dinur and Safra showed that approximating VC
within constant factor less than 1.36 is NP-hard. Since
we have an one-to-one mapping between the set of
vertex disruptors when β = 0 and the set of VCs, it
follows that we can approximate VC within a factor
less than 1.36 (contradiction).

3 APPROXIMATING β-EDGE DISRUPTOR
USING TREE DECOMPOSITION

In this section, we present an O(log
3
2 n) pseudo-

approximation algorithm for the β-edge disruptor
problem in the case when all edges have uniform cost
i.e. c(u, v) = 1 ∀(u, v) ∈ E(G). Formally, our algorithm
finds in a uniform directed graph G a β′-edge dis-
ruptor whose the cost is at most O(log

3
2 n)OPTβ−ED,

where β′

4 < β < β′ and OPTβ−ED is the cost of an
optimal β-edge disruptor.

As shown in Algorithm 1, the proposal algorithm
consists of two main steps. First, we constructs a
decomposition tree of G by recursively partitioning
the graph into two halves with directed c-balanced
cut. Second, we solve the problem on the obtained tree
using a dynamic programming algorithm and transfer
this solution to the original graph. These two main
steps are explained in the next two sections.

3.1 Balanced Tree-Decomposition
A tree decomposition of a graph is a recursive par-
titioning of the node set into smaller and smaller
pieces until each piece contains only one single node.
We show the tree construction in Algorithm 1 (line
1 to 11). Our decomposition tree is a rooted binary
tree whose leaves represent nodes in G. (Because our
decomposition tree is a binary tree with n leaves, it
will contain exactly n − 1 non-leaf nodes. One can
prove this with induction on number of nodes.)

Definition 4: Given a directed graph G(V,E) and a
subset of vertices S ⊂ V . We denote the set of edges
outgoing from S by δ+(S); the set of edges incoming
to S by δ−(S). A cut (S, V \S) in G is defined as δ+(S).
A c-balanced cut is a cut (S, V \ S) s.t. min{|S|, |V \
S|} ≥ c|V |. The directed c-balanced cut problem is to
find the minimum c-balanced cut.

Note that a cut (S, V \ S) separate pairs (u, v) ∈
S × (V \ S) as paths from v to u cannot exist i.e. no
SCC can contain vertex in both S and V \ S.

The decomposition procedure is as follows. We start
with the tree T containing only one root node t0. We
associate the root node t0 with the vertex set V of

t0
level 1

level 2

0

t1 t
… …

t1 t2

level 3

… …
t4

l l 4

t3

… … … …
t5 t6

level 4

… …

Fig. 3. A part of a decomposition tree. F = {t2, t3, t5, t6}
is a G-partitionable. The corresponding partition
{V (t2), V (t3), V (t5), V (t6)} in G can be obtained by using
cuts at ancestors of nodes in F i.e. t0, t1, t4.

G i.e. V (t0) = V (G). For each node ti ∈ T whose
V (ti) contains more than one vertex and V (ti) has not
been partitioned, we partition the subgraph G[V (ti)]

induced by V (ti) in G using a c-balanced cut algo-
rithm. In detail, we use the directed c-balanced cut
algorithm presented in [22] that finds in polynomial
time a c′-balanced cut within a factor of O(

√
log n)

from the optimal c-balanced cut for c′ = αc and fixed
constant α. The constant c is chosen to be 1 −

√
β
β′ .

Create two child nodes ti1, ti2 of ti in T corresponding
to two sets of vertices of G[V (ti)] separated by the cut.
We associate with ti a cut cost cost(ti) equal to the
cost of the c-balanced cut.

We define the root node t0 to be on level 1. If a node
is on level l, all its children are defined to be on level
l+ 1. Note that collections of subsets of vertices in G
that correspond to nodes in a same level of T induces
a partition in G.

One important parameter of the decomposition tree
is the height i.e. the maximum level of nodes in T .
Using balanced cuts guarantees a small height of the
tree that in turn leads to a small approximation ratio.
When separating V (ti) using the balanced cut, the size
of the larger part is at most (1− c′)|V (ti)|. Hence, we
can prove by induction that if a node ti is on level
k, the size of the corresponding collection V (ti) is at
most |V | × (1− c′)k−1. It follows that the tree’s height
is at most O(− log1−c′ n) = O(log n).

3.2 Algorithm
In this section, we present the second main step which
uses the dynamic programming to search for the
right set of nodes in T that induces an cost-efficient
partition in G whose pairwise connectivity is at most
β′
(
n
2

)
. The details of this step are shown in Algorithm

1 (lines 12 to 18).
Denote a set F = {tu1 , tu2 , . . . , tuk} ⊂ VT

where VT is the set of vertices in T so that
V (tu1

), V (tu2
), . . . , V (tuk) is a partition of V (G) i.e.

V (G) =

k⊎
h=1

Vuh . We say such a subset F is G-

partitionable. Denote by A(ti) the set of ancestors of
ti in T and A(F) =

⋃
ti∈F
A(ti). It is clear that a F is

G-partitionable if and only if F satisfies:

6

Algorithm 1. β-edge Disruptor

Input: Uniform edges’ weight directed graph G = (V,E)

and 0 ≤ β < β′ < 1

Output: A β′-edge disruptor of G.

/* Construct the decomposition tree */
1. c← 1−

√
β
β′ .

2. T (VT , ET)← ({t0}, φ), V (t0)← V (G), l(t0) = 1

3. while ∃ unvisited ti with |V (ti)| ≥ 2 do

4. Mark ti visited, create new child nodes ti1, ti2 of ti.

5. VT ← VT ∪ {ti1, ti2}
6. ET ← ET ∪ {(ti, ti1), (ti, ti2)}
7. Separate G[V (ti)]

using directed c-balanced cut.

8. Associate V (ti1), V (ti2) with two separated components.

9. cost(ti)← The cost of the balanced cut

/* Find the minimum cost G-partitionable */

10. Traverse T in post-order, for each ti ∈ T do

11. for p← 0 to β′
(n
2

)
12. if P(G[V (ti)]

) ≤ p then cost(ti, p)← 0

13. else cost(ti, p)← min{cost(ti1, p1)+
cost(ti2, p2) + cost(ti) | p1 + p2 = p}

14. Find F opt
β′ associating with T opt

β′ = min
p≤β′

(
n
2

){cost(t0, p)}
15. Return union of c-balanced cuts at ti ∈ A(F opt

β′).

1) ∀ti, tj ∈ F : ti /∈ A(tj) and tj /∈ A(ti)
2) ∀ti ∈ VT , ti is a leaf: A(ti) ∩ F 6= φ

In case F is G-partitionable, we can separate
V (tu1

), V (tu2
), . . . , V (tuk) in G by performing the

cuts corresponding to ancestors of node in F dur-
ing the tree construction. For example in Fig-
ure 3, we show a decomposition tree with a G-
partitionable set {t2, t3, t5, t6}. The corresponding par-
tition {V (t2), V (t3), V (t5), V (t6)} in G can be ob-
tained by cutting V (t0), V (t1), V (t4) successively us-
ing balanced cuts in the tree construction. The cut
cost, hence, will be cost(t0) + cost(t1) + cost(t4). In
general, the total cost of all the cuts to separate
V (tu1), V (tu2), . . . , V (tuk) will be:

cost(F) =
∑

tu∈A(F)

cost(tu)

The pairwise connectivity in G then will be:

P(F) =
∑
tu∈F

P(G[V (tu)])

We wish to find F so that P(F) ≤ β′
(
n
2

)
i.e. the union

of cuts to separate V (tu1), V (tu2), . . . , V (tuk) forms a
β′-edge disruptor in G. Because of the suboptimal
structure in T , finding such a G-partitionable subset
F in VT with minimum cost(F) can be done in O(n3)
using dynamic programming.

Denote cost(ti, p) the minimum cut cost to make the
pairwise connectivity in G[V (ti)] equal to p using only
cuts corresponding to nodes in the subtree rooted at
ti. The minimum cost for a G-partitionable subset F

that induces a β′-edge disruptor of G is then

T opt
β′ = min

p≤β′(n2)
{cost(t0, p)}

where t0 is the root node in T .
We can easily derive the recursive formula:

cost(ti, p) =

 0 if P(G[V (ti)]) ≤ p
min
π≤p

cost(ti1, π) + cost(ti2, p− π) + cost(ti) if not

where ti1, ti2 are children of ti.
In the first case, when P(G[V (ti)]) ≤ p we cut no

edges in G[V (ti)] hence, cost(ti, p) = 0. Otherwise, we
try all possible combinations of pairwise connectivity
π in V (ti1) and p−π in V (ti2). The combination with
the smallest cut cost is then selected.

We now prove that T opt
β′ ≤ O(log

3
2 n)Opt

β-ED,
where Opt

β-ED denotes the cost of the optimal β-edge
disruptor in G.

Lemma 1: There exists a G-partitionable subset of T
that induces a β′-edge disruptor whose cost is at most
O
(

log
3
2 n
)

Opt
β-ED.

Proof: Let Dβ be an optimal β-edge disruptor in
G of size Opt

β-ED and Cβ = {C1, C2, ..., Ck} be the set
of SCCs, after removing Dβ from G.

We construct a G-partitionable subset XT as in the
Algorithm 2. We traverse tree T in preorder i.e. every
parent will be visited before its children. For each
node ti, we select ti into XT if there exists some
component Cj ∈ Cβ that |V (ti) ∩ Cj | ≥ (1 − c)|V (ti)|
and no ancestors of ti have been selected into XT .
We can verify that XT satisfies two mentioned con-
ditions of a G-partitionable subset. For each Cj ∈ Cβ ,
define

N(Cj) = {ti ∈ T : |V (ti) ∩ Cj | ≥ (1− c)|V (ti)|}.

Since V (ti), ti ∈ T are disjoint subsets. We have

P(XT) ≤
∑
ti∈XT

(
|V (ti)|

2

)
=

1

2

∑
Cj∈Cβ

∑
ti∈N(Cj)

|V (ti)|2 −
n

2

≤ 1

2

∑
Cj∈Cβ

(∑
ti∈N(Cj)

|V (ti)|
)2

− n

2

≤ 1

2

∑
Cj∈Cβ

(√
β′/β|Cj |

)2
− n

2

<
β′

β

1

2

(∑
Cj∈Cβ

|Cj |2 − n
)
≤ β′

(
n

2

)

Finally we show that cost(XT) ≤ O(log
3
2 n)Opt

β-ED.
Let denote by h(T) the height of T and LiT the set of
nodes at the ith level in TG. We have:

cost(XT) =

h(T)∑
i=1

∑
tu∈(LiT∩A(XT))

cost(tu) (1)

7

Algorithm 2. Find a good G-partitionable subset of T

that induces a β′-edge disruptor in G

Initialization: XT ← φ; Preorder-Selection(t0).
Preorder-Selection(tu)

1: if (∃Cj ∈ Cβ : |V (tu) ∩ Cj | ≥ (1− c)|V (tu)|) then

2: XT ← XT ∪ {tu}
3: else let tu1, tu2 be children of tu,

4: Preorder-Selection(tu1)

5: Preorder-Selection(tu2)

6: end if

If tu ∈ A(XT) then tu is not selected to XT . Hence,
there exists Cj ∈ C so that |V (tu)∩Cj | < (1−c)|V (tu)|
(otherwise tu was selected into XT as it satisfied the
conditions in the line 3, Algorithm 2). To guarantee
c < 1− c, we need c < 1/2 i.e. β > β′

4 .
Since the edges in Dβ separate Cj from the other

SCCs, they also separates Cj ∩ V (tu) from V (tu) \ Cj
in G[V (tu)]. Denote by δ(tu, Dβ) the set of edges in
Dβ separating Cj ∩ V (tu) from V (tu) \ Cj in G[V (tu)].
Obviously, δ(tu, Dβ) is a directed c-balanced cut of
G[V (tu)]. Since, the cut we used in the tree construction
is only O(

√
log n) times the optimal c-balanced cut. We

have cost(tu) ≤ O(
√

log n)|δ(tu, Dβ)|.
Recall that if two nodes tu, tv are on a same level

then V (tu) and V (tv) are disjoint subsets. It follows
that δ(tu, Dβ) and δ(tv, Dβ) are also disjoint sets.
Therefore, the cut cost at the ith level∑

tu∈(LiT∩A(XT))

cost(tu)

≤ O(
√

logn)
∑

tu∈(LiT∩A(XT))

|δ(tu, Dβ)|

≤ O(
√

logn)|
⋃

tu∈(LiT∩A(XT))

δ(tu, Dβ)|

= O(
√

logn)Opt
β-ED

Since the number of levels h(T) = O(log n), by Eq. 1
we have cost(XT) ≤ O(log

3
2 n)Opt

β-ED.
Since there exists a G-partitionable subset of T

that induces a β′-edge disruptor whose cost is no
more than O

(
log

3
2 n
)

Opt
β-ED as shown in Lemma 1

and the dynamic programming always finds the best
latent solution in T , the following theorem follows.

Theorem 4: Algorithm 1 achieves a pseudo-
approximation ratio of O(log

3
2 n) for the β-edges

disruptor problem.
Time complexity: Construction of the decomposition

tree takes O(n9.5). The major portion of time is for
solving an semidefinite programming with Ω(n3) con-
straints. Finding the optimal solution using Dynamic
Programming takes O(n3). Hence, the overall time
complexity is O(n9.5).

4 β-VERTEX DISRUPTOR

We present a polynomial time algorithm (Algo-
rithm 3) that finds a β′-vertex disruptor in the di-

rected graph G(V,E) whose the size is at most
O(log n log log n) times the optimal β-vertex disruptor
where 0 < β < β′2. The algorithm involves in two
phases. In the first phase, we split each vertex v ∈ V
into two vertices v+ and v− while putting an edge
from v− to v+ and show that removing v in G has
the same effects as removing edge (v+ → v−) in the
new graph. In the second phase, we try to decompose
the new graph into SCCs capping the sizes of the
largest component while minimizing the number of
removed edges. We relax the constraints on the size
of each component until the set of cut edges induces
a β′-vertex disruptor in the original graph G.

Given a directed graph G(V,E) for which we want
to find a small β′-vertex disruptor, we split each vertex
in G into two new vertices to obtain a new directed
graph G

′
(V

′
, E′) where

V ′ = { v−, v+ | v ∈ V }
E′ = {(v− → v+) | v ∈ V }

∪ {(u+ → v−) | (u→ v) ∈ E}

The new graph G′(V ′, E′) will have twice the number
of vertices in G i.e. |V ′| = 2|V | = 2n. An example for
the first phase is shown in Figure 4.

We set the costs of all edges in E′V = {(v− →
v+) | v ∈ V } to 1 and other edges in E′ to +∞ so that
only edges in E′V can be selected in an edge disruptor
set. In implementation, it is safe to set the costs of
edges not in E′V to O(n) noting that by paying a cost
of 2n we can effectively disconnect all edges in E′V .

Consider a directed edge disruptor set D′e ⊂ E′

that contains only edge in E′V . We have a one-to-one
correspondence between D′e to a set Dv = {v | (v− →
v+) ∈ D′e} in G(V,E) which is a vertex disruptor
set in G. Since G and G′ have different maximum
pairwise connectivity, (n−1)n

2 for G and (2n−1)2n
2 for

G′, the fractions of pairwise connectivity remaining
in G and G′ after removing Dv and D′e are, however,
not exactly equal to each other.

In the second phase of Algorithm 3, when sepa-
rating a graph into SCCs, the smaller the sizes of
SCCs, the smaller pairwise connectivity in the graph.
However, the smaller the maximum size of each SCC,
the more edges to be cut. We perform binary search to
find a right upper bound for size of each SCC in G′.
In the algorithm, the lower bound and upper bound
of the size of each SCC are denoted by β|V ′| and β|V ′|
respectively. At each step we try to find a minimum
capacity edge set in G′(V ′, E′) whose removal parti-
tions the graph into strongly connected components of

size at most β̃|V ′|, where β̃ = bβ + β

2ε c × ε. We round
the value of β̃ to the nearest multiple of ε so that
the number of steps for the binary search is bounded
by log 1

ε . The problem of finding a minimum capacity
edge set to decompose a graph of size n into strongly
connected components of size at most ρn is known
as ρ-separator problem. We use here the algorithm

8

Algorithm 3. β′-vertex disruptor

Input: Directed graph G = (V,E) and fixed 0 < β′ < 1.

Output: A β′-vertex disruptor of G

1. G′(V ′, E′)← (φ, φ)

2. ∀v ∈ V : V ′ ← V ′ ∪ {v+, v−}
3. ∀v ∈ V : E′ ← E′ ∪ {(v− → v+)}, c(v−, v+)← 1

4. ∀(u→ v) ∈ E : E′ ← E′ ∪ {u+ → v−}, c(u+, v−)←∞
5. β ← 0, β ← 1

6. DV ← V (G)

7. while (β − β > ε) do

8. β̃ ← bβ + β

2ε
c × ε

9. Find De ⊂ E′ to separate G′ into strongly connected

components of sizes at most β̃|V ′| using algorithm in [23]

10. Dv ← {v ∈ V (G) | (v+ → v−) ∈ De}
11. if P(G[V \Dv]) ≤ β

(n
2

)
then

12. β = β̃

13. Remove nodes from Dv as long as P(G[V \Dv]) ≤ β
(n
2

)
14. if |DV | > |Dv | then DV = Dv

15. else β = β̃

18.end while

19. Return DV

presented in [23] that for a fixed ε > 0 finds a ρ-
separator in directed graph G whose value is at most
O
(

1
ε2 . log n log log n

)
times Opt(ρ−ε)-separator where

Opt(ρ−ε)-separator is the cost of the optimal (ρ − ε)-
separator. Finally, we derive the cut vertices in G from
the cut edges in G′ to obtain the β′-vertex disruptor.

Lemma 2: Algorithm 3 always terminates with a β′-
vertex disruptor.

Proof: We show that whenever β̃ ≤ β′ then the
corresponding Dv found in Algorithm 3 is a β′-vertex
disruptor in G. Consider the edge disruptor D′e in G′

induced by Dv . We first show the mapping between
SCCs in G[V \Dv] and SCCs in G′[E′\D′e], the graph
obtained by removing D′e from G′. Partition the vertex
set V of G into: (1) Dv : the set of removed nodes (2)
Vsingle: the set of nodes that are not in any cylcle
i.e. they are SCCs of size one (3)Vconnected: union
of remaining SCCs that sizes are at least two, say
Vconnected =

⊎l
i=1 Ci, |Ci| ≥ 2. Vertices in Vconnected

belong to at least one cycle in G.
We have following corresponding SCCs in

G′[E′\D′e]:
1) v ∈ Dv ↔ SCCs {v+} and {v−}. Since after re-

moving (v− → v+) v+ does not have incoming
edges and v− does not have outgoing edges.

2) v ∈ Vsingle ↔ SCCs {v+} and {v−}. Since v does
not lie on any cycle in G. Assume v+ belong
to some SCC of size at least 2 i.e. v+ lies on
some cycle in G′. Because the only incoming
edge to v+ is from v−. It follows that v− is
preceding v+ on that cycle. Let u−, u+ be the
successive vertices of v+ on that cycle. We have

u and v belong to a same SCC in G which yields
a contradiction. Similarly, v− cannot lie on any
cycle in G′.

3) SCC Ci ⊂ Vconnected ↔ SCC C ′i = {v−, v+ | v ∈
Ci}. This can be shown using a similar argument
to that in the case v ∈ Vsingle.

Since D′e is a β̃-separator, the sizes of SCCs in
G′[E′\D′e] are at most β̃ 2n. It follows that the sizes of
SCCs in G[V \Dv] are bounded by β̃n. Denote the set of
SCCs in G[V \Dv] by C with the convention that vertices
in Dv become singleton SCC in G[V \Dv]. Therefore, we
have:

P(G[V \Dv]) =
∑
Ci∈C

(
|Ci|
2

)
=

1

2

(∑
Ci∈C

|Ci|2 − |V |

)

≤ 1

2

(∑
Ci∈C

β̃|V |)|Ci| − |V |

)

=
1

2

(
β̃|V |2 − |V |

)
≤ β̃

(
|V |
2

)
< β′

(
|V |
2

)
This guarantees that the binary search always finds a
β′-vertex disruptor and completes the proof.

Theorem 5: Algorithm 3 always finds a β′-vertex
disruptor whose the size is at most O(log n log log n)
times the optimal β-vertex disruptor for β′2 > β > 0.

Proof: It follows from the Lemma 2 that Algorithm
3 terminates with a β′-vertex disruptor Dv . At some
step the capacity of Dv equals to the capacity of β̃-
separator D′e in G′ where β̃ is at least β′− ε according
to Lemma 2 and the binary search scheme. The cost
of the separator is at most O (log n log log n) times the
Opt(β̃−ε)-separator using the algorithm in [23].

Consider an optimal (β′2 − 9ε)-vertex disruptor D′v
of G and its corresponding edge disruptor D′e in G′.
Denote the cost of that optimal vertex disruptor by
Opt

(β′2−9ε)-VD. If there exists in G[V \Dv] a SCC Ci
so that |Ci| > (β′ − 2ε)n then P(G[V \Dv]) >

1
2 ((β′ −

2ε)n − 2)((β′ − 2ε)n − 1) > (β′2 − 9ε)
(
n
2

)
when n >

20(β′+1)
ε . Hence, every SCC in G′[V \D′

v]
have size at

most (β′−2ε)(2n) i.e. D′e is an (β′−2ε)-separator in G′.
It follows that Opt

(β′2−9ε)-VD ≥ Opt(β′−2ε)-separator
in G′.

Since β̃−ε ≥ β′−2ε, we have Opt(β̃−ε)-separator ≤
Opt(β′−2ε)-separator ≤ Opt

(β′2−9ε)-VD.
The size of the vertex disruptor |Dv| = |D′e| is

at most O (log n log log n) times Opt(β̃−ε)-separator.
Thus, the size of found β′-vertex disruptor Dv is at
most O(log n log log n) times the optimal (β′2 − 9ε)-
vertex disruptor. As we can choose arbitrary small ε,
setting β = β′2 − 9ε completes the proof.

Time complexity: Finding the separator costs O(n9)
[23]. Hence, the total time complexity is O(log 1

εn
9).

However, in our experiments, the algorithm takes
much less than its worst-case running time.

9

u- v-

u v
1 1∞

u+ v+

(a) (b)

u+ v+

u v
1 1

∞

u- v-

1 1

w
w+

1

∞ ∞

(a) (b)w
-

Fig. 4. Conversion from the node version in a directed graph (a)
into the edge version in a directed graph (b)

4.1 Approximating edge disruptor is at least as
hard as approximating vertex disruptor
We show that an approximation algorithm for gen-
eral directed edge disruptor yields an approximation
algorithm for directed vertex disruptor with (almost)
the same approximation ratio.

Lemma 3: A β-edge disruptor set in the directed
graph G′ induces the same cost β-vertex disruptor set
in G.

Proof: We use Dv and D′e for vertex disruptor in
G and edge disruptor in G′.

Given P(G′[E′\D′e]) ≤ β
(
2n
2

)
we need to prove that:

P(G[V \Dv]) ≤ β
(
n
2

)
where n = |V |.

Assume G[V \Dv] has l SCCs of size at least 2, say
Ci, i = 1 . . . l. The corresponding SCCs in G′[E′\D′e]
will be C ′i, i = 1 . . . l where |C ′i| = 2|Ci|.

Since (2k
2)

(2n
2)
− (k2)

(n2)
= k(n−k)

(n−1)n(2n−1) ≥ 0, for all 0 ≤ k ≤
n. We have
P(G[V \Dv])

(n2)
=

l∑
i=1

(|Ci|
2

)(
n
2

) ≤ l∑
i=1

(|C′
i|
2

)(
2n
2

) ≤ β
Lemma 4: A β-vertex disruptor set in G induces the

same cost (β+ε)-edge disruptor set in G′ for any ε > 0.
Proof: We use the same notations in the proof of

Lemma 3. Given P(G[V \Dv]) ≤ β
(
n
2

)
we need to prove

that: P(G′[E′\D′e]) ≤ (β + ε)
(
2n
2

)
. We have:

P(G′[E′\D′e])(
2n
2

)
=

l∑
i=1

|Ci|(n− |Ci|)
(n− 1)n(2n− 1)

+
P(G[V \Dv])(

n
2

)
=
P(G[V \Dv])(

n
2

) (
1− 1

2n− 1

)
+

∑l
i=1 |Ci|

n(2n− 1)

< β +
1

2n− 1
< β + ε (2)

when n ≥ b 1+ε2ε c+ 1.
Theorem 6: Given a factor f(n) polynomial time

approximation algorithm for β-edge disruptor, there
exists a factor (1 + ε)f(n) polynomial time approxi-
mation algorithm for β-vertex disruptor where ε > 0
is an arbitrary small constant.

Proof: Let G be a directed graph with uniform
vertex costs in which we wish to find a β-vertex
disruptor. Construct G′ as described at the beginning
of this Section.

Apply the given approximation algorithm to find
in G′ a β-edge disruptor, denoted by D′e, with the

cost at most f(n) ·Optβ−ED(G′), where Optβ−ED(G′)
is the cost of a minimum β-edge disruptor in G′. From
Lemma 3, D′e induces in G a β-vertex disruptor Dv of
the same cost. We shall prove that

Optβ−ED(G′) ≤ Optβ−VD(G) + γ0,

where Optβ−VD(G) is the cost of a minimum β-vertex
disruptor in G and γ0 is some positive constant. It
follows that the cost of Dv will be at most

f(n) · (Optβ−VD(G) + λ0) ≤ (1 + ε)f(n)Optβ−VD(G)

Here, we assume that Optβ−VD(G) > γ0
ε otherwise we

can find Optβ−VD(G) in time O(n
γ0
ε +2).

From an optimal β-vertex disruptor of G, con-
struct its corresponding edge disruptor D∗e in G′.
If P(G′[E \D∗e] ≤ β

(
2n
2

)
then Optβ−ED(G′) ≤

Optβ−VD(G) and we yield the proof. Thus, we con-
sider the case P(G′[E \D∗e] > β

(
2n
2

)
.

Among SCCs of G′[E \D∗e], there must be a SCC
of size at least β2n or else G′[E \D∗e] ≤ β−1

(
β2n
2

)
≤

β
(
2n
2

)
(contradiction). Remove γ0 =

⌈
1
β

⌉
vertices from

that SCC. The pairwise connectivity in G′[E \D∗e] will
decrease at least (β2n − 1

β) 1
β = 2n − 1

β2 ≥ n for
sufficient large n. From Eq. 2 in Lemma 4, the pairwise
connectivity after removing vertices will be less than

(β +
1

2n− 1
)

(
2n

2

)
− n ≤ β

(
2n

2

)
Therefore, after removing at most γ0 vertices from

D∗e , we get a β-edge disruptor. Hence,
Optβ−ED(G′) ≤ Optβ−VD(G) + γ0.

5 EXPERIMENTAL STUDY

We perform experiments to find out the gap between
the solution of the pseudo approximation algorithm
(Algorithm 3) and an optimal solution found by solv-
ing an Integer programming formulation. We generate
two types of network: random networks following
Erdos-Rényi model and power-law networks follow-
ing Barabási-Albert model. For each type of network,
we generate different instances with number of nodes
ranging from 30 to 100. Edge densities of generated
networks are around 10%. The machine used for the
experiments was an 8 cores 2.2 Ghz equipped with 64
GB memory.

Size of disruptors found by Algorithm 3 and the
size of optimal disruptors are presented in Tables
1 and 2. Despite a large theoretical gap of the
pseudo approximation algorithm, the algorithm pro-
duces near-optimal solutions and returning optimal
solutions in more than half places (marked with bold
numbers).

Especially, our algorithm performs extremely well
on power-law networks. It misses the optimal solution
in only one place when the number of vertices is
90. Between a random network and a power-law

10

 10

 100

 1000

0 % 20 % 40 % 60 % 80 % 100 %

S
iz

e
of

 d
is

ru
pt

or
s

Network connectivity level

Degree Centrality
Betweeness Centrality
Eigenvector Centrality

Approximation

Fig. 5. Disruptors found by different methods in the Western States
Power Grid of the United States at different levels of disruption.

network of roughly same sizes, the size of disruptor
in the power-law network is significantly smaller (ap-
proximately 50%) than that in the random network,
showing extremely high degree of vulnerability of
power-law network to attacks [24].

TABLE 1
Size of disruptor on Erdos-Rényi networks at 60% connectivity.

Vertex 30 40 50 60 70 80 90 100
Edge 43 78 122 177 241 316 400 495

Optimal 2 4 7 9 11 12 16 18
Approx 3 4 8 9 11 13 16 19

TABLE 2
Size of disruptor on Barabási–Albert networks at 60% connectivity.

Vertex 30 40 50 60 70 80 90 100
Edge 54 131 189 208 245 262 354 445

Optimal 1 3 5 6 6 5 7 9
Approx 1 3 5 6 6 5 10 9

The running time for solving the Integer program-
ming increases from few minutes to 10 hours for the
largest test cases, while in the longest run, the pseudo-
approximation algorithm takes only 29 seconds.

5.1 Case study: Western States Power Grid
We study a network of 4941 nodes and 6594 edges
representing the topology of the Western States Power
Grid of the United States. The network is shown
to be high clustering with small characteristics path
lengths [25]; hence the network is rather vulnerable
to targeted attacks.

It is intractable to find the optimal disruptor using
Integer Programming for such a large network. Our
approximation algorithm uses row-generation tech-
nique to reduce excessive amount of constraints and
runs on a clusters of 20 nodes, each node is equipped
with an 8 cores 2.2 Ghz CPU and 64 GB memory.

We compare the attack schemes that target nodes
based on their centrality with our pseudo approxi-
mation algorithm to show that those methods might
not be suitable to reveal network vulnerability in term
of overall network connectivity. Compared methods
include

1) Degree Centrality: The algorithm sequentially re-
move node with the maximum degree until the
pairwise connectivity in the graph less than
β
(
n
2

)
.

2) Betweenness Centrality: We repeatedly remove the
node with maximum betweenness centrality, un-
til the pairwise connectivity in the graph less
than β

(
n
2

)
. Recall that the betweenness Bt(v) for

node v is: Bt(v) =
∑

s 6=v 6=t∈V
s 6=t

σst(v)
σst

where σst is
the number of shortest paths from s to t, and
σst(v) is the number of shortest paths from s to
t that pass through a node v.

3) Eigenvector Centrality: Nodes are removed in de-
scending order of their Eigenvector centrality
(Pagerank) values with the default damping fac-
tor of 85% as in [26].

We show in Figure 5 vulnerability reported by
different methods at various levels of disruption. The
network is surprisingly vulnerable to targeted attacks.
For example to reduce 40% connectivity in the net-
work (60% connectivity remain) we only need to de-
stroy 0.16% stations. Bringing down the connectivity
to the same level, the average number of nodes to re-
move for random networks and power-law networks
are 13% and 3% respectively. Even destroying only 1%
of stations can dramatically disrupt 90% connectivity
in the network.

None of other methods can reveal correctly the
vulnerability of the power grid. Their disruptor sizes
are 6 to 20 times larger than those of our approxi-
mation algorithm. Thus, using alternative assessment
methods rather than the ones we proposed might lead
to a dangerous mirage that the network is strongly
stable.

Because of high clustering property, nodes that
lie among clusters in the networks will often have
high betweenness values. Intuitively, we expected the
betweenness method to easily identify those nodes
and perform well in the experiment. Surprisingly, the
performance of betweenness method turns out to be
even worse than that of degree centrality.

6 CONCLUSION

We established a novel model to assess the vulner-
ability by investigating how many nodes/edges are re-
quired to be deleted in order to bring down the network
pairwise connectivity to a desired extent. After formulat-
ing this problem as an optimization problem called
β-disruptor, we presented several hardness results
including the NP-Completeness and inapproximabil-
ity, along with two pseudo-approximation algorithms

11

with provable performance bounds. The accuracy of
our framework compared with existing measurements
are validated through a series of experiments on both
simulated and real networks. Providing an underlying
framework toward the vulnerability assessment over
general network topology and performance guaran-
teed solutions, our method exhibits huge benefits and
potentials for various practical network situations.

REFERENCES
[1] Tony H. Grubesic, Timothy C. Matisziw, Alan T. Murray,

and Diane Snediker. Comparative approaches for assessing
network vulnerability. Inter. Regional Sci. Review, 31, 2008.

[2] R. Church, M. Scaparra, and R. Middleton. Identifying critical
infrastructure: the median and covering facility interdiction
problems. Ann Assoc Am Geogr, 94(3):491–502, 2004.

[3] A. Murray, T. Matisziw, and T. Grubesic. Multimethodological
approaches to network vulnerability analysis. Growth Change,
2008.

[4] A. Sen, S. Murthy, and S. Banerjee. Region-based connectivity
- a new paradigm for design of fault-tolerant networks. In
HPSR, 2009.

[5] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano. Assess-
ing the vulnerability of the fiber infrastructure to disasters. In
INFOCOM, 2009.

[6] Charles J. Colbourn. The Combinatorics of Network Reliability.
Oxford University Press, Inc., New York, NY, USA, 1987.

[7] Stephen P. Borgatti and Martin G. Everett. A graph-theoretic
perspective on centrality. Social Networks, 28(4):466–484, 2006.

[8] D. Goyal and J. Caffery. Partitioning avoidance in mobile
ad hoc networks using network survivability concepts. ISCC,
page 553, 2002.

[9] M. Hauspie, J. Carle, and D. Simplot. Partition detection
in mobile ad hoc networks using multiple disjoint paths set.
Workshop of Objects, Models and Multimedia technology, 2003.

[10] M. Jorgic, I. Stojmenovic, M. Hauspie, and D. Simplot-Ryl.
Localized algorithms for detection of critical nodes and links
for connectivity in ad hoc networks. 3rd IFIP MED-HOC-NET
Workshop, 2004.

[11] A. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics
of random networks: the topology of the world-wide web.
Physica A, 281, 2000.

[12] Fangting Sun and Mark A. Shayman. On pairwise connectivity
of wireless multihop networks. International Journal of Security
and Networks, 2(1/2):37–49, 2007.

[13] A. Arulselvan, Clayton W. Commander, L. Elefteriadou, and
Panos M. Pardalos. Detecting critical nodes in sparse graphs.
Computers & Operations Research, 36(7):2193–2200, 2009.

[14] Stephen P. Borgatti. Identifying sets of key players in a social
network. Computational & Mathematical Organization Theory,
12(1):21–34, 2006.

[15] Y. J. Suh, D. J. Kim, W. S. Lim, and J. Y. Baek. Method for
supporting quality of service in heterogeneous networks, 2009.

[16] T. Lehman, J. Sobieski, and B. Jabbari. Dragon: a framework
for service provisioning in heterogeneous grid networks. IEEE
Communication Magazines, 2006.

[17] V. Mhatre and C. Rosenberg. Homogeneous vs heterogeneous
clustered sensor networks: a comparative study. IEEE ICC,
2004.

[18] M. Stoer and F. Wagner. A simple min-cut algorithm. J. of
ACM, 44(4):585–591, 1997.

[19] D. Wagner and F. Wagner. Between min cut and graph bisec-
tion. In MFCS, pages 744–750, London, UK, 1993. Springer-
Verlag.

[20] Michael R. Garey and David S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., New York, NY, USA, 1990.

[21] I. Dinur and S. Safra. On the hardness of approximating
minimum vertex cover. Annals of Mathematics, 162:2005, 2004.

[22] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev.
O(log n) approximation algorithms for min uncut, min 2cnf
deletion, and directed cut problems. In STOC, pages 573–581,
New York, NY, USA, 2005. ACM.

[23] G. Even, J. S. Naor, S. Rao, and B. Schieber. Divide-and-
conquer approximation algorithms via spreading metrics. J.
of ACM, 47(4):585–616, 2000.

[24] R. Albert, H. Jeong, and A. Barabasi. Error and attack tolerance
of complex networks. Nature, 406(6794):378–382, July 2000.

[25] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393(6684):440–442, June 1998.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

Thang N. Dinh received the BA degree in In-
formation Technology from Vietnam National Uni-
versity, Hanoi, Vietnam in 2007. He is currently a
PhD student at the Department of Computer and
Information Science and Engineering, University of
Florida, under the supervision of Dr. My T. Thai. His
research focuses on designing combinatorial opti-
mization methods for dynamic complex networks
and mobile ad hoc network including network vul-
nerability, dynamic community structure, and fast
information propagation.

Ying Xuan received the BE degree in computer
engineering from the University of Science and
Technology of China, Anhui, China, in 2006. He is
now a PhD candidate at the Department of Com-
puter and Information Science and Engineering,
University of Florida, under the supervision of Dr.
My T. Thai. His research topics include applied
group testing theory, social networking and network
vulnerability.

My T. Thai received her PhD degree in computer
science from the University of Minnesota, Twin
Cities, in 2006. She is an associate professor in the
Department of Computer and Information Sciences
and Engineering at the University of Florida. Her
current research interests include algorithms and
optimization on network science and engineering.
She also serves as an associate editor for the
Journal of Combinatorial Optimization (JOCO) and
Optimization Letters and a conference chair of CO-
COON 2010 and several workshops in an area of

network science. She is a recipient of DoD Young Investigator Awards and
NSF CAREER awards. She is a member of the IEEE.

Panos M. Pardalos is a Distinguished Profes-
sor of Industrial and Systems Engineering at the
University of Florida. He is the director of the Center
for Applied Optimization. Dr. Pardalos obtained a
PhD degree from the University of Minnesota in
Computer and Information Sciences. Dr. Pardalos
is the editor-in-chief of the “Journal of Global Op-
timization,” and of the journals “Optimization Let-
ters,” “Computational Management Science,” and
“Energy Systems.”

Taieb Znati Taieb Znati received the MS de-
gree in computer science from Purdue University
in 1984, and the PhD degree in computer science
from Michigan State University in 1988. He is a
professor in the Department of Computer Science,
with a joint appointment in Telecommunications in
the Department of Information Science, University
of Pittsburgh. He currently serves as the director
of the Computer and Network Systems (CNS) Di-
vision at the National Science Foundation (NSF).
From 2000 to 2004, he served as a senior program

director for networking research at NSF. He also served as the committee
chairperson of the Information Technology Research (ITR) Program and an
NSF-wide research initiative in information technology. His current research
interests are on network science and engineering, with the focus on the design
of scalable, robust, and reliable network architectures and protocols for wired
and wireless communication networks. He is a recipient of several research
grants from government agencies and from industry. He is frequently invited to
present keynotes in networking and distributed conferences both in the United
States and abroad. He is a member of the IEEE.

