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a b s t r a c t

The remarkable discovery of many large-scale real networks is the power-law distribution
in degree sequence: the number of vertices with degree i is proportional to i−β for some
constantβ > 1. A lot of researchers believe that itmay be easier to solve some optimization
problems in power-law graphs. Unfortunately, many problems have been proved NP-hard
even in power-law graphs. Intuitively, a theoretical question is raised: are these problems
on power-law graphs still as hard as on general graphs?

In this paper, we show that many optimal substructure problems, such as Minimum
Dominating Set, Minimum Vertex Cover and Maximum Independent Set, are easier to
solve in power-law graphs by illustrating better inapproximability factors. An optimization
problem has the property of optimal substructure if its optimal solution on some given
graph is essentially the union of the optimal sub-solutions on all maximal connected
components. In particular, we prove the above problems and a more general problem
(ρ-Minimum Dominating Set) remain APX-hard and their constant inapproximability
factors on general power-law graphs by using the cycle-based embedding technique to
embed any d-bounded graphs into a power-law graph. In addition, in simple power-
law graphs, we further prove the corresponding inapproximability factors of these
problems based on the graphic embedding technique as well as that of Maximum Clique
and Minimum Coloring using the embedding technique in [1]. As a result of these
inapproximability factors, the belief that there exists some (1 + o(1))-approximation
algorithm for these problems on power-law graphs is proven to be not always true. At last,
we do in-depth investigations in the relationship between the exponential factor β and
constant greedy approximation algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and related work

A great number of large-scale networks in real life are discovered to follow a power-law distribution in their degree
sequences, ranging from the Internet [2], the World-Wide Web (WWW) [3] to social networks [4]. That is, the number of
vertices with degree i is proportional to i−β for some constant β in these graphs, which is called power-law graphs. The
observations show that the exponential factor β ranges between 1 and 4 for most real-world networks [5]. Intuitively, the
following theoretical question is raised: what are the differences in terms of complexity hardness and inapproximability
factor of several optimization problems between in general graphs and in power-law graphs?

Many experimental results on random power-law graphs give us a belief that the problems might be much easier to
solve on power-law graphs. Eubank et al. [6] showed that a simple greedy algorithm leads to a 1 + o(1) approximation
factor on Minimum Dominating Set (MDS) and Minimum Vertex Cover (MVC) on power-law graphs (without any
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Table 1
Inapproximability factors on power-law graphs with exponential factor
β > 1.

Problem General power-law graph Simple power-law graph

MIS 1+ 1
140(2ζ (β)3β−1)

− ε 1+ 1
1120ζ (β)3β − ε

MDS 1+ 1
390(2ζ (β)3β−1)

1+ 1
3120ζ (β)3β

MVC, ρ-MDS 1+
2

1−(2+oc (1))

log log c
log c




ζ (β)cβ+c
1
β


(c+1)

1+
2−(2+oc (1))

log log c
log c

2ζ (β)cβ (c+1)

Clique – O

n1/(β+1)−ϵ


Coloring – O


n1/(β+1)−ϵ


a Conditions: MIS and MDS: P≠NP; MVC, ρ-MDS: unique games conjec-

ture; Clique, Coloring: NP≠ZPP.
b c is a constant which is the smallest d satisfying the condition in [15].

formal proof) althoughMDS andMVC has been provedNP-hard to be approximatedwithin (1−ϵ) log n and 1.366 on general
graphs respectively [7]. In [8], Gopal also claimed that there exists a polynomial time algorithm that guarantees a 1+ o(1)
approximation of the MVC problem with probability at least 1− o(1). Unfortunately, there is no such formal proof for this
claim either. Furthermore, several papers also have some theoretical guarantees for some problems on power-law graphs.
Gkantsidis et al. [9] proved the flow through each link is at mostO(n log2 n) on power-law random graphswhere the routing
of O(dudv) units of flow between each pair of vertices u and v with degrees du and dv . In [9], the authors take advantage of
the property of power-law distribution by using the structural randommodel [10,11] and show the theoretical upper bound
with high probability 1 − o(1) and the corresponding experimental results. Likewise, Janson et al. [12] gave an algorithm
that approximated Maximum Clique within 1 − o(1) on power-law graphs with high probability on the random Poisson
model G(n, α) (i.e. the number of vertices with degree at least i decreases roughly as n−i). Although these results were
based on experiments and various random models, they raise an interest in investigating hardness and inapproximability
of optimization problems on power-law graphs.

Recently, Ferrante et al. [1] had an initial attempt on power-law graphs to show the NP-hardness of Maximum Clique
(Clique) andMinimumGraph Coloring (Coloring) (β > 1) by constructing a bipartite graph to embed a general graph into
a power-law graph and NP-hardness of MVC, MDS and Maximum Independent Set (MIS) (β > 0) based on their optimal
substructure properties. Unfortunately, there is a minor flaw in the proof of their Lemma 5 which makes the proof of
NP-hardness of MIS, MVC, MDS with β < 1 no longer hold. Then we present another way in the Appendix to show the
NP-hardness of these problems when β < 1 so as to fix this non-trivial flaw.
Our contributions. In this paper, we propose two new techniques on optimal substructure problems, Cycle-Based
Embedding Technique and Graphic Embedding Technique, to embed a d-bounded graph into a general power-law graph
and a simple power-law graph respectively. Then we use these two techniques to further prove the APX-hardness
and the inapproximability of MIS, MDS, and MVC on general power-law graphs and simple power-law graphs. These
inapproximability results on power-law graphs are shown in Table 1. Furthermore, the inapproximability results in Clique
and Coloring are shown by taking advantage of the reduction in [1]. We also analyze the relationship between β and the
constant greedy approximation algorithms for MIS and MDS.

In addition, due to a lot of recent studies in online social networks on the influence propagation problem [13,14], we
formulate this problem as ρ-Minimum Dominating Set (ρ-MDS) and show it hard to be approximated within 2 − (2 +
od(1)) log log d/ log d factor on d-bounded graphs under unique games conjecture, which further leads to the following
inapproximability result on power-law graphs (shown in Table 1).

The rest of paper is organized as follows. In Section 2, we introduce some problem definitions, the model of power-law
graphs, and some related concepts. The inapproximability optimal substructure framework is presented in Section 3. We
show the hardness and inapproximability of MIS, MDS, MVC in general power-law graphs using the cycle-based embedding
technique in Section 4. More inapproximability results in simple power-law graphs are illustrated in Section 5 based on the
graphic embedding technique,which implies theAPX-hardness of these problems. Additionally, the inapproximability factor
on maximum clique and minimum coloring problems are proven. In Section 6, we analyze the relationship between β and
constant approximation algorithms, which further proves that the integral gap is typically small for optimization problems
on power-law graphs than that on general bounded graphs. In the Appendix, we fix the flaw in the NP-hardness proof for
β < 1 presented in [1].

2. Preliminaries

In this section,we first recall the definition of several classical optimization problems and formulate the newoptimization
problem ρ-Minimum Dominating Set. Then the power-law model and some corresponding concepts are proposed. At last,
we introduce some special graphs which will be used in the analysis throughout the whole paper.
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2.1. Problem definitions

Definition 2.1 (Maximum Independent Set). Given an undirected graph G = (V , E), find a subset S ⊆ V with the maximum
size such that no two vertices in S are adjacent.
Definition 2.2 (Minimum Vertex Cover). Given an undirected graph G = (V , E), find a subset S ⊆ V with theminimum size
such that for each edge E at least one endpoint belongs to S.
Definition 2.3 (Minimum Dominating Set). Given an undirected graph G = (V , E), find a subset S ⊆ V with the minimum
size such that for each vertex vi ∈ V \ S, at least one neighbor of vi belongs to S.
Definition 2.4 (Maximum Clique). Given an undirected graph G = (V , E), find a clique with maximum size where a
subgraph of G is called a clique if all its vertices are pairwise adjacent.
Definition 2.5 (Minimum Graph Coloring). Given an undirected graph G = (V , E), label the vertices in V with minimum
number of colors such that no two adjacent vertices share the same color.

The ρ-Minimum Dominating Set is a general version of MDS problem. In the context of influence propagation, the
ρ-MDSproblemaims to find a subset of nodeswithminimumsize such that all nodes in thewhole network can be influenced
within t rounds. In particular, a node is influenced when ρ fraction of its neighbors are influenced. For simplicity, we define
ρ-MDS problem in the case that t = 1.
Definition 2.6 (ρ-Minimum Dominating Set). Given an undirected graphG = (V , E), find a subset S ⊆ V with theminimum
size such that for each vertex vi ∈ V \ S, |S ∩ N(vi)| ≥ ρ|N(vi)|.

2.2. Power-law model and some notations

A great number of models [16,17,10,11,18] on power-law graphs are emerging in the past recent years. In this paper,
we do the analysis based on the general (α, β) model, that is, the graphs only constrained by the power-law distribution in
degree sequences. We first define the following two types of degree sequences.
Definition 2.7 (y-Degree Sequence). Given a graph G = (V , E), the y-degree sequence of G is a sequence Y = ⟨y1, y2,
. . . , y∆⟩where ∆ is the maximum degree of G and yi = |{u|u ∈ V ∧ deg(u) = i}|.
Definition 2.8 (d-Degree Sequence). Given a graph G = (V , E), the d-degree sequence of G is a sequence D = ⟨d1, d2,
. . . , dn⟩ of vertex in non-increasing order of their degrees.

Note that y-degree sequence and d-degree sequence are interchangeable. Given a y-degree sequence Y = ⟨y1, y2,
. . . , y∆⟩, the corresponding d-degree sequence is D = ⟨∆, ∆, . . . , ∆ − 1, ∆ − 1, . . . , ∆ − 1, . . . , 1, . . . , 1⟩ where the
number i appears yi times. Because of their equivalence, we may use only y-degree sequence or d-degree sequence or both
without changing the meaning or validity of results. The definition of power-law graphs can be expressed via y-degree
sequences as follows.
Definition 2.9 (General (α, β) Power-Law Graph Model). A graph G = (V , E) is called a (α, β) power-law graph G(α,β)

where multi-edges and self-loops are allowed if the maximum degree is ∆ =

eα/β


and the number of vertices of degree i

is:

yi =


eα/iβ


, if i > 1 or
∆

i=1


eα/iβ


is even

⌊eα
⌋ + 1, otherwise.

(2.1)

In simple (α, β) power-law graphs, there are no multi-edges and self-loops.
Note that a power-law graph are represented by two parameters α and β . Since graphs with the same β exhibit the same

behaviors, we categorize all graphs with the same β into a β-family of graphs such that β is regarded as a constant instead
of an input. In addition, we only consider the case β > 1 because almost all real large-scale networks have β > 1. In this
case, the number of vertices is:

∆
i=1

eα

iβ
= ζ (β)eα

− O

n

1
β
−1

≈ ζ (β)eα

where ζ (β) =

∞

i=1
1
iβ is the Riemann Zeta Function. Also the d-degree sequence of any (α, β) power-law graph is

continuous according to the following definition.
Definition 2.10 (Continuous Sequence). An integer sequence ⟨d1, d2, . . . , dn⟩, where d1 ≥ d2 ≥ · · · ≥ dn, is continuous if
∀1 ≤ i ≤ n− 1, |di − di+1| ≤ 1.
Definition 2.11 (Graphic Sequence). A sequence D is said to be graphic if there exists a graph such that D is its d-degree
sequence.
Definition 2.12 (Degree Set). Given a graph G, let Di(G) be the set of vertices of degree i on G.

Furthermore, we define the d-bounded graph as
Definition 2.13 (d-Bounded Graph). Given a graph G = (V , E), G is a d-bounded graph if the degree of any vertex is upper
bounded by an integer constant d.
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(a) RC3
8 . (b) 2⃗− C2

8 .

Fig. 1. Special graph examples: the left one is a (3, 3, 3, 3, 3, 3, 3, 3)-regular cycle and the right one is a (3, 3, 3, 3)-branch-(2, 2, 2, 2, 2, 2)-cycle. The gray
vertices consist of the optimal solution of MDS on these two special graphs.

2.3. Special graphs

Definition 2.14 (d⃗-Regular Cycle RC d⃗
n ). Given a vector d⃗ = (d1, . . . , dn), a d⃗-regular cycle RCd

n is composed of two cycles.
Each cycle has n vertices and two ith vertices in each cycle are adjacent with each other by di − 2 multi-edges. That is,
d⃗-regular cycle RCd

n has 2n vertices and the two ith vertices have the same degree di. An example RCd
8 is shown in Fig. 1(a).

Definition 2.15 (κ⃗-Branch-d⃗-Cycle κ⃗-BC d⃗
n ). Given two vectors d⃗ = (d1, . . . , dn) and κ⃗ = (κ1, . . . , κm), the κ⃗-branch-d⃗-cycle

is composed of a cycle with a number of vertices n such that each vertex has degree di as well as |κ⃗|/2 appendant branches,
where |κ| is an even number. Note that any κ⃗-branch-d⃗-cycle has |κ⃗| even number of vertices with odd degrees. An example
is shown in Fig. 1(b).

2.4. Existing inapproximability results

Here we list some inapproximability results in the literature to use later in our proofs.

(1) In d-bounded graphs, MVC is hard to be approximated into 2 − (2 + od(1)) log log d/ log d for every sufficiently large
integer d under unique games conjecture [15,19].

(2) In 3-bounded graphs, MIS and MDS is NP-hard to be approximated into 140
139 − ε for any ε > 0 and 391

390 respectively [20].
(3) Maximum clique and minimum coloring problem is hard to be approximated into n1−ϵ on general graphs unless

NP=ZPP [21].

3. Inapproximability optimal substructure framework in power-law graphs

In this section, we introduce a framework to derive the approximation hardness of optimal substructure problems on
power-law graphs. A graph optimization problem is said to satisfy optimal substructure if its optimal solution is the union
of the optimal solutions on each connected component. Therefore, when a graph G is embedded into a power-law graph G′,
the optimal solution in G′ consists of a subset of the optimal solution in G. According to this important property, we present
the Inapproximability Optimal Substructure Framework to prove the inapproximability factor if there exists an Embedded-
Approximation-Preserving Reduction that relates the approximation hardness in general graphs and power-law graphs by
guaranteeing the relationship between the solutions in the original graph and the constructed graph.

Definition 3.1 (Embedded-Approximation-Preserving Reduction). Given an optimal substructure problem O, a reduction
from an instance on graph G = (V , E) to another instance on a power-law graph G′ = (V ′, E ′) is called embedded-
approximation-preserving if it satisfies the following properties:

(1) G is a subset of maximal connected components of G′;
(2) The optimal solution of O on G′, OPT (G′), is upper bounded by COPT (G) where C is a constant correspondent to the

growth of the optimal solution.

Theorem 3.1 (Inapproximability Optimal Substructure Framework). Given an optimal substructure problem O, if there exists an
embedded-approximation-preserving reduction from a graph G to another graph G′, we can extract the inapproximability factor
δ of O on G′ using ϵ-inapproximability of O on G, where δ is lower bounded by ϵC

(C−1)ϵ+1 and ϵ+C−1
C

when O is a maximum and
minimum optimization problem respectively.

Proof. Suppose that there exists an algorithm providing a solution of O on G′ with size at most δ times the optimal solution.
Denote A and B to be the sizes of the produced solution on G and G′ \ G and A∗ and B∗ to be their corresponding optimal
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values. Hence, we have B∗ ≤ (C− 1)A∗. With the completeness that OPT (G) = A∗ ⇒ OPT (G′) = B∗, the soundness leads to
the lower bound of δ which is dependent on the type of O, maximization or minimization problem, as follows.
Case 1:When O is a maximization problem, we start from the definition of soundness as

A∗ + B∗ ≤ δ(A+ B) (3.1)
⇔ A∗ ≤ δA+ (δ − 1)B∗ (3.2)
⇔ A∗ ≤ δA+ (δ − 1)(C− 1)A∗ (3.3)

where (3.2) holds since B ≤ B∗ and (3.3) holds since B∗ ≤ (C− 1)A∗.
On the other hand, it is hard to approximate Owithin ϵ on G, thus A∗ > ϵA. Replace it to the above inequality, we have:

A∗ < A∗δ/ϵ + (δ − 1)(C− 1)A∗ ⇔ δ >
ϵC

(C− 1)ϵ + 1

Case 2:When O is a minimization problem, since B∗ ≤ B, similarly

A+ B ≤ δ(A∗ + B∗)
⇔ A ≤ δA∗ + (δ − 1)B∗

⇔ A ≤ δA∗ + (δ − 1)(C− 1)A∗

Then from A > ϵA∗,

ϵ < δ + (δ − 1)(C− 1)⇔ δ >
ϵ + C− 1

C
. �

4. Hardness and inapproximability of optimal substructure problems on general power-law graphs

4.1. General Cycle-Based Embedding Technique

In this section, we propose a General Cycle-Based Embedding Technique on (α, β) power-law graphs with β > 1. The basic
idea is to embed an arbitrary d-bounded graph into power-law graphs using a d⃗1-regular cycle, a κ⃗-branch-d⃗2-cycle and a
number of cliques K2, where d⃗1, d⃗2 and κ⃗ are defined by α and β . Before discussing the main embedding technique, we first
show that most optimal substructure problems can be polynomially solved in both d⃗-regular cycles and κ⃗-branch-d⃗-cycle.
In this context, the cycle-based embedding technique helps to prove the complexity of these optimal substructure problems
on power-law graphs according to their corresponding complexity results on general bounded graphs.

Lemma 4.1. MDS, MVC and MIS are polynomially solvable on d⃗-regular cycles.

Proof. Here we just prove MDS problem can be polynomially solvable on d⃗-regular cycles. The algorithm is simple. From
an arbitrarily vertex, we select the vertex on the other cycle in two hops. The algorithm will terminate until all vertices are
dominated. Now we will show that this gives the optimal solution. Let us take RC3

8 as an example. As shown in Fig. 1(a), the
size of MDS is 4. Notice that each vertex can dominate exact 3 vertices, that is, 4 vertices can dominate exactly 12 vertices.
However, in RC3

8 , there are altogether 16 vertices, which have to be dominated by at least 4 vertices apart from the vertices
in MDS. That is, the algorithm returns an optimal solution. The proof of MVC and MIS is similar. �

Lemma 4.2. MDS, MVC and MIS can be polynomially solvable on κ⃗-branch-d⃗-cycles.

Proof. Again we show the proof of MDS. First we select the vertices connecting both the branches and the cycle. Then by
removing the branches, we will have a line graph regardless of self-loops, on which MDS is polynomially solvable. It is easy
to see that the size of MDS will increase if any one vertex connecting both the branch and the cycle in MDS is replaced by
some other vertices. The proof of MIS is similar. Note that the optimal solution for MVC consists of all vertices since all edges
need to be covered. �

Theorem 4.1 (Cycle-Based Embedding Technique). Any d-bounded graph Gd can be embedded into a power-law graph G(α,β)

with β > 1 such that Gd is a maximal component and most optimal substructure problems can be polynomially solvable on
G(α,β) \ Gd.

Proof. With the given β , we choose α to be max{lnmax1≤i≤d{ni · iβ}, β ln d}. Based on τ(i) = ⌊eα/iβ⌋ − ni where ni = 0
when i > d, we construct the power-law graph G(α,β) as the following Algorithm 1. The last step holds since the number of
vertices of odd degrees has to be even. From Step 1, we know eα

= max{max1≤i≤d{ni · iβ}, dβ
} ≤ dβn, that is, the number

of vertices N in graph G(α,β) satisfies N ≤ ζ (β)dβn, which means that N/n is a constant. According to Lemmas 4.1 and 4.2,

since G(α,β) \ Gd is composed of a d⃗1-regular cycle and a ⃗d12-branch-d⃗2-cycle, it can be polynomially solvable. Note that the
number of vertices in L is at most ∆ since there is at most one leftover vertex of each degree. �
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Algorithm 1: Cycle Embedding Algorithm

1 α← max{lnmax1≤i≤d{ni · iβ}, β ln d};
2 For τ(1) vertices of degree 1, add ⌊τ(1)/2⌋ number of cliques K2;
3 For τ(2) vertices of degree 2, add a cycle with the size τ(2);
4 For all vertices of degree larger than 2 and smaller than ∆, construct a d⃗1-regular cycle where d⃗1 is a vector composed
of ⌊τ(i)/2⌋ number of elements i for all i satisfying τ(i) > 0;

5 For all leftover isolated vertices L such that τ(i)− 2⌊τ(i)/2⌋ = 1, construct a ⃗d12-branch-
⃗d22-cycle, where ⃗d12 and ⃗d22 are

the vectors containing odd and even elements correspondent to the vertices of odd and even degrees in L respectively.

4.2. APX-Hardness

In this section, we prove that MIS, MDS, MVC remain APX-hard even on power-law graphs.
Theorem 4.2. MDS is APX-hard on power-law graphs.
Proof. According to Theorem 4.1, we use the cycle-based embedding technique to show L-reduction from MDS on any
d-bounded graph Gd to MDS on a power-law graph G(α,β) since MDS is proven APX-hard on d-bounded graphs [22].

Letting φ be a feasible solution on Gd, we can construct MDS in G′ such that MDS on a K2 is 1, n/4 on a d⃗-regular
cycle and n/3 on a cycle and a κ⃗-branch-d⃗-cycle. Therefore, for a solution φ on Gd, we have a solution ϕ on G(α,β) to be
ϕ = φ + n1/2 + n2/3 + n3/4, where n1, n2 and n3 corresponds to τ(1), τ(2) ∪ L and all leftover vertices. Hence, we have
OPT (ϕ) = OPT (φ)+ n1/2+ n2/3+ n3/4.

On one hand, for a d-bounded graph with vertices n, the optimal MDS is lower bounded by n/(d+ 1). Thus, we know

OPT (ϕ) = OPT (φ)+ n1/2+ n2/3+ n3/4
≤ OPT (φ)+ (N − n)/2 ≤ OPT (φ)+ (ζ (β)dβ

− 1)n/2
≤ OPT (φ)+ (ζ (β)dβ

− 1)(d+ 1)OPT (φ)/2 =

1+ (ζ (β)dβ

− 1)(d+ 1)/2

OPT (φ)

where N is the number of vertices in G(α,β).
On the other hand, with |OPT (φ)−φ| = |OPT (ϕ)−ϕ|, we proved the L-reduction with c1 = 1+ (ζ (β)dβ

−1)(d+1)/2
and c2 = 1. �

Theorem 4.3. MVC is APX-hard on power-law graphs.
Proof. In this proof, we show L-reduction from MVC on d-bounded graph Gd to MVC on power-law graph G(α,β) using
cycle-based embedding technique.

Let φ be a feasible solution on Gd. We construct the solution ϕ ≤ φ + (N − n) since the optimal solution of MVC is n/2
on K2, cycle, d⃗-regular cycle and n on κ⃗-branch-d⃗-cycle. Therefore, since the optimal MVC on a d-bounded graph is lower
bounded by n/(d+ 1), we have

OPT (ϕ) ≤

1+ (ζ (β)dβ

− 1)(d+ 1)

OPT (φ)

On the other hand, with |OPT (φ)− φ| = |OPT (ϕ)− ϕ|, we proved the L-reduction with c1 = 1+ (ζ (β)dβ
− 1)(d+ 1)

and c2 = 1. �

Corollary 4.1. MIS is APX-hard on power-law graphs.

4.3. Inapproximability factors

In this section, we show the inapproximability factors on MIS, MVC and MDS on power-law graphs respectively using
the results in Section 2.4.
Theorem 4.4. For any ε > 0, there is no 1 + 1

140(2ζ (β)3β−1)
− ε approximation algorithm for Maximum Independent Set on

power-law graphs.
Proof. In this proof, we construct the power-law graph G(α,β) based on cycle-based embedding technique in Theorem 4.1
from d-bounded graph Gd. Let φ and ϕ be feasible solutions of MIS on Gd and G(α,β). Then OPT (ϕ) composed of OPT (φ),
clique K2, cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycles are all exactly half number of vertices. Hence, we have OPT (ϕ) =
OPT (φ) + (N − n)/2 where n and N is the number of vertices in Gd and G(α,β) respectively. Since OPT (φ) ≥ n/(d + 1) on

d-bounded graphs for MIS and N ≤ ζ (β)dβn, we further have C = 1+ (ζ (β)dβ
−1)(d+1)
2 from

OPT (ϕ) = OPT (φ)+
N − n

2
≤ OPT (φ)+

(ζ (β)dβ
− 1)

2
n

≤ OPT (φ)+
(ζ (β)dβ

− 1)(d+ 1)
2

OPT (φ) =


1+

(ζ (β)dβ
− 1)(d+ 1)
2


OPT (φ)
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According to ϵ = 140
139 − ε′ for any ϵ′ > 0 on 3-bounded graphs, then the inapproximability factor can be derived from

inapproximability optimal substructure framework as

δ >
ϵC

(C− 1)ϵ + 1
> 1+

1
140C

− ε = 1+
1

140(2ζ (β)3β − 1)
− ε

where the last step follows from d = 3. �

Theorem 4.5. There is no 1+ 1
390(2ζ (β)3β−1)

approximation algorithm for Minimum Dominating Set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α,β) based on cycle-based embedding technique in Theorem 4.1
from d-bounded graph Gd. Let φ and ϕ be feasible solutions of MDS on Gd and G(α,β). The optimal MDS on OPT (φ), clique K2,
cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycles are n/2, n/4 and n/3 respectively. Let φ and ϕ be feasible solutions of MDS on
Gd and G(α,β). Then we have C = 1+ (ζ (β)dβ

−1)(d+1)
2 similar as the proof in Theorem 4.4.

According to ϵ = 391
390 in 3-bounded graphs, then the inapproximability factor can be derived from inapproximability

optimal substructure framework as

δ > 1+
ϵ − 1

C
= 1+

1
390(2ζ (β)3β − 1)

where the last step follows from d = 3. �

Theorem 4.6. MVC is hard to be approximated within 1 +
2

1−(2+oc (1))

log log c
log c




ζ (β)cβ+c
1
β


(c+1)

on power-law graphs under unique games

conjecture.

Proof. By constructing the power-law graph G(α,β) based on cycle-based embedding technique in Theorem 4.1 from
d-bounded graph Gd, The optimal MVC on clique K2, cycle, d⃗-regular cycle consists of half number of vertices while the

optimal MVC on κ⃗-branch-d⃗-cycles consists of all vertices. Thus, we have C = 1+


ζ (β)dβ

−1+d
1
β


(d+1)

2 since

OPT (ϕ) ≤ OPT (φ)+
N − n−∆

2
+∆ ≤ OPT (φ)+

(ζ (β)dβ
− 1)n+ n

1
β d

2
(4.1)

= OPT (φ)+


ζ (β)dβ

− 1+ d

n
1− 1

β


n

2
(4.2)

≤ OPT (φ)+


ζ (β)dβ

− 1+ d

(d+1)
1− 1

β


(d+ 1)

2
OPT (φ) (4.3)

≤

1+


ζ (β)dβ

− 1+ d
1
β


(d+ 1)

2

OPT (φ) (4.4)

where φ and ϕ are feasible solutions of MVC on Gd and G(α,β), ∆ is the maximum degree in G(α,β). The inequality (4.1) holds
since there are at most ∆ vertices in κ⃗-branch-d⃗-cycle, i.e. ∆ = eα/β

≤ n1/βd; (4.3) holds since there are at least d + 1
vertices in a d-bounded graph and the optimal MVC in a d-bounded graph is at least n/(d+ 1).

According to ϵ = 2−(2+od(1)) log log d/ log d, then the inapproximability factor can be derived from inapproximability
optimal substructure framework as

δ > 1+
ϵ − 1

C
≥ 1+

2

1− (2+ oc(1))

log log c
log c



ζ (β)cβ + c

1
β


(c + 1)

where c is the smallest d satisfying the condition in [15]. The last inequality holds since function f (x) = (1 − (2 +
ox(1)) log log x/ log x)/g(x)(x + 1) is monotonously decreasing when f (x) > 0 for all x > 0 when g(x) is monotonously
increasing. �

Theorem 4.7. ρ-PDS is hard to be approximated into 2−(2+od(1))
log log d
log d on d-bounded graphs under unique games conjecture.

Proof. In this proof, we show the gap-preserving reduction from MVC on (d/ρ)-bounded graph G = (V , E) to ρ-PDS on
d-bounded graph G′ = (V ′, E ′).w.l.o.g., we assume that d and d/ρ are integers. We construct a graph G′ = (V ′, E ′) by adding
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new vertices and edges to G as follows. For each edge (vi, vj) ∈ E, create k new vertices v1
ij, . . . , v

k
ij where 1 ≤ k ≤ ⌊1/ρ⌋

and ρ ≤ 1/2. Then we add 2k new edges (vl
ij, vi) and (vl

ij, vj) for all l ∈ [1, k] as shown in Fig. 2. Clearly, G′ = (V ′, E ′) is a
d-bounded graph.

Let φ and ϕ be feasible solutions to MVC on G and G′ respectively. We claim that OPT (φ) = OPT (ϕ).
On one hand, if S = {v1, v2, . . . , vj} ∈ V is theminimum vertex cover on G. Then {v1, v2, . . . , vj} is a ρ-PDS on G′ because

each vertex in V has ρ of all neighbors in MVC and every new vertex in V ′ \V has at least one of two neighbors in MVC. Thus
OPT (φ) ≥ OPT (ϕ). One the other hand, we can prove that OPT (ϕ) does not contain new vertices, that is, V ′ \ V . Consider
a vertex vi ∈ V , if vi ∈ OPT (ϕ), the new vertices vl

ij for all vj ∈ N(vi) and all l ∈ [1, k] are not needed to be selected. If
vi ∉ OPT (ϕ), it has to be dominated by ρ proportion of its all neighbors. That is, for each edge (vi, vj) incident to vi, either
vj or all vl

ij have to be selected since every vl
ij has to be either selected or dominated. If all vl

ij are selected in OPT (ϕ) for
some edge (vi, vj), vj is still not dominated by enough vertices if there are some more edges incident to vj and the number
of vertices vl

ij k is great than 1, that is, ⌊1/ρ⌋ ≥ 1. In this case, vj will be selected to dominate all vl
ij. Thus, OPT (ϕ) does not

contain new vertices. Since the vertices in V selected is a solution to ρ-MDS, that is, for each vertex vi in graph G, vi will be
selected or at least the number of neighbors of vi will be selected. Therefore, the vertices in OPT (ϕ) consist of a vertex cover
in G. Thus OPT (φ) ≤ OPT (ϕ). Then we show the completeness and soundness as follows.

• If OPT (φ) = m⇒ OPT (ϕ) = m
• If OPT (φ) >


2− (2+ od(1))

log log(d/2)
log(d/2)


m⇒ OPT (ϕ) >


2− (2+ od(1))

log log d
log d


m

OPT (ϕ) >


2− (2+ od(1))

log log(d/ρ)

log(d/ρ)


m >


2− (2+ od(1))

log log d
log d


m

since the function f (x) = 2− log log x/ log x is monotonously increasing for any x > 0. �

Theorem 4.8. ρ-PDS is hard to be approximated into 1 +
2

1−(2+oc (1))

log log c
log c


2+(ζ (β)cβ−1)(c+1)

on power-law graphs under unique games
conjecture.

Proof. By constructing the power-law graph G(α,β) based on cycle-based embedding technique in Theorem 4.1 from
d-bounded graph Gd, and according to the optimal MVC on OPT (φ), clique K2, cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycles,
we have C = 1+ (ζ (β)dβ

−1)(d+1)
2 from

OPT (ϕ) = OPT (φ)+ n1/2+ f (ρ)n2 + g(ρ)n3

≤ OPT (φ)+
N − n

2
≤


1+

(ζ (β)dβ
− 1)(d+ 1)
2


OPT (φ)

where f (ρ) =

 1
4 , ρ ≤ 1

3

1
3 ,

1
3 < ρ ≤ 1

2

, g(ρ) = 1
3 for all ρ ≤ 1

2 and φ, ϕ be feasible solutions of MVC on Gd and G(α,β). n1, n2 and

n3 are correspondent to the number of vertices in cliques K2, cycle, d⃗-regular cycle and κ⃗-branch-d⃗-cycle.
According to ϵ = 2−(2+od(1)) log log d/ log d, then the inapproximability factor can be derived from inapproximability

optimal substructure framework as

δ > 1+
ϵ − 1

C
≥ 1+

2

1− (2+ oc(1))

log log c
log c


2+ (ζ (β)cβ − 1)(c + 1)

where c is the smallest d satisfying the condition in [15]. The last inequality holds since function f (x) = (1 − (2 +
ox(1)) log log x/ log x)/g(x)(x + 1) is monotonously decreasing when f (x) > 0 for all x > 0 when g(x) is monotonously
increasing. �

5. More inapproximability results on simple power-law graphs

5.1. General graphic embedding technique

In this section, we introduce a general graphic embedding technique to embed a d bounded graph into a simple power-
law graph. Before presenting the embedding technique, we first show that a graph can be constructed in polynomial time
from a class of integer sequences.

Lemma 5.1. Given a sequence of integers D = ⟨d1, d2, . . . , dn⟩which is non-increasing, continuous and the number of elements
is at least twice as the largest element in D, i.e. n ≥ 2d1, it is possible to construct a simple graph G whose d-degree sequence is D
in polynomial time O(n2 log n).
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(a) Instance G = (V , E). (b) Reduced instance G′ = (V ′, E ′).

Fig. 2. The reduction from MVC to ρ-MDS.

Proof. Startingwith a set of individual vertices S of degree 0 and |S| = n, we iteratively connect vertices together to increase
their degrees up to given degree sequence. In each step, the leftover vertex of highest degree is connected to other vertices
one by one in the decreasing order of their degrees. Then the sequence D will be resorted and all zero elements will be
removed. The algorithm stops until D is empty. The whole algorithm is shown as follows (Algorithm 2).

Algorithm 2: Graphic Sequence Construction Algorithm
Input : d-degree sequence D = ⟨d1, d2, . . . , dn⟩where d1 ≥ d2 ≥ . . . ≥ dn
Output: Graph H

1 while D ≠ ∅ do
2 Connect vertex of d1 to vertices of d2, d3, . . . , dd1+1;
3 d1 ← 0;
4 for i = 2 to d1 + 1 do
5 di ← di − 1;
6 end
7 Sort D in non-increasing order;
8 Remove all zero elements in D;
9 end

After each while loop, the new degree sequence, called D′, is still continuous and its number of elements is at least as
twice as its maximum element. To show this, we consider three cases: (1) If the maximum degree in D′ remains the same,
there are at least d1 + 2 vertices in D. Since D is continuous, the number of elements in D is at least d1 + 2 + d1 − 1,
that is, 2d1 + 1. Therefore, the number of elements in D′ is 2d1, i.e. n ≥ 2d1 still holds. (2) If the maximum degree in D′ is
decreased by 1, there are at least 2 elements of degree d1 in D. Thus, at most one element in Dwill become 0. Then we have
n ≥ 2d1 − 2 = 2(d1 − 1). (3) If the maximum degree in D′ is decreased by 2, there are at most two elements in D becoming
0. Thus, n ≥ 2d1 − 3 > 2(d1 − 2).

The time complexity of the algorithm is O(n2 log n) since there are at most n iterations and each iteration takes at most
O(n log n) to sort the new sequence D. �

Theorem 5.1 (Graphic Embedding Technique). Any d-bounded graph Gd can be embedded into a simple power-law graph G(α,β)

with β > 1 in polynomial time such that Gd is a maximal component and the number of vertices in G(α,β) can be polynomially
bounded by the number of vertices in Gd.

Proof. Given a d-bounded degree graph Gd = (V , E) and β > 1, we construct a power-law graph G(α,β) of exponential
factor β which includes Gd as a set of maximal components. The construction is shown as Algorithm 3.

Algorithm 3: Graphic Embedding Algorithm

1 α← max{ β

β−1 (ln 4+ β ln d), ln 2+ ln n+ β ln d} and corresponding G(α,β);
2 D be the d-degree sequence of G(α,β) \ Gd;
3 Construct G(α,β) \ Gd using Algorithm 2.
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According to the Lemma 5.1, the above construction is valid and finishes in polynomial time. Then we show that N is
upper bounded by ζ (β)2dβn, where n and N are the number of vertices in Gd and Gα,β respectively. From the construction,
we know either

α ≥
β

β − 1
(ln 4+ β ln d)⇒ α ≥ ln 4+ β ln d+ α/β ⇒

eα

dβ
≥ 4e

α
β

or

α ≥ ln 2+ ln n+ β ln d⇒
eα

dβ
≥ 2n

Therefore, eα

dβ ≥ 2e
α
β + n. Note that


eα

dβ


is the number of vertices of degree d. In addition, G has at most n vertices of

degree d, so D is continuous degree sequence and has the number of vertices at least as twice as the maximum degree.
In addition, when n is large enough, we have α = ln 2+ ln n+ β ln d. Hence, the number of vertices N in Gα,β is bound

as N ≤ ζ (β)eα
= 2ζ (β)dβn, i.e. the number of vertices of Gα,β is polynomial bounded by the number of vertices in Gd. �

5.2. Inapproximability of MIS, MVC and MDS

Theorem 5.2. For any ε > 0, it is NP-hard to approximate Maximum Independent Set within 1 + 1
1120ζ (β)3β − ε on simple

power-law graphs.

Proof. In this proof, we construct the simple power-law graph G(α,β) based on graphic embedding technique in Theorem 5.1
from d-bounded graph Gd. Let φ and ϕ be feasible solutions of MIS on Gd and G(α,β). Since OPT (φ) ≥ n/(d+1) on d-bounded
graphs and N ≤ 2ζ (β)dβn, we further have C = 2ζ (β)dβ(d+ 1) from

OPT (ϕ) ≤ N ≤ 2ζ (β)dβn ≤ 2ζ (β)dβ(d+ 1)OPT (φ)

According to ϵ = 140
139 − ε′ for any ϵ′ > 0 on 3-bounded graphs, then the inapproximability factor can be derived from

inapproximability optimal substructure framework as

δ >
ϵC

(C− 1)ϵ + 1
= 1+

1
140C− 1

− ε > 1+
1

1120ζ (β)3β
− ε. �

Theorem 5.3. It is NP-hard to approximate Minimum Dominating Set within 1+ 1
3120ζ (β)3β on power-law graphs.

Proof. From the proof of Theorem 5.2, we have C = 2ζ (β)dβ(d+ 1). Then according to ϵ = 391
390 on 3-bounded graphs, we

have

δ > 1+
ϵ − 1

C
≥ 1+

1
3120ζ (β)3β

. �

Theorem 5.4. There is no 1+
2−(2+oc (1))

log log c
log c

2ζ (β)cβ (c+1) approximation algorithm of Minimum Vertex Cover on power-law graphs under
unique games conjecture.

Proof. Similar as the proof of Theorem 5.3, we have C = 2ζ (β)dβ(d + 1). Then according to ϵ = 2 − (2 +
od(1)) log log d/ log d, then the inapproximability factor can be derived from inapproximability optimal substructure
framework as

δ > 1+
ϵ − 1

C
≥ 1+

2− (2+ oc(1))
log log c
log c

2ζ (β)cβ(c + 1)

where c is the smallest d satisfying the condition in [15]. �

Theorem 5.5. There is no 1 +
2−(2+oc (1))

log log c
log c

2ζ (β)cβ (c+1) approximation algorithm for Minimum Positive Dominating Set on power-law
graphs.

Proof. Similar as Theorem 5.5, the proof follows from Theorem 4.7. �
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5.3. Maximum clique, minimum coloring

Lemma 5.2 (Ferrante et al. [1]). Let G = (V , E) be a simple graph with n vertices and β ≥ 1. Let α ≥ max{4β, β log n +
log(n+ 1)}. Then, G2 = G \ G1 is a bipartite graph.

Lemma 5.3. Given a function f (x) (x ∈ Z, f (x) ∈ Z+) monotonously decreases, then


x f (x) ≤

x f (x).

Corollary 5.1. eα
eα/β

i=1

 1
d

β
< (eα

− eα/β)/(β − 1).

Theorem 5.6. Maximum Clique cannot be approximated within O

n1/(β+1)−ϵ


on large power-law graphs with β > 1 and

n > 54 for any ϵ > 0 unless NP = ZPP.

Proof. In [1], the authors proved the hardness of Maximum Clique problem on power-law graphs. Here we use the same
construction. According to Lemma 5.2, G2 = G \ G1 is a bipartite graph when α ≥ max{4β, β log n + log(n + 1)} for any
β ≥ 1. Let φ be a solution on general graph G and ϕ be a solution on power-law graph G2. We show the completeness and
soundness.

• If OPT (φ) = m⇒ OPT (ϕ) = m
If OPT (φ) ≤ 2 on graph G, we can solve clique problem in polynomial time by iterating the edges and their endpoints

one by one. However, G is not a general graph in this case. w.l.o.g, assuming OPT (φ) > 2, then OPT (ϕ) = OPT (φ) > 2
since the maximum clique on bipartite graph is 2.

• If OPT (φ) ≤ m/n1−ϵ
⇒ OPT (ϕ) < O


1/(N1/(β+1)−ϵ′)


m

In this case, we consider the case that 4β < β log n + log(n + 1), that is, n > 54. According to Lemma 5.2, let
α = β log n+ log(n+ 1). From Corollary 5.1, we have

N = eα
∆
i=1


1
i

β

<
eα
− eα/β

β − 1
=

nβ(n+ 1)− n(n+ 1)1/β

β − 1
<

2nβ+1
− n

β − 1

Therefore, OPT (ϕ) = OPT (φ) ≤ m/n1−ϵ < O

m/

N1/(β+1)−ϵ′


. �

Corollary 5.2. MinimumColoring problem cannot be approximatedwithin O

n1/(β+1)−ϵ


on large power-law graphswithβ > 1

and n > 54 for any ϵ > 0 unless NP = ZPP.

6. Relationship between β and approximation hardness

As shown in previous sections, many hardness and inapproximability results are dependent on β . In this section, we
analyze the hardness of some optimal substructure problems based on β by showing that trivial greedy algorithms can
achieve constant guarantee factors for MIS and MDS.

Lemma 6.1. When β > 2, the size of MDS of a power-law graph is greater than Cn where n is the number of vertices, C is some
constant only dependent on β .

Proof. Let S = (v1, v2, . . . , vt) of degrees d1, d2, . . . , dt be the MDS of power-law graph G(α,β). Observing that the
total degrees of vertices in dominating set must be at least the number of vertices outside the dominating set, we havei=t

i=1 di ≥ |V \ S|. With a given total degree, a set of vertices has minimum size when it includes the vertices of highest
degrees. Since the function ζ (β − 1) =


∞

i=1
1

iβ−1
converges when β > 2, there exists a constant t0 = t0(β) such that

∆
i=t0

i

eα

iβ


≥

t0
i=1


eα

iβ


where α is any large enough constant. Thus the size of MDS is at least

∆
i=t0


eα

iβ


≈


ζ (β)−

t0−1
i=1

1
iβ


eα
≈ C |V |

where C = (ζ (β)−
t0

i=1
1
iβ )/(ζ (β)). �

Consider the greedy algorithm which selects from the vertices of the highest degree to the lowest. In the worst case, it
selects all verticeswith degree greater than1 and ahalf of verticeswith degree 1 to formadominating set. The approximation
factor of this simple algorithm is a constant.
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Corollary 6.1. Given a power-law graph with β > 2, the greedy algorithm that selects vertices in decreasing order of
degrees provides a dominating set of size at most

∆

i=2


eα/iβ


+

1
2 e

α
≈ (ζ (β) − 1/2)eα . Thus the approximation ratio is

(ζ (β)− 1
2 )/(ζ (β)−

t0
i=1 1/i

β).

Let us consider another maximization problem MIS, we propose a greedy algorithm Power-law-Greedy-MIS as follows.
We sort the vertices in non-increasing order of degrees and start checking from the vertex of lowest degree. If the vertex
is not adjacent to any selected vertex, it is selected. The set of selected vertices forms an independent set with the size at
least a half the number of vertices of degree 1 which is eα/2. The size of MIS is at most a half of number of vertices. Thus,
the following lemma holds.

Lemma 6.2. Power-law-Greedy-MIS has factor 1/(2ζ (β)) on power-law graphs with β > 1.

7. Conclusion

In this paper, we analyzed the approximation hardness and inapproximability of optimal substructure problems on
power-law graphs. These problems are only illustrated in the literature not be able to approximated into some constant
factors on both general and simple power-law graphs although they remain APX-hard. However, we also notice that the gap
between inapproximability factor and the simple constant approximation ratio of these problems is still not small enough
and the hardness on power-law graph is weaker than that on degree bounded graphs. A question is raised: Is there any
efficient reduction which is not from bounded graph will improve the hardness results on power-law graphs? Can we get
stronger hardness results based on some specific power-law models? For example, if the number of vertices only follow
power-law distribution when degree is larger than some constant i0, we can reduce from graph of degree bounded by i0 and
get better results.

On the contrary, we also show that Max Clique and Graph Coloring are still very hard to be approximated since the
optimal solutions to these problems are dependent on the structure of local graph component rather than global graph. In
other words, the power-law distribution in degree sequence does not help much for such optimization problems without
the property of optimal substructure.
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Appendix. Embedding construction with β < 1

Ferrante et al. [1] proved the NP-hardness of MIS, MDS, and MVC where β < 1 based on Lemma A.1 which is invalid. A
counter-example is as follows. Let D1 = ⟨3, 2, 2, 1⟩ and D2 = ⟨7, 6, 5, 4, 3, 2, 2, 1⟩ then D1 is eligible and Y1 = ⟨1, 2, 1⟩,
Y2 = ⟨1, 2, 1, 1, 1, 1, 1⟩ but D2 is NOT eligible with fD2(4) < 0. In this appendix, we present an alternative lemma to prove
the hardness of these problems on power-law graphs with β < 1.

Definition A.1 (d-Degree Sequence). Given a graph G = (V , E), the d-degree sequence of G is a sequence D = ⟨d1, d2,
. . . , dn⟩ of vertex degrees in non-increasing order.

Definition A.2 (y-Degree Sequence). Given a graph G = (V , E), the y-degree sequence of G is a sequence Y = ⟨y1, y2,
. . . , ym⟩wherem is the maximum degree of G and yi = |{u|u ∈ V ∧ deg(u) = i}|.

Definition A.3 (Eligible Sequences). A sequence of integers S = ⟨s1, . . . , sn⟩ is eligible if s1 ≥ s2 ≥ . . . ≥ sn and fS(k) ≥ 0
for all k ∈ [n], where

fS(k) = k(k− 1)+
n

i=k+1

min{k, si} −
k

i=1

si

Lemma A.1 (Invalid Lemma in [1]). Let Y1 and Y2 be two y-degree sequences with m1 and m2 elements respectively such that
(1) Y1(i) ≤ Y2(i), ∀1 ≤ i ≤ m1, and (2) two corresponding d-degree sequences D1 and D2 are contiguous. If D1 is eligible then D2
is eligible.

Erdős and Gallai [23] showed that an integer sequence is graphic - d-degree sequence of an graph, if and only if it is
eligible and the total of all elements is even. Then Havel and Hakimi [24] gave an algorithm to construct a simple graph from
a degree sequence.

Lemma A.2 ([24]). A sequence of integers D = ⟨d1, . . . , dn⟩ is graphic if and only if it is non-increasing and the sequence of
values D′ = ⟨d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn⟩ sorted in non-increasing order is graphic.
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We now prove the following lemma, which can substitute Lemma A.1 for the NP-hardness proof in [1].

Lemma A.3. Given an undirected graph G = (V , E), 0 < β < 1, there exists polynomial time algorithm to construct a power-law
graph G′ = (V ′, E ′) of exponential factor β such that G is a set of maximal components of G′.

Proof. To construct G′, we choose α = max{β ln(n − 1) + ln(n + 2), 3 ln 2}. Then ⌊eα/((n − 1)β)⌋ > n + 2, i.e. there are
at least 2 vertices of degree d in G′ \ G if there are a least 2 vertices of degree d in G′. According to the definition, the total
degrees of all vertices in G′ and G are even. Therefore, the lemmawill follow if we prove that the degree sequence D of G′ \G
is eligible.

In D, the maximum degree is ⌊eα/β
⌋. There is only one vertex of degree i if 1 ≤ eα/iβ < 2, i.e. eα/β

≥ i > (eα/2)1/β .
Let us consider fD(k) in two cases:

1. Case 1: k ≤

eα/β/2


fD(k) = k(k− 1)+

n
i=k+1

min{k, di} −
k

i=1

di

> k(k− 1)+
T−k
i=k

k+
k−1
i=B

i+
B−1
i=1

2−
k

i=1

(T − k+ 1)

= k(T − k)+ (k− B)(k− 1+ B)/2+ B(B− 1)− k(2T − k+ 1)/2
= (B2

− B)/2− k

where T =

eα/β


and B =


(eα/2)1/β


+ 1. Note that α/β > ln 2 (2/β + 1) since α > 3 ln 2 and 0 < β < 1. Hence

(eα/2)1/β

+ 1

 
(eα/2)1/β


>

eα/β


≥ 2k, that is, fD(k) > 0.

2. Case 2: k >

eα/β/2


fD(k+ 1) ≥ fD(k)+ 2k− 2dk+1 ≥ fD(k) ≥ · · · ≥ fD


eα/β/2


> 0. �
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