
IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 1

The evolution of overlapping communities
in dynamic mobile networks

Nam P. Nguyen, Yilin Shen, Thang N. Dinh, Student member, IEEE and My T. Thai, Member, IEEE

Abstract—Many practical problems on Mobile networks, such as routing strategies in MANETs, sensor reprogramming in WSNs and
worm containment in online social networks (OSNs) share an ubiquitous, yet interesting feature in their organizations: community
structure. Knowledge of this structure provides us not only crucial information about the network principles, but also key insights into
designing more effective algorithms for practical problems enabled by Mobile networking. However, understanding this interesting
feature is extremely challenging on dynamic networks where changes to their topologies are frequently introduced, and especially
when network communities in reality usually overlap with each other.
We focus on the following questions (1) Can we effectively detect the overlapping community structure in a dynamic network? (2) Can
we quickly and adaptively update the network structure only based on its history without recomputing from scratch? (3) How does the
detection of network communities help mobile applications? We proposeAFOCS, a two-phase framework for not only detecting quickly
but also tracing effectively the evolution of overlapped network communities in dynamic mobile networks. With the great advantages of
the overlapping community structure, AFOCS significantly helps in reducing up to 7 times the infection rates in worm containment on
OSNs, and up to 11 times overhead while maintaining good delivery time and ratio in forwarding strategies in MANETs.

Index Terms—Overlapping community structure, Dynamic network, Adaptive algorithm, Worm containment, Routing in MANETs.

F

1 INTRODUCTION

The rapid and exceptional growing of mobile network
has called for a deeper understanding of its organization
principles, in order to develop better techniques for a
wide range of problems enabled by mobile networking.
Many practical problems, such as forwarding and rout-
ing strategies in MANETs [1], sensor reprogramming in
WSNs [2] and worm containment in cellular networks
[3], [4] appear to share an ubiquitous and interesting
property: the property of containing community struc-
ture, i.e., there are groups of devices or people that
frequently communicate more with each other than with
the others in the underlying organizations.

In a general concept, a community is a group of tight-
knit nodes having more internal than external connec-
tions [5], [6]. For instance, a community in MANETs
often comprises of sensors or mobile devices that are
frequently transmitting data to each other than to other
devices. Similarly, since people have a natural tendency
to form groups of communication, a community in a
cellular network usually consists of mobile devices that
often call or text each other. The detection of network
community structure, as a result, provides us a better
knowledge about its characteristics as well as its or-
ganization principles, thereby providing more efficient
solutions for mobile networking problems such as for-
warding in MANETs or worm containment in OSNs.

• Nam P. Nguyen, Yilin Shen, Thang N. Dinh and My T. Thai are with
the Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL.
E-mail: {nanguyen, yshen, tdinh, mythai}@cise.ufl.edu

Particularly, how does community structure help in Mobile
applications? Indeed, detecting network communities is
of considerable advantage in mobile networks. Let us
consider the worm containment in cellular networks [3],
or in OSNs [4], [7]. Nowadays, many social applications
such as Facebook, Twitter and FourSquare, are able to
run on open-API enabled mobile devices like PDAs and
Iphones. However, if such an application is infected
with malicious software, such as worms or viruses, this
openness will also make it easier for their propagation.
A possible solution to prevent worms from spreading
out wider is to send patches to critical users and let
them redistribute to the others. Intuitively, the smaller
the set of important users for sending patches, the better.
But how can we effectively choose that set of minimal
size? This is where community structure comes into the
picture and helps. In particular, we show that selecting
users in the boundaries of the overlapped nodes gives
a tighter and more efficient set of influential users, thus
significantly lowers the number of sent patches as well
as overhead information, which are essential in cellular
networks and OSNs.

Another great advantage of community structure can
be found in the forwarding problem in communication
networks. Due to the high mobility of devices, an ap-
parent challenge for a forwarding method is to quickly
forward the message from the source to the destination,
without introducing too many duplicate messages or
overhead information. Since people tend to form groups
of communication, there are also communities of tightly
connected devices in the underlying network as a refec-
tion. A good forwarding strategy, as soon as it discovers
the network structure, can actively forward messages to

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 2

devices sharing more common community labels with
the destination, rather than simply sending messages to
those in the same community as the destination. With the
helpful knowledge of network communities, this strat-
egy will considerably reduce the number of duplicate
messages while maintaining good delivery ratios, as we
shall see in Section 8. This example, again, amplifies the
importance of an efficient community detection method
in mobile networks.

Mobile networks in reality are highly dynamic and
thus, their communities are not always disjoint from
each other. Indeed, their communities often overlap with
each other since some active devices can participate in
multiple groups at the same time, thereby reassemble
the concept of overlapping community structure. Fur-
thermore, most practical models for mobile network
problems evolve frequently over time due to the high
mobility of participating devices. Although any slight
change does not seem to have a significant effect on the
network structure, the evolution of the mobile network
over a long duration might lead to an unpredictable
transformation of its communities, particularly when
they can overlap. This drives a crucial need of reidenti-
fication. However, the rapid changing network topology
makes this an extremely challenging problem, especially
on dynamic mobile networks.

A naive solution to the above problem would try to
repeatedly execute one of the available static methods
[8], [9], [10] to find new communities whenever the net-
work changes; doing so, nonetheless, suffers from some
major disadvantages (1) the huge consumption of time
and computing resources on large networks and (2) the
almost same reactions to some local parts of the network.
Intuitively, a much better approach should adaptively
update the current community structure based on its his-
tory and the network changes only, thus can eventually
avoid the hassle of redetection.

Motivated by this intuition and the applicability of
overlapping community structure, we propose AFOCS
(Adaptive FOCS), an adaptive framework for detect-
ing, updating and tracing the evolution of overlap-
ping communities in dynamic mobile networks. Our
two-phase framework first identifies all possible basic
network communities with FOCS (short for Finding
Overlapping Community Structure), and then employs
AFOCS to adaptively update these structures as the
network evolves. Since only AFOCS will stay up and
handle all changes introduced to the network, this adap-
tive phase is the main focus of the paper, and hence
composes the name of our framework.

In order to effectively handle network changes,
AFOCS decomposes them into simpler events in such
a way that each event can be quickly handled. Thanks
to this feature, AFOCS can eventually obviate the need
of reidentifying the network community structure every
time. Both FOCS and AFOCS require β, the overlapping
threshold, as the only input for their entire operations.
This requirement is essential since network communities

can overlap at different scales, and as a result, we do
need a control parameter in order to certify how much
the overlap means to them.

The contributions of our work are threefold: First,
we propose AFOCS, a two-phase adaptive framework
for not only detecting and updating the overlapping
network communities but also tracing their evolution
over time. Theoretical analyses show AFOCS partially
achieves more than 0.74% internal density of the op-
timal solution. Second, We evaluate AFOCS on both
synthesized and real traces in comparison to both the
state-of-the-art and the most popular static detection
methods COPRA [10] and CFinder [8], as well as
to recent adaptive methods FacetNet [11], iLCD [12]
and OSLOM [13]. Empirical results show that AFOCS
achieves both competitively results and high quality
community structures in a timely manner. Finally, with
AFOCS, we suggest a community based forwarding
strategy for communication networks that reduces up
to 11x overhead information while maintaining compet-
itively delivery time and ratio. We also propose a new
social-aware patching scheme for containing worms in
OSNs, which helps reducing up to 7x the infection rates
on Facebook dataset.

2 RELATED WORK

Community detection in complex networks has attracted
huge attention since its introduction. In general, one
can classify detection methods in two main categories
including non-overlapping versus overlapping commu-
nities, and on static networks versus on dynamic net-
works. Many efficient methods have been proposed for
detecting both non-overlapping and overlapping com-
munities on static networks, among which CFinder [8]
and COPRA [10] have remarked themselves as the
most popular and most effective methods once fed with
correct parameters [14]. A recent work [15] detailed a
survey and benchmark on those algorithms.

Detecting communities on dynamic networks, both on
overlapping and disjoint structures, has so far been
an untrodden area. [4] proposed QCA, an adaptive
method that can update and trace the network struc-
ture through a series of changes. This method is quick
and effective, however, is not able to detect overlapped
communities. [11] proposed FacetNet, a framework for
analyzing communities in dynamic networks based on
the optimization of snapshot costs. FaceNet is guaran-
teed to converge to a local optimal solution; however,
its convergence speed is slow and its input asks for
the number of network communities which are usually
unknown in practice. [16] proposed Stream−Group, an
incremental method to solve the community mining and
detect the change points in weighted dynamic graphs.
This method is modularity-based thus may inherit the
resolution limit while discovering network communi-
ties. In another attempt, [17] suggested a particle-and-
density based clustering method for dynamic networks,

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 3

based on the extended modularity and the concepts
of nano-community and l-quasi-clique-by-clique. Apart
from that, [12] proposed iLCD to find the overlapping
network communities by adding edges and then merg-
ing similar ones. However, this model might not be suffi-
cient in consideration with the dynamic behaviors of the
network when new nodes are introduced or removed,
or when existing edges are removed from the network.
In [13], the author presented OSLOM, a framework
for testing the statistical significance of a cluster with
respect to a global null model (e.g., a random graph).
To expand a community, OSLOM locally computes the
value r for each neighbor node and tries to include that
node into the current community. Comparison between
AFOCS and these aforementioned dynamic methods is
conducted in section 6.

3 PROBLEM FORMULATION

3.1 Basic notations

Let G = (V,E) be an undirected unweighted graph
representing a network where V is the set of N nodes
and E is the set of M connections. Denote by C =
{C1, C2, ..., Ck} the network community structure, i.e.,
a collection of subsets of V where each Ci ∈ C and
its induced subgraph form a community of G. In con-
trast with the disjoint community structure, we allow
Ci ∩ Cj 6= ∅ so that network communities can overlap
with each other. For a node u ∈ V , let du, N(u) and
Com(u) denote its degree, its neighbors and its set of
community labels, respectively. For any C ⊆ V , let Cin

and Cout denote the set of links having both endpoints
in C and the set of links having exactly one endpoint in
C, respectively. Finally, the terms node-vertex as well as
edge-link-connection are used interchangeably.

3.2 Dynamic network model

Let G0 = (V0, E0) be the original input network and
Gt = (Vt, Et) be a time dependent network snapshot
recorded at time t. Denote by ∆Vt and ∆Et the sets of
nodes and edges to be added to or removed from the
network at time t. Furthermore, let ∆Gt = (∆Vt,∆Et)
describe this change in terms of the whole network. The
network snapshot at next time step t + 1 is expressed
as a combination of the previous one together with the
change, i.e., Gt+1 = Gt∪∆Gt. Finally, a dynamic network G
is defined as a sequence of network snapshots changing
over time: G = (G0, G1, G2, ...).

3.3 Density function

In order to quantify the goodness of an identified com-
munity, we use the popular density function Ψ [18]
defined as: Ψ(C) = |Cin|

(|C|2)
where C ⊆ V . The more C

approaches a clique of its size, the higher its density
value Ψ(C). In order to set up a threshold on the internal

Fig. 1. Overlapped v.s. non-overlapped community struc-
ture. The central clique violates the general concept of
community in both strong and weak senses

density that suffices for C to be a local community, we
propose a function τ(C) defined as follows:

τ(C) =
σ(C)(|C|

2

) where σ(C) =

(
|C|
2

)1− 1

(|C|2)

Here σ(C) is the threshold on the number of inner
connections that suffices for C to be a local community.
Particularly, a subgraph induced by C is a local commu-
nity iff Ψ(C) ≥ τ(C) or equivalently |Cin| ≥ σ(C).

Several functions with the same purpose have been
introduced in the literature, for instance, in the work of
[9], [19], and it is worth noting down the main differ-
ences between them and ours. First and foremost, our
functions τ(C) and σ(C) locally process on the candidate
community C only and neither require any predefined
thresholds or user-input parameters. Secondly, by Propo-
sition 1, σ(C) and τ(C) are increasing functions and
closely approach C’s full connectivity as well as its
maximal density. That makes σ(C) and τ(C) relaxation
versions of the traditional density function, yet useful
ones as we shall see in the experiments.

Proposition 1: The function f(n) = n1− 1
n is strictly

increasing for n ≥ 4 and limn→∞ f(n) = n.

3.4 Objective function

Our objective is to find a community assignment for
the set of nodes V which maximizes the overall internal
density function Ψ(C) =

∑
C∈C Ψ(C) since the higher the

internal density of a community is, the clearer its struc-
ture would be. Unlike the case of disjoint community
structure, in which the number of connections crossing
communities should be less than those inside them, our
objective does not take into account the number of out-
going links from each community.

To understand the reason, let us consider a simple
example pictured in Figure 1. In the overlapping com-
munity structure point of view, it is clear that every
clique should form a community on its own, and each
community shares with the central clique exactly one
node. However, in the disjoint community structure
point of view, any vertex at the central clique has n
internal and 2n external connections, which violates the

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 4

concept of a community in the strong sense. Further-
more, the internal connectivity of the central clique is
also dominated by its external density, which implies the
concept of a community in weak sense is also violated.
(A community C is in weak sense if |Cin| > |Cout|, and
in strong sense if any node in C has more links inward
than outward C [20]).

3.5 Problem Definition
Given a dynamic network G = (G0, G1, G2, ...) where G0

is the input network and G1, G2, ... are network snap-
shots obtained through a collection of network topology
changes ∆G1,∆G2, ... over time. The problem asks for
an adaptive framework to efficiently detect and update
the network overlapping community structure Ct at any
time point t by only utilizing the information from the
previous snapshot Ct−1, as well as tracing the evolution
of the network communities.

In the next section, we present our main contribu-
tion: an adaptive framework for (1) identifying basic
overlapped community structure in a network snapshot
and (2) updating as well as tracing the evolution of
the network communities in a dynamic network model.
First, we describe FOCS, a procedure to identify the
basic communities in a static network, and then discuss
in great detail how AFOCS adaptively updates these
basic communities to cater with the evolution of the
dynamic network.

4 BASIC COMMUNITY STRUCTURE

We describe FOCS, the first phase of our framework
that quickly discovers the basic overlapping network
community structure. In general, FOCS works toward
the classification of network nodes into different groups
by first locating all possible densely connected parts
of the network (4.1), and then combining those who
highly overlap with each other, i.e., those share a sig-
nificant substructure (4.2). Finally, a final refinement to
group unassigned nodes into different communities is
conducted in (4.3).

In FOCS, β (the input overlapping threshold) defines
how much substructure two communities can share.
Note that FOCS fundamentally differs from [21] in the
way it allows |Ci ∩ Cj | ≥ 2 for any subsets Ci, Cj of
V , and consequently allows network communities to
overlap not only at a single vertex but also at a part
of the whole community.

4.1 Locating local communities
Local communities are connected parts of the network
whose internal densities are greater than a certain level.
In FOCS, this level is automatically determined based
on the function τ() and the size of each corresponding
part. Particularly, a local community is defined based
on a connection (u, v) when the number of internal
connections in the subgraph induced by C ≡ {u, v} ∪

(N(u) ∩ N(v)) exceeds σ(C), or in other words, when
Ψ(C) ≥ τ(C) as illustrated in Figure 2(a).

However, there is a problem that might eventually
arise: the containment of sub communities in an ac-
tual bigger one. Intuitively, one would like to detect
a bigger community unified by smaller ones if the
bigger community is itself densely connected. In order
to filter this undesired case, we impose Ψ

(⋃s
i=1 Ci

)
<

τ
(⋃s

i=1 Ci
)
∀s = 1...|C| (note that some of these unifica-

tions do not contain all the nodes). In addition, we allow
this locating procedure to skip over tiny communities
of size less than 4. This condition is carried out from
Proposition 1. This makes sense in terms of mobile or
social networks where a group of mobile devices or a
social community usually has size larger than 3, and
intuitively agrees with the finding of [22], [23]. Thus,
the condition |C| ≥ 4 is imposed for any community C
we discuss hereafter. The tiny communities will then be
identified later. Alg. 1 describes this procedure.

Algorithm 1 Locating local communities
Input: G = (V,E)
Output: A collection of raw communities Cr .
1: for (u, v) ∈ E do
2: if Com(u) ∩ Com(v) = ∅ then
3: Let C = {u, v} ∪N(u) ∩N(v);
4: if |Cin| ≥ σ(C) and |C| ≥ 4 then
5: Check C’s connectivity if |C| = 5;
6: Define C a local community;
7: /*Include C into the raw community structure*/
8: Cr = Cr ∪ {C};
9: end if

10: end if
11: end for

Lemma 1: All local communities C’s detected by Alg.
1 satisfy Ψ(C) ≥ τ(4) ≈ 0.74. Furthermore, other com-
munities satisfying these conditions will also be detected
by Alg. 1.

Theorem 1: The local community structure Cr detected
by Alg. 1 satisfies Ψ(Cr) ≥ τ(4) × Ψ(OPT) where OPT
is the optimal dense community assignment satisfying
Ψ(S) ≥ τ(4) for any S ∈ OPT .

Lemma 2: The time complexity of Alg. 1 is O(dM)
where d = maxv∈V dv (Note: All proofs are included in
the appendix).

4.2 Combining overlapping communities
After Alg. 1 finishes, the raw network community struc-
ture is pictured as a collection of (possibly overlapped)
dense parts of the network together with outliers. As
some of those dense parts can possibly share significant
substructures, we need to merge them if they are highly
overlapped. To this end, we introduce the overlapping
score of two communities defined as follow

OS(Ci, Cj) =
|Iij |

min{|Ci|, |Cj |}
+

|Iinij |
min{|Cini |, |Cinj |}

where Iij = Ci ∩ Cj . Basically, OS(Ci, Cj) values how
important the common nodes and links shared be-
tween Ci and Cj mean to the smaller community. In

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 5

u v

(a) (b) (a)

u v

(a) (b) (b)

Fig. 2. (a) A local community C defined by a link (u, v).
Here Ψ(C) = 0.9 > τ(C) = 0.794 (b) Merging two local
communities sharing a significant substructure (OS score
= 1.027 > β = 0.8)

comparison with the distance metric suggested in [24],
our overlapping score not only takes into account the
fraction of common nodes but also values the fraction
of common connections, which is crucial in order to
combine network communities. Furthermore, OS(·, ·) is
symmetric and scales well with the size of any com-
munity, and the higher the overlapping score, the more
those communities in consideration should be merged.
In this merging process, we combine communities Ci
and Cj if OS(Ci, Cj) ≥ β (Figure 2(b)).

Algorithm 2 Combining local communities
Input: Raw community structure Cr
Output: A refined community structure Cf .
1: Cf ← Cr ;
2: Done = false;
3: for Ci, Cj ∈ Cr and !Done do
4: Done = true;
5: if OS(Ci, Cj) > β then
6: C ← Combine Ci and Cj ;
7: /*Update the current structure*/
8: Cf = (Cf\{Ci ∪ Cj}) ∪ C;
9: Done← False;

10: end if
11: end for

The time complexity of Alg. 2 is O(N2
0) where N0 is

the number of local communities. Clearly, N0 ≤ M and
thus, it can be O(M2). However, when the intersection
of two communities is upper bounded, by Lemma 3
we know that the number of local communities is also
upper bounded by O(N), and thus, the time complexity
of Alg. 2 is O(N2). In our experiments, we observe that
the running time of this procedure is, indeed, much less
than O(N2).

Lemma 3: The number of raw communities detected
in Alg. 1 is O(N) when the number of nodes in the
intersection of any two communities is upper bounded
by a constant α.

4.3 Revisiting unassigned nodes
Even when the above two procedures are executed, there
would still exist leftover nodes or edges due to their less
attraction to the rest of the network. Because of its size
constraint, the first procedure skips over tiny commu-
nities of sizes less than four and thus, may leave out
some nodes unlabeled. These nodes will not be touched

in the second phase since they do not belong to any local
communities, and consequently, will remain unassigned
afterwards. Therefore, we need to revisit those nodes
to either group them into appropriate communities or
classify them as outliers based on their connectivity
structures.

Alternatively, this process can be thought of as a com-
munity trying to hire adjacent unassigned nodes which
are similar to the host community. To this end, we need
a community fitness function in order to quantify the
similarity between a node u and a neighbor community
C. We find the fitness function FS = |Sin|

2|Sin|+|Sout| (where
S ⊆ V) commonly used in [25], [9], [24] performs com-
petitively in both synthesized and real-world datasets.
Taking into account this fitness function, a community
C will keep hiring any unassigned adjacent vertex of
maximum similarity in a greedy manner, provided the
newly joined vertex does not shrink down the commu-
nity’s current fitness value. If there is no such node, C is
defined as a final network community. Nodes remained
unlabeled through this last procedure are identified as
outliers. The detailed algorithm is presented in Alg. 3.

Algorithm 3 Revisit Unassigned Nodes
Input: The refined community structure Cf = {C′1, C

′
2, ..., C

′
t}

Output: The basic community structure C = {C1, C2, ..., Ck}
1: C = Cf ;
2: for u ∈ V and Com(u) = ∅ do
3: Let NC(u) = {Cj ∈ C|u is adjacent to Cj};
4: for Cj ∈ NC(u) do
5: if FCj∪{u} ≥ FCj

then
6: Cj ← Cj ∪ {u};
7: Com(u)← Com(u) ∪ {j};
8: end if
9: end for

10: if Com(u) = ∅ then
11: Classify u as an outlier;
12: end if
13: end for

5 DETECTING EVOLVING NETWORK
COMMUNITIES

We describe AFOCS, the second phase and also the
main focus of our detection framework. In particular,
we use AFOCS to adaptively update and trace the
network communities, which were previously initialized
by FOCS, as the dynamic network evolves over time.
Note that FOCS is executed only once on G0, after
that AFOCS will take over and handle all changes
introduced to the network.

Let us first discuss the various behaviors of the com-
munity structure when the network topology evolves
over time. Suppose G = (V,E) and C = {C1, C2, .., Cn} is
the current network and its corresponding overlapping
community structure, respectively. We use the term intra
links to denote edges whose two endpoints belong to
the same community, inter links to denote those with
endpoints connecting different disjoint communities and
the term hybrid links to stand for the others. For each
community C of G, the number of connections joining C

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 6

with the others are lesser than the number of connections
within C itself by definition

Intuitively, the addition of intra links or removal of in-
ter links between communities of G will strengthen them
and consequently, will make the structure of G more
clear. Similarly, removing intra links from or introducing
inter links to a community of G will decrease its internal
density and as a result, loosen its internal structure.
However, when two communities have less distraction
to each other, adding or removing links makes them
more attractive to each other and therefore, leaves a
possibility that they can overlap with each other or can
be combined to form a new community. The updating
process, as a result, is very complicated and challenging
since any insignificant change in the network topology
could possibly lead to an unpredictable transformation
of the network community structure.

In order to reflect these changes to a complex network,
its underlying graph model is frequently updated by
either inserting or removing a node or a set of nodes,
or an edge or a set of edges. A scrutiny look into these
events reveals that the introduction or removal of a set
of nodes (or edges) can furthermore be decomposed as
a collection of node (or edge) insertions (or removals),
in which only a node (or only an edge) is inserted (or
removed) at a time. Therefore, changes to the network at
each time step can be viewed as a collection of simpler
events whose details are as follow:
• newNode (V + u): A new node u and its adjacent

edge(s) are introduced
• removeNode (V − u): A node u and its adjacent

edge(s) are removed from the network.
• newEdge (E + e): A new edge e connecting two

existing nodes is introduced.
• removeEdge (E − e): An edge e in the network is

removed.
As we mentioned earlier, our adaptive framework ini-
tially requires a basic community structure C0. To obtain
this basic structure, we apply FOCS algorithm at the
first network snapshot, i.e., we execute FOCS on the
network G0 and then let AFOCS adaptively handle this
structure as the network evolves.

5.1 Handling a new node
Let us discuss the first case when a new node u and
its associated links are introduced to the network. Pos-
sibilities are (1) u may come with no adjacent edge or
(2) with many of them connecting one or more possibly
overlapped communities. If u has no adjacent edge, we
simply join u in the set of outliers and preserve the
current community structure.

The interesting case happens, and it usually does,
when u comes with multiple links connecting one ore
more existing communities. Since network communities
can overlap each other, we need to determine which ones
u should join in in order to maximize the gained internal
density. But how can we quickly and effectively do so?

u

Fig. 3. When a new node u is introduced, u could gather
some nodes from an existing community (red) to form a
new community (yellow)

By Lemma 4, we give a necessary condition for a new
node in order to join in an existing community, i.e., our
algorithm will join node u in C if the number of connec-
tions u has to C suffices: dui > max{ 2|Cin

i |
|Ci|−1 , f(|Ci|+ 1)−

|Cini |}. However, failing to satisfy this condition does not
necessarily imply that u should not belong to C, since it
can potentially gather some substructure of C to form a
new community (Figure 3). Thus, we also need to handle
this possibility. Alg. 4 presents the algorithm.

Algorithm 4 Handling a new node u
Input: The current community structure Ct−1

Output: An updated structure Ct.
1: C1, C2, ..., Ck ← Adjacent communities of u;
2: for i = 1 do to k
3: if dui > max{ 2|Cin

i |
|Ci|−1

, f(|Ci|+ 1)− |Cin
i |} then

4: Ci ← Ci ∪ {u};
5: else
6: C ← N(u) ∩ Ci;
7: if Ψ(C) ≥ τ(C) and |C| ≥ 4 then
8: Ci ← Ci ∪ {u};
9: end if

10: end if
11: end for
12: /*Checking new community from outliers*/
13: for v ∈ N(u) and Com(v) ∩ Com(u) = ∅ do
14: C ≡ N(u) ∩N(v);
15: if Ψ(C) ≥ τ(C) and |C| ≥ 4 then
16: Define C a new community;
17: end if
18: end for
19: Merging overlapping communities on C1, C2, ..., Ck ;
20: Update Ct;

Lemma 4: Suppose u is a newly introduced node with
dui connections to each adjacent community Ci. u will
join in Ci if dui > max{ 2|Cin

i |
|Ci|−1 , f(|Ci|+ 1)− |Cini |}.

The analysis of Alg. 4 is shown by Lemma 5. In
particular, we show that this procedure achieves at least
0.74% internal density of the optimal assignment for u,
given the prior community structure.

Lemma 5: Alg. 4 produces a community assignment
that, prior to the community combination process,
achieves Ψ(Ct) ≥ τ(4) × Ψ(OPT (u)t) where OPT (u)t is
the optimal community assignment for u at time t, given
the prior community structure Ct−1.

5.2 Handling a new edge

In case where a new edge e = (u, v) connecting two
existing vertices u and v is introduced, we divide it
further into two four smaller cases: (1) e is solely inside

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 7

(a) (b)

Fig. 4. (a) The network with 4 disjoint communities (b)
When the central edge is added, the central nodes form a
new community (yellow)

a single community C (2) e is within the intersection
of two (or more) communities (3) e is joining two sep-
arated communities and (4) e is crossing overlapped
communities. If e is totally inside a community C, its
presence will strengthen C’s internal density and by
Lemma 6, we know that adding e should not split the
current community C into smaller substructures. The
same reaction applies in the second subcase when e is
within the intersection of two communities since their
inner densities are both increased. Thus, in these first
two cases, we leave the current network structure intact.

Handling the last two subcases is complicated since
any of them can either have no effect on the current
network structure or unpredictably form a new network
community, and furthermore can overlap or merge with
the others (Figure 4). However, there is still a possibility
that the introduction of this new link, together with
some substructure of Cu or Cv , suffices to form a new
community that can overlap with not only Cu and Cv
but also with some of the others. The other subcases can
be handled similarly. Alg. 5 describe this procedure.

Algorithm 5 Handling a new edge (u, v)
Input: The current community structure Ct−1.
Output: An updated community structure Ct.
1: if ((u, v) ∈ a single community OR (u, v) ∈ Cu ∩ Cv) then
2: Ct ← Ct−1;
3: else if Com(u) ∩ Com(v) = ∅ then
4: C ← N(u) ∩N(v);
5: if Ψ(C) ≥ τ(C) then
6: Define C a new community;
7: Check for combining on Com(u), Com(v) and C;
8: else
9: for D ∈ Com(u) (or D′ ∈ Com(v)) do

10: if Ψ(D ∪ {v}) ≥ τ(D) (or Ψ(D′ ∪ {u}) ≥ τ(D′)) then
11: D ← D ∪ {v} (or D′ ← D′ ∪ {u})
12: end if
13: end for
14: Merging overlapping communities for D’s (or D′);
15: end if
16: Update Ct;
17: end if

Lemma 6: If an new edge (u, v) is introduced solely
inside a community C, it should not split C into smaller
substructures.

(a) (b)

Fig. 5. (a) Two overlapped communities (b) When the
central node is removed, the new structure consists of two
disjoint communities

5.3 Removing an existing node

When an existing node u is about to be removed from the
network, all of its adjacent edges will also be removed as
a consequence. If u is an outlier, we can simply exclude
u and its corresponding links from the current structure
and safely keep the network communities unchanged.

In unfortunate situations where u is not an outlier,
the problem becomes very challenging in the sense that
the resulting community is complicated: it can either
be unchanged, or broken into smaller communities, or
could probably be merged with the other communities.
To give a sense of this effect, let’s consider two examples
illustrated in Figure 5. In the first example, when C
is almost a full clique, the removal of any node will
not break it apart. However, if we a remove node that
tends to connect the others within a community, the
leftover module is broken into a smaller one together
with a node that will later be merged to one of its
nearby communities. Therefore, identifying the leftover
structure of C is a crucial task once a vertex u in C is
removed.

To quickly handle this task, we first examine the
internal density of C excluding the removed node u.
If the number of internal connections still suffices, e.g
Ψ(C\{u}) ≥ τ(C\{u}), we can safely keep the current
network communities intact. Otherwise, we apply Alg.
1 on the subgraph induced by C\{u} to quickly identify
the leftover modules in C, and then let these modules
hire a set of unassigned nodes Ψ(C) that help them
increasing their inner densities. Finally, we locally check
for community combination, if any, by using an algo-
rithm similar to Alg. 2.

Algorithm 6 Removing a node u
Input: The current community structure Ct−1.
Output: An updated structure Ct.
1: for C ∈ Com(u) and Ψ(C\{u}) < τ(C\{u}) do
2: LC ← Local communities by Alg 1 on C\{u};
3: for Ci ∈ LC and |Ci| ≥ 4 do
4: Si ← Nodes such that Ψ(Ci ∪ Si) ≥ τ(Ci ∪ Si);
5: Ci ← Ci ∪ Si;
6: end for
7: Merging overlapping communities on LC;
8: end for
9: Update Ct;

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 8

(a) (b)

Fig. 6. (a) The original community (b) When the dotted
edge is removed, the community is broken into two over-
lapped communities

5.4 Removing an edge
In the last situation when an edge e = (u, v) is about
to be removed, we divide it further into four subcases
similar to those of a new edge (1) e is between two
disjoint communities (2) e is inside a sole community (3)
e is within the intersection of two (or more) communities
and finally (4) e is crossing overlapping communities.

In the first subcase, when e is crossing two disjoint
communities, its removal will make the network struc-
ture more clear (since we now have less connections
between groups), and thus, the current communities
should be keep unchanged. When e is totally within a
sole community C, handling its removal is complicated
since this can lead to an unpredictable transformation of
the host module: C could either be unchanged or broken
into smaller modules if it contains substructures which
are less attractive to each other, as depicted in Figure 6.
Therefore, the problem of identify the structure of the
remaining module becomes the central part for not only
this case but also for the others.

To quickly handle these tasks, we first verify the inner
density of the remaining module and, again utilize the
local community location method (Alg. 1) to locally
identify the leftover substructures. Next, we check for
community combination since these structures can pos-
sibly overlap with existing network communities. The
detailed procedure is described in Alg. 7.

Algorithm 7 Removing an edge (u, v)
Input: The current structure Ct−1.
Output: An updated community structure Ct.
1: if (u, v) is an isolated edge then
2: Ct = (Ct−1\{u, v}) ∪ {u} ∪ {v};
3: else if du = 1 (or dv = 1) then
4: Ct = (Ct−1\C(u)) ∪ {u} ∪ C(v);
5: else if C ≡ C(u) ∩ C(v) = ∅ then
6: Ct = Ct−1;
7: else if Ψ(C\(u, v)) < τ(C\(u, v)) then /*Here C 6= ∅*/
8: LC ← Local communities by Alg 1 on C\(u, v);
9: Define each L ∈ LC a local community of Ct−1;

10: Merging overlapping community on L’s;
11: end if
12: Update Ct;

5.5 Remarks
Note that the ultimate goal of our framework is to
adaptively detect and update the community structure

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 M
ul

tu
al

 In
fo

rm
at

io
n

Overlapping Fraction

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

0.40
0.50
0.60
0.67
0.70
0.80
0.90

Fig. 7. NMI scores for different values of β. N = 5000
(top), N = 1000 (bottom), µ = 0.1 (left), µ = 0.3 (right).

as the network evolves, i.e., to mainly deal with the
dynamics of a mobile network. As a result, we mainly
put our focus on AFOCS. Although FOCS, the first
detection phase, appears to be a centralized algorithm,
it is executed only once at the very first network snap-
shot whereas AFOCS stays up and locally handles all
changes as the network evolves over time. That said,
we do not execute FOCS again. Furthermore, AFOCS
can be run independently with FOCS, i.e., one can
use any localized detection algorithm to identify a basic
community structure at the first phase. Thus, AFOCS
can be easily apply to mobile network problems, as
presented in sections 7 and 8.

6 EXPERIMENTAL RESULTS

In this section, we first present the empirical results
of AFOCS in comaprison with two static detection
methods: CFinder - the most popular method [8], and
COPRA - the most effective method [10]. We next com-
pare the performance of AFOCS with other dynamic
methods including OSLOM [13], FacetNet [11] and
iLCD [12].

Data Sets: We use networks generated by the well-
known LFR overlapping benchmark [15], the ‘de facto’
standard for evaluating overlapping community detec-
tion algorithms. Generated networks follow power-law
degree distributions and contain embedded overlapping
communities (the ground truth) of varying sizes that cap-
ture the internal characteristics of real-world networks.

Set up: To fairly compare with COPRA and to avoid
being biased, we keep the parameters close to [10]: the
minimum and maximum community sizes are cmin = 10
and cmax = 50, each vertex belongs to at most two
communities, om = 2. N = 1000 and N = 5000Ṫhe
mixing rate µ = 0.1 and µ = 0.3. The overlapping fraction
γ, which determines the fraction of overlapped nodes, is
from 0 to 0.5. Since COPRA is nondeterministic, we run
it 10 times on each instance and select the best result.

Metrics: We evaluate following metrics.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 9

 35

 40

 45

 50

 55

 60

 65

 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 C

om
m

un
iti

es

Overlapping fraction

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 180

 200

 220

 240

 260

 280

 300

 320

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
AFOCS

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

(a) Number of communities

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 M
ul

tu
al

 In
fo

rm
at

io
n

Overlapping Fraction

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

AFOCS
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

(b) NMI scores

Fig. 8. Comparison among AFOCS, COPRA and CFinder methods. N = 5000 (top), N = 1000 (bottom), µ = 0.1
(left), µ = 0.3 (right).

(1) The generalized Normalized Mutual Information
(NMI) [9] specially built for overlapping communities.
NMI scores the similarity between the detected network
communities and the ground truth. This is an standard-
ized measure since NMI(U, V) = 1 if structures U and
V are identical and 0 if they are totally separated.

(2) The number of communities, ignoring singleton com-
munities and unassigned nodes. A good community
detection method should produce roughly the same
number of communities with the known ground truth.

6.1 Choosing the overlapping threshold β

The overlapping threshold β is the only input parameter
required by our framework, and thus, determining its
appropriate value plays an important role in assessing
AFOCS’s performance. To best determine this thresh-
old, we run AFOCS on generated networks with differ-
ent values of β, and record the similarities between the
detected communities and the ground-truth via NMI
scores (Figure 7). Of course, the higher NMI scores
imply the better β values.

As a threshold parameter, β controls how much sub-
structure communities can have in common. The smaller
values of β imply the more we allow network communi-
ties to overlap with each other, and vice versa. Similarly,
β can be thought of as the zooming scale of the network
structure where lower β’s reveal the coarser and higher
β’s reveal the finer structure. As depicted in Figure 7, the
best values for β are ranging from 0.67 to 0.80, among
which β = 0.70 yields the best community similarity
(NMI scores are ranging from 0.8 to 1) in all of the
generated networks. Therefore, we fix the overlapping
threshold in AFOCS to be 0.70 hereafter.

6.2 Reference to static methods
We show our results in groups of four. For each case we
vary the overlapping fraction γ from 0 to 0.5 and analyze

the results found by AFOCS, CFinder, and COPRA.
We only present results when corresponding parameters
give top performance for CFinder (clique size k = 4, 5)
and COPRA (max. communities per vertex v = 3, 6).

Figure 8(a) shows the number of communities found
by AFOCS, COPRA and CFinder and the ground
truth. It reveals from this figure that the numbers of
communities found by AFOCS, marked with squares,
are the closest and almost identical to the ground truth
as the overlapping fraction gets higher. There is an
exception when N = 1000 and µ = 0.3 which we will
discuss later. As one can infer from Figure 8(b), AFOCS
achieves the highest performance among all methods
with much more stable. A common trend in this test
is the performances of all methods degrade (1) when
the mixing rate µ increases, i.e., when the community
structure becomes more ambiguous or (2) when the size
of network decreases while the mixing rate µ stays the
same. Even though AFOCS is not very competitive only
when both negative factors happen in the bottom-right
char as N = 1000 and µ = 0.3, it is in general the best
performer.

The significant gap is observed when the mixing rate
gets higher (µ = 0.3) and the network size gets smaller
(N = 1000). AFOCS provides less numbers of commu-
nities than those of the ground truth but with much
higher overlapping rates. The reason is with a larger
mixing rate µ, a node will have more edges connecting
vertices in other communities, thus increases the chance
that AFOCS will merge highly overlapped communi-
ties. Hence, AFOCS creates less but with larger size
communities. We note that this ‘weakness’ of AFOCS
is controversial as when the mixing rate increases, the
ground truth does not necessarily coincide with the
structure implied by the network’s topology. Extensive
experiments show the ability of AFOCS in identify-
ing high quality overlapping communities. In addition,

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 10

 0

 50

 100

 150

 200

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

1
0

0
0

,
µ=

0
.1

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

1
0

0
0

,
µ=

0
.3

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

5
0

0
0

,
µ=

0
.1

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5

#
 o

f
c
o

m
m

u
n

it
ie

s
 (

N
=

5
0

0
0

,
µ=

0
.3

)

Time point

Ground-truth
AFOCS

iLCD
OSLOM

(a) Number of communities

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
1

0
0

0
,

µ=
0

.1
)

Time point

AFOCS
iLCD

FacetNet
OSLOM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
1

0
0

0
,

µ=
0

.3
)

Time point

AFOCS
iLCD

FacetNet
OSLOM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
5

0
0

0
,

µ=
0

.1
)

Time point

AFOCS
iLCD

FacetNet
OSLOM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
M

I
(N

=
5

0
0

0
,

µ=
0

.3
)

Time point

AFOCS
iLCD

FacetNet
OSLOM

(b) NMI scores

Fig. 9. Comparison among AFOCS, iLCD, FacetNet and OSLOM dynamic methods.

we found AFOCS runs substantially faster than the
other competitors: on the network containing 63K nodes,
AFOCS is 150x faster than COPRA while CFinder is
unable to finish its tasks.

6.3 Reference to other dynamic methods
We next observe the performance of AFOCS in reference
to two dynamic methods FacetNet [11], iLCD [12] and
OSLOM [13]. Since the ground-truth communities are
known on synthesized datasets, fair comparisons among
three methods can be obtained via their NMI scores and
running times. Of course, the higher its NMI scores with
less time consuming, the better the method seems to be.

Each synthesized dynamic network is simulated via 5
snapshots, in which the basic communities are formed by
using 50% of the network data with approximately 770
edges added to each growing snapshot at a time. Since
FacetNet requires the number of communities a priori,
we input this method the actual number as mined form
the ground-truth. For iLCD and OSLOM methods, we
keep the default setting as provided in their deliverable.

The NMI scores of four methods are presented in
Figure 9(b) and 9(a). It reveals from these subfigures
that the NMI scores of AFOCS are higher than those of
FacetNet, iLCD and OSLOM . In particular, the NMI
scores of AFOCS are about just 5-7% lag behind that
of OSLOM and iLCD in the first 2 network snapshots,
while are much better than the others at the end of the
evolution. The OSLOM ’ NMI values are very high at the
very beginning, however, they tend to decrease quickly
as more connections and nodes are introduced. The NMI
scores of iLCD and FacetNet tend to fluctuate and also
decrease significantly at the last snapshot. AFOCS, in
the other trend, keeps its NMI scores high and wealthy,
especially at the end of the network evolution. This im-
plies communities discovered by AFOCS are of higher
similarity to the ground-truth than the other dynamic
methods, especially in the long run.

The number of communities found by all methods
are reported in Figure 9(a). Of course, the closer these
detected numbers of communities to the ground-truth,
the better the method are believed to be. As revealed
in the subfigures of Figure 9(a), these quantities dis-
covred by AFOCS tend to closely approach the actually
numbers, even when the mixing rates are high (right
figures). The highest similarity between these numbers
of communities is possibly the best explaination for the
high NMI scores of AFOCS over the other competitors.

We next take a look at the running time of all methods
in these synthesized networks. AFOCS requires at most
5 seconds to finish updating each network snapshot
whereas FacetNet asks for more than 25 seconds (5x
more time consuming) in the networks with just 5000
nodes. iLCD and OSLOM also perform fast in these
generated datasets; however, the similarity of the de-
tected communities and the ground-truth is surprisingly
poor, as revealed from the results. Therefore, in terms of
dynamic approaches, we strongly believe that AFOCS
achieves competitive community detection results in a
timely manner. These results also provide us the con-
fidence when applying AFOCS to analyze real-world
networks.

7 COMMUNITY-BASED FORWARDING IN COM-
MUNICATION NETWORKS

We present a practical application where the detection
of overlapping network communities plays a vital role
in forwarding strategies in communication networks.
With the helpful knowledge of the network community
structure, we propose a new community-based forward-
ing algorithm that significantly reduces the number of
duplicate messages while maintaining competitive de-
livery times and ratios, which are essential factors of a
forwarding strategy.

Many routing methods based on the discovery of
network community structure have been proposed in the

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

(a) Average Duplicate Message

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

(b) Delivery Ratio

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45

Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

AFOCS

(c) Average Delivery Time

Fig. 10. Experimental results on the Reality Mining data set

literature [26], [27], [28]. However, the community de-
tection cores in those strategies encounter (1) the lack of
knowledge about overlapping communities and (2) the
repeated identification of communities as the network
evolves. The second issue is computationally costly and
time consuming, thus may reduce the performance of
those forwarding strategies.

7.1 Message forwarding strategy
Let us first discuss how our new forwarding algorithm
works in practice and then how AFOCS helps it to
overcome the above limitations. We use AFOCS to
detect overlapping communities and keep it up-to-date
as the network changes. Each node in a community is
assigned the same label and each overlapped node u
has a set of corresponding labels Com(u). During the
network operation, if a devices u carrying the message
meets another device v who indeed shares more com-
mon community labels with the destination than u, i.e.,
|Com(v) ∩ Com(dest)| > |Com(u) ∩ Com(dest)|, then u
will forward the message to v. The same actions then
apply to v as well as to devices that v meets.

The intuition behinds this strategy is that if v shares
more communities with the destination nodes, it is likely
that v will have more chances to deliver the message
to the destination. By doing in this way, we not only
have higher chances to correctly forward the messages
but also generate much less duplicate messages. Due to
its adaptive nature and the ability of identifying overlap-
ping communities, AFOCS helps our algorithm to over-
come the above shortcomings naturally. This explains
why our forwarding algorithm can significantly reduce
the number of duplicate messages while maintaining
very competitive delivery times and ratios.

7.2 Experiment setup
We compare six forwarding strategies (1) MIEN : A
recently proposed social-aware routing strategy on
MANETs [1] (2) LABEL: A node will forward the
messages to another node if it is in the same community
as the destination [29] (3) WAIT : The source node waits
and keeps forwarding the message until it meets the

destination (4) MCP : A node keeps forwarding the
messages until they reach the maximum number of
hops (5) QCA: A LABEL version utilizing QCA [4]
as the adaptive disjoint community detection method
and lastly (6) AFOCS: Our newly proposed forwarding
algorithm equipped with AFOCS as an community
detection and update core.

Results of WAIT and MCP algorithms provide us the
lower and upper bounds of important factors: message
delivery ratio, time redundancy and message redun-
dancy. Our experiments are performed on the Real-
ity Mining dataset provided by the MIT Media Lab
[30]. This dataset contains communication, proximity,
location, and activity information from 100 students at
MIT over the course of the 2004-2005 academic year. In
particular, we take into account the Bluetooth informa-
tion to construct the underlying communication network
and evaluate the performance of the above six routing
strategies.

In each experiment, 500 message sending requests are
randomly generated and distributed in different time
points. To control the forwarding process, we use hop-
limit, time-to-live, and max-copies parameters. A message
cannot be forwarded more than hop-limit hops in the
network or exist in the process longer than time-to-live,
otherwise it will be automatically discarded. Moreover,
the maximum number of same messages a device can
forward to the others is restricted by max-copies. Exper-
iments results are repeated and results are averaged for
consistency.

7.3 Results
Our results are presented in Figures 10(a), 10(b), 10(c).
The first observation reveals that our proposed forward-
ing algorithm achieves the lowest number of duplicate
messages as depicted in Figure 10(a), and even far better
than the second best method QCA. On average, only 46.5
duplicate messages are generated by AFOCS during
evaluation process in contrast with 212.2 of QCA, 274.2
of MIEN , 496.4 of LABEL and the huge 1071.0 over-
head messages of MCP . Thus, on the number of dupli-
cate messages, AFOCS strikingly achieves improvement
factors of 4.5x, 5x, 11x and 23x over these mentioned

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 12

strategies, respectively. These extremely low overhead
strongly imply the efficiency of AFOCS in communi-
cation networks.

Figures 10(b) and 10(c) present our results on the other
two important factors, the message delivery ratios and
delivery times. These figures supportively indicate that
AFOCS achieves competitive results on both of these
vital factors. In general, AFOCS is the second best strat-
egy with almost no noticeable different between itself
and the leader method LABEL. On average, AFOCS
gets 33% of the total messages delivered in 3569.2s and
only a little bit lags over MCP (34% in 3465.3s) and
LABEL (slightly over 33% in 3462.7s), and is far better
than MIEN (32% in 3537.6s) and QCA (32% in 3572.2s).
This can be explained by the advantages of knowing the
overlapping community structure: the disjoint network
communities in QCA and MIEN can possibly have
messages forwarded to the wrong communities when
the destination changes its membership. With the ability
of quickly updating the network structure, AFOCS can
efficiently cope with this change and thus, can still
provide the most updated forwarding information.

In summary, AFOCS helps our forwarding strategy
to reduce up to 11x the number of duplicate messages
while keeping good average delivery ratio and time.
These experimental results are highly competitive and
supportively confirm the effectiveness of AFOCS and
our new routing algorithm on communication networks.

8 CONTAINING WORMS USING OVERLAPPING
COMMUNITIES
We show another application of AFOCS in worm con-
tainment problem on OSNs. OSNs are good places for
people to socialize online or to stay in touch with friends
and colleagues. However, when some of the users are
infected with malicious software, such as viruses or
worms, OSNs are also fertile grounds for their rapid
propagations. Since mobile devices are able to access
online social applications nowadays, worms and viruses
now can target computers [4] and mobile devices [3].

Recently, community structure-based methods have
been proven to be effective solutions to prevent worms
from spreading out wider on not only social networks
[4], [7] but also cellular networks [3]. Due to the high and
low frequencies of interactions inside and between com-
munities, worms spread out quicker within a community
than between communities. Therefore, an appropriate
reaction should first contain worms into only infected
communities, and then prevent them from getting out-
side. This strategy can be accomplished by patching the
most influential members who are well-connected not only
to members of their community but also to people in
other communities.

8.1 Setup
In our experiments, we use Facebook network dataset
collected in [31]. This data set contains friendship in-
formation and wall posts among New Orleans regional

(a) Influential users selection

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

AFOCS QCA Blondel Zhu’s

N
um

be
r

of
 p

at
ch

ed
 n

od
es

Method

1752

3552 3569
3347

(b) Number of patched nodes

Fig. 11. OverCom patching scheme

network, spanning from Sep 2006 to Jan 2009. The data
set contains more than 63.7K nodes (users) connected
by more than 1.5 million friendship links. We keep other
parameters as well as the “Koobface” worm propagation
model the same as [7] for comparison convenience. With
the advantages of knowledge overlapping communities,
we are able to develop a better and more efficient
patching scheme. In particular, we enhance the patching
scheme presented in in [7] to take the advantage of the
overlap regions: nodes in the boundary of overlapped
regions are selected for patching (Figure 11(a)). Alg 8
details the adjusted scheme.

Algorithm 8 OverCom Patching Scheme
Input: G = (V,E) and C = {C1, C2, ..., Ck} detected by AFOCS
Output: A set of patched nodes IS.
1: IS = ∅;
2: for Ci, Cj ∈ C do
3: if Ci ∩ Cj 6= ∅ then
4: %Choose the neighbors of overlapped nodes as influential ones%
5: IS = IS ∪N(u) ∀u ∈ Ci ∩ Cj ;
6: end if
7: end for
8: %Patch distribution procedure%
9: for u ∈ IS do

10: Send patches to u;
11: Let u redistribute patches to w ∈ IS\N(u);
12: end for

8.2 Results
We compare the OverCom patching scheme and over-
lapping communities found by AFOCS to those using
disjoint communities proposed by Blondel et al [32],
QCA by Nguyen et al [4] and Clustering based method
suggested by Zhu et al [3]. The number of patched nodes
is shown in Figure 11(b). Both the number of patched
nodes and the infection rates decline remarkably. In
particular, the number of nodes to send patch in AFOCS
is substantially smaller by half of those required by
Blondel, QCA as well as Zhu′s methods: only 1725
nodes over 63K nodes in the networks are needed to be
patched by OverCom patching scheme, while the other
schemes require nearly twice (≥3,300 nodes). The reason
behind this improvement is due to the nature of our
AFOCS framework, the neighbors of the overlapped
nodes should not be to far away from the center of each
community, thus they can easily redistribute the patches
once received.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 13

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n
 r

a
te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

(a) α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n
 r

a
te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

(b) α = 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

c
ti
o
n
 r

a
te

Percentage of patched nodes

QCAs
Blondel

Zhu’s
AFOCS

(c) α = 20%

Fig. 12. Infection rates between four methods

We next present the achieved infection rates with
alarming thresholds (the fraction of infected nodes over
all nodes) α = 2%, 10% and 20%, respectively. This
threshold alarms the distribution process as soon as the
infected rate goes beyond α. The results are reported
in Figures 12(a), 12(b), 12(c), respectively. In general,
the higher α (i.e., the longer we wait), the more nodes
we have to send patches and the higher infection rate.
OverCom with AFOCS achieves the lowest infection
rates in almost all the experiments and just a little bit
lag behind when α = 10%. In particular, when α = 2%,
AFOCS helps OverCom to remarkably reduce from 1.6x
up to 4.3x the infection rates of QCA, from 2.6x up to
4x the infection rates of Blondel and 3.2x to 7x those
of Zhu′s method. When α = 10%, AFOCS + OverCom
achieves average improved rates of 9% over QCA, 5%
over Blondel and 43% over Zhu′s methods. As α =
20%, the average improvements are 12%, 23% and 53%,
respectively. Due to the nature of the event handling
processes, the neighbors of overlapped nodes are not
located far away from the rest of their communities. As a
result, they can help to distribute patches to more users
in the communities, hence help to lower the infection
rates of AFOCS. These improvement factors, again,
confirm the effectiveness of our proposed method.

9 CONCLUSION

In this paper, we presented AFOCS, a two-phase frame-
work for detecting network overlapping communities as
well as tracing their evolution in dynamic mobile net-
works. Analyses show that AFOCS partially achieves no
less than 83% internal density of the optimal community
assignment. Experiments on synthesis and real-world
data traces show good results. We show two mobile ap-
plications, namely forwarding and routing in MANETs
and worm containment on OSNs, in which AFOCS
significantly helps to increase the performances up to
11x and 7x, respectively. These results confirm the effec-
tiveness of AFOCS as well as its applicability in mobile
applications. In our future work, we plan to improve the
performance of AFOCS by taking into account the sta-
bility of the network community structure. In particular,
we aim to discover not only overlapping communities

but also stable ones whose internal interactions remain
significant over a long period of time, or over a random
perturbation. We hope that this new feature will further
improve AFOCS on mobile networks.

ACKNOWLEDGMENTS
This work is supported by the NSF under CAREER
Award #0953284, by the DTRA YIP grant HDTRA1-09-
1-0061, and by the DTRA grant HDTRA1-08-10.

REFERENCES
[1] T. N. Dinh, Y. Xuan, and M. T. Thai, “Towards social-aware

routing in dynamic communication networks,” IPCCC, ’09.
[2] B. Pasztor, L. Mottola, C. Mascolo, G. Picco, S. Ellwood, and

D. Macdonald, “Selective reprogramming of mobile sensor net-
works through social community detection,” Wireless Sensor Net-
works, ’10.

[3] Z. Zou, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social
network based patching scheme for worm containment in cellular
networks,” in INFOCOM, ’09.

[4] N. P. Nguyen, T. N. Dinh, Y. Xuan, and M. T. Thai, “Adaptive
algorithms for detecting community structure in dynamic social
networks,” INFOCOM, ’11.

[5] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks.” PNAS, ’02.

[6] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in
networks,” Notices of the AMS, ’09.

[7] N. P. Nguyen, Y. Xuan, and M. T. Thai, “A novel method for
worm containment on dynamic social netowrks,” MILCOM, ’10.

[8] G. Palla, I. Derenyi, I. Farkas1, and T. Vicsek, “Uncovering the
overlapping community structure of complex networks in nature
and society,” Nature, ’05.

[9] A. Lancichinetti, S. Fortunato, and K. Jnos, “Detecting the overlap-
ping and hierarchical community structure in complex networks,”
New J. of Phys., ’09.

[10] S. Gregory, “Finding overlapping communities in networks by
label propagation,” New J. of Physics, ’10.

[11] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Anlyzing
communities and their evolutions in dynamic social networks,”
ACM TKDD, ’09.

[12] R. Cazabet, F. Amblard, and C. Hanachi, “Detection of overlap-
ping communities in dynamical social networks,” in SocialCom,
’10.

[13] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. Fortunato, “Find-
ing statistically significant communities in networks,” PLoS ONE
6: e18961, ’11.

[14] L. Peel, “Estimating network parameters for selecting community
detection algorithms,” FUSION, ’10.

[15] A. Lancichinetti and S. Fortunato, “Community detection algo-
rithms: A comparative analysis,” Phys. rev. E. 80, ’09.

[16] D. Duan, Y. Li, Y. Jin, and Z. Lu, “Community mining on dynamic
weighted directed graphs,” in CNIKM, ’09.

[17] M.-S. Kim and J. Han, “A particle-and-density based evolutionary
clustering method for dynamic networks,” VLDB Endow., 2009.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 14

[18] S. Fortunato and C. Castellano, “Community structure in graphs,”
arXiv, ’07.

[19] A. Lzr, D. bel, and T. Vicsek, “Modularity measure of networks
with overlapping communities,” Euro. Let., ’10.

[20] F. Radicchi, C. Castellano, F. .Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks,” Proc. Natl.
Acad. Sci. USA, ’04.

[21] J. P. B. Y-Y Ahn and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, ’10.

[22] S. Fortunato, “Community detection in graphs,” Phys. Reports, ’10.
[23] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,

“Statistical properties of community structure in large social and
information networks,” in WWW, ’08.

[24] C. Lee, F. Reid, A. McDaid, and N. Hurley, “Detecting highly
overlapping community structure by greedy clique expansion,”
in KDD, ’10.

[25] M. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, and
A. Wallace, “Finding overlapping communities in social net-
works,” in SOCIALCOM, ’10.

[26] P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft, “Distributed
community detection in delay tolerant networks,” in MobiArch,
’07.

[27] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in MobiHoc, ’07.

[28] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based
forwarding in delay tolerant networks,” in MobiHoc, ’08.

[29] P. Hui and J. Crowcroft, “How small labels create big improve-
ments,” PERCOMW, ’07.

[30] E. Nathan and A. Pentland, “Reality mining: sensing complex
social systems,” Personal Ubiquitous Comput., ’06.

[31] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in 2nd ACM SIGCOMM
Workshop on Social Networks, ’09.

[32] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech.: Theory
and Experiment, ’08.

PLACE
PHOTO
HERE

Nam P. Nguyen received his B.S. and M.S. de-
grees in Applied Mathematics from Vietnam Na-
tional University, HCMC (in 2007) and University
of Ohio, USA (in 2009). He is currently a Ph.D.
student at the CISE Department, University of
Florida, under the supervision of Dr. My T. Thai.
His research interests include Dynamic complex
networks, Social networks; Cascading failures;
Combinatorial optimization and Approximation
Algorithms.

PLACE
PHOTO
HERE

Yilin Shen is currently a PhD student at the De-
partment of Computer and Information Science
and Engineering, University of Florida, under
the supervision of Dr. My T. Thai. His research
focuses on vulnerability assessment and secu-
rity of complex networks, including communi-
cation networks, wireless sensor networks and
social networks, and designing approximation
algorithms for network optimization problems.
He is a student member of the IEEE.

PLACE
PHOTO
HERE

Thang N. Dinh (S’11) received the B.A. de-
gree in Information Technology from Vietnam
National University, Hanoi, Vietnam (2007). He
is currently a Ph.D. student at the CISE Depart-
ment, University of Florida, under the supervi-
sion of Dr. My T. Thai. His research focuses on
designing combinatorial optimization methods
for dynamic complex networks and mobile ad
hoc network including network vulnerability, dy-
namic community structure, and fast information
propagation. He is a IEEE student member.

PLACE
PHOTO
HERE

My T. Thai (M’06) received her Ph.D. degree
in computer science from the University of Min-
nesota, Twin Cities, in 2006. She is an associate
professor in the CISE Department, University of
Florida. Her current research interests include
algorithms and optimization on network science
and engineering. She also serves as an asso-
ciate editor for the Journal of Combinatorial Opti-
mization (JOCO) and Optimization Letters and a
conference chair of COCOON 2010 and several
workshops in an area of network science. She

is a recipient of DoD Young Investigator Awards and NSF CAREER
awards. She is a member of the IEEE.

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, MARCH 20XX 15

APPENDIX

PROOF OF LEMMA 1
Alg. 1 will examine every edge (u, v) ∈ E (except those
whose endpoints are already in the same community),
and by this greedy nature, any local community it detects
has |C| > 4 and Ψ(C) ≥ τ(C) ≥ τ(4) ≈ 0.74.

We now show that any community C statisfying
|C| ≥ 4 and Ψ(C) ≥ τ(C) ≥ τ(4) will also be detected
by Alg. 1. Suppose otherwise, that is there exists a
community C satisfying these two conditions and is not
detected by Alg. 1. To prove that this is not the case, we
do the following (1) Construct a community D which
is not detected by Alg. 1 with |D| = n ≡ |C| and
Ψ(D) is maximized, and (2) show that Ψ(D) < τ(D).
Because |D| = |C|, it implies τ(D) = τ(C). However,
since Ψ(D) is maximized, Ψ(D) ≥ Ψ(C) which in turn
implies Ψ(C) ≤ Ψ(D) < τ(D) = τ(C). This raises
a contradiction to our original assumption, and thus
concludes the proof.

To construct D, we do as follow (i) make D a clique
of size n, and (ii) remove edges from D one by one until
D cannot be detected by Alg. 1. By doing in this way,
Ψ(D) is maximized iff the number of removed edges is
minimized.

It is easy to find the least number of edges we have
to remove from D is n/2 if n is even and n/2 − 1 if n
is odd. Therefore, mD = n(n − 1)/2 − n/2 if n is even,
and mD = n(n − 1)/2 − (n − 1)/2 if n is odd. Now,
Ψ(D) < τ(D) iff mD <

(n(n−1)
2

)1− 2
n(n−1) . Let f(n) be the

difference between the left and the right hand sides, we
show that f(n) < 0 as n increases. Taking the derivative
of f(n) gives f ′(4) < 0 and f(n) < f(4) < 0 for all
even n > 4, and f ′(7) < 0 and f(n) < f(7) < 0 for all
odd n > 7. When n = 5, f(5) > 0 but this is the only
exception and thus, can be handled easily in line 5 of
Alg. 1. Therefore, we have Ψ(D) < τ(D), and hence, the
conclusion follows.

PROOF OF THEOREM 1
Let Cr be the local community structure returned by
Alg. 1, and OPT be the optimal solution of the dense
community assignment satisfying Ψ(S) ≥ τ(4) for any
S ∈ OPT . Let k = |OPT |. Clearly Ψ(OPT) ≤ k. By
Lemma 1, we know that Alg. 1 can detect as many
communities as OPT but probably with less internal
density. Moreover, since Alg. 1 only skips over edges
in a community, it ensures that no real community is a
substructure of a bigger one. Hence, we have Ψ(Cr) ≥
τ(4) × k ≈ 0.74 × Ψ(OPT). This also implies that Alg.
1 is an 0.74-approximation algorithm for finding local
densely connected communities.

PROOF OF LEMMA 2
Time to examine an edge (u, v) is |N(u)| + |N(v)| =
du + dv . However, when u and v are in the same com-
munity, (u, v) will be skipped. Therefore, the total time
complexity is upper bounded by d

∑
u∈V du = O(dM).

PROOF OF LEMMA 3
For each Ci ∈ C, decompose it into overlapped and non-
overlapped parts, denoted by Covi and Cnovi . We have
Ci = Covi ∪ Cnovi and Covi ∩ Cnovi = ∅. Therefore, |Ci| =
|Covi |+ |Cnovi |.

Now,
∑
Ci∈C |Ci| =

∑
Ci∈C(|C

ov
i | + |Cnovi |) ≤ N +∑

i<j |Covi ∩ Cnovj |, where N =
∑
Ci∈C |C

nov
i | +∣∣⋃

Ci∈C |C
ov
i |
∣∣. For an upper bound of the second term,

rewrite
∑
i<j |Covi ∩ Cnovj | ≤ N +

∑
|Ci∩Cj |≥2 |Ci ∩ Cj | ≤

N(1 + α) where α = max{|Ci ∩ Cj | : |Ci ∩ Cj | ≥ 2}
Hence,

∑
Ci∈C |Ci| ≤ N(2 + α). Let N0 be the number

of raw communities, it follows that N0 min{|Ci|} ≤∑
Ci∈C |Ci| ≤ (2 + α)N . Since min{|Ci|} ≥ 4, we have

N0 ≤ (2+α)
4 N = O(N).

PROOF OF LEMMA 4
Prior to u joining to Ci, the internal density is Ψ(Ci) =

2|Cin
i |

|Ci|(|Ci|−1) . Similarly, after u joining in Ci, the den-

sity function is Ψ(Ci ∪ {u}) =
2|Cin

i |+2dui

|Ci|(|Ci|+1) . Taking the
difference between these two quantities gives Ψ(Ci ∪
{u}) > Ψ(Ci) ⇐⇒ dui >

2|Cin
i |

|Ci|−1 . Moreover, u

should also satisfy Ψ(Ci ∪ {u}) ≥ τ(Ci ∪ {u}), which
in turn implies du,i ≥ f(|Ci| + 1) − |Cini |. Therefore,
dui > max{ 2|Cin

i |
|Ci|−1 , f(|Ci|+ 1)− |Cini |}.

PROOF OF LEMMA 5
Let C1, C2, ..., Ck be the communities (including the
newly formed ones) in Ct that Alg. 4 assigns the new
node u to. Note that in the optimal solution OPT (u)t, the
number of communities u belongs to should not exceed k
since each Ci is also a candidate for OPT (u)t (of course,
OPT (u)t could possibly rearrange nodes differently).
Therefore, the optimal internal density gained is upper
bounded by k. On the other hand, Alg. 4 makes sure
that each community Ci that u joins in should have
Ψ(Ci) ≥ τ(Ci) ≥ τ(4) since |Ci| ≥ 4. Thus, Alg. 4 will
achieve at least τ(4)× k ≈ 0.74×Ψ(OPT (u)t).

PROOF OF LEMMA 6
Suppose otherwise, that is C is divided into smaller
parts C1 and C2. Prior to the introduction of (u, v),
we have Ψ(C) = Ψ(C1 ∪ C2) ≥ τ(C) = τ(C1 ∪ C2).
Now, when C1 and C2 are formed, they imply that
Ψ(C1 ∪ C2 + (u, v)) < τ(C1 ∪ C2 + (u, v)). Putting all
together, we have τ(C1 ∪ C2 + (u, v)) = τ(C1 ∪ C2) >
Ψ(C1 ∪C2 + (u, v)) > Ψ(C) > τ(C1 ∪C2), which raises a
contradiction. Thus, the conclusion follows.

