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Abstract In social networks, there is a tendency for connected users to match
each other’s behaviors. Moreover, a user likely adopts a behavior, if a certain
fraction of his family and friends follows that behavior. Identifying people who
have the most influential effect to the others is of great advantages, especially in
politics, marketing, behavior correction, and so on. Under a graph-theoretical
framework, we study the positive influence dominating set (PIDS) problem
that seeks for a minimal set of nodes P such that all other nodes in the
network have at least a fraction ρ > 0 of their neighbors in P. We also study a
different formulation, called total positive influence dominating set (TPIDS),
in which even nodes in P are required to have a fraction ρ of neighbors inside
P. We show that neither of these problems can be approximated within a
factor of (1−ε) ln max{∆, |V |1/2}, where ∆ is the maximum degree. Moreover,
we provide a simple proof that both problems can be approximated within a
factor ln∆+O(1). In power-law networks, where the degree sequence follows
a power-law distribution, both problems admit constant factor approximation
algorithms. Finally, we present a linear-time exact algorithms for trees.

Keywords Hardness of Approximation · Approximation Algorithm · Social
Networks · Information Diffusion

1 Introduction

Regularly, individuals tend to be influenced by the opinions/behaviors of their
family and friends. For examples, children whose parents smoked are twice as
likely to begin smoking between 13 and 21 [10], and peer pressure accounts

T. N. Dinh and Y. Shen and D. T. Nguyen · M. T. Thai
Department of Computer & Information Science & Engineering
University of Florida, Gainesville, FL, USA,
E-mail: {tdinh, yshen, dtnguyen, mythai}@cise.ufl.edu



2 Thang N. Dinh et al.

for 65% reasons for binge drinking, a major health issue, by children and ado-
lescents [16]. Moreover, the tendency of a user to adopts a behavior increases
together with the number his neighbors follows that behavior.

Thus, exploiting the relationships and influences among individuals in so-
cial networks might offer great benefit to both the economy and society. As an
example, positive impacts of intervention and education programs on a prop-
erly selected set of initial individuals can diffuse widely into society via various
social contacts: face-to-face, phone calls, email, social networks and so on.

The positive influence dominating set (PIDS) problem emerges in the con-
text of social networks, in which a set of influential users are sought for to
propagate the influence to other users. Formally, let G = (V,E) be an undi-
rected graph modeling a social network and denote byN(v) the set of neighbors
of a vertex v ∈ V and d(v) = |N(v)| the degree of v. We study the following
problem:

Definition 1 (Positive Influence Dominating Set (PIDS)) Given an
undirected graph G = (V,E), a subset P ⊂ V is a PIDS of G, if for all
u ∈ V \ P, we have |N(u) ∩ P| ≥ ρd(u) for some constant 0 < ρ < 1. In the
PIDS problem, our goal is to find a PIDS of minimum cardinality.

We say nodes in P dominate their neighbors in V \P. The constant ρ is called
the influence factor, since it determines for each node the minimum number
of neighbors to include in the PIDS. For convenience, the terms vertex/node
and edge/link will be used interchangeably in the rest of the paper.

In an another formulation, we require even nodes in the PIDS P to be
dominated by a fraction ρ of their neighbors. The exact definition is as follow.

Definition 2 (Total Positive Influence Dominating Set (TPIDS)) Given
an undirected graph G = (V,E), a subset T ⊂ V is a TPIDS of G, if for all
v ∈ V , we have |N(u) ∩ T | ≥ ρd(u). The TPIDS problem asks to find in G a
TPIDS of minimum cardinality.

Both PIDS and TPIDS problems aim to find the minimum set of nodes
that can influence/dominate the rest of nodes in the networks. Thus, they
are expected to capture the most influential people in networks. Since both
problems are NP-hard [18], research efforts have been spent on studying ap-
proximability of the problems.

The first approximation algorithm for PIDS is presented in [21], in which
the authors prove the ln∆ + O(1) approximation factor using submodular
theory. Later Cicalese et al., using the same submodularity technique in [21],
show the ln∆+O(1) approximation ratio for both PIDS and TPIDS.

The first hardness of approximation result is also given in [21], in which
PIDS is shown to be APX-hard. Cicalese et al. [3] give an improved c lnn
inapproximability factors for both PIDS and TPIDS problems. However, it is
unclear in the proof [3] that how small the constant c can be 1. This paper

1 the larger the constant c, the better the inapproximability result
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focuses on improving the inapproximability results for PIDS and TPIDS prob-
lems. In addition, we provide better approximation factors for special graph
classes such as power-law networks, dense networks, and tree.

Our results. We summarize our contributions as follows.

– We prove the inapproximability factor (1/2 − ε) lnn for both PIDS and
TPIDS, assuming that NP * DTIME

(
nO(log logn)

)
. We achieve the ex-

plicit constant 1/2 in the approximation factor by adjusting the complex
construction of the set cover problem [6]. This differs from previous ap-
proaches [3, 18, 21] in which hardness results of set cover and dominating
set problems are used in a “blackbox fashion”.

– We prove that both PIDS and TPIDS are hard to approximate within
ln∆ − O(ln ln∆), unless P=NP. In addition, we provide a new proof for
the ln∆+O(1) approximation factors of both TPIDS and PIDS.

– In power-law graphs, including many important online social networks,
it has been observed empirically that the greedy method that targets the
highest degree vertices, performs extremely well. We show that for this class
of graphs, the degree-based selection method actually yields a constant fac-
tor approximation ratio. In addition, both problems are also well approxi-
mated within a constant factor when graphs are dense i.e. |E| = Ω(|V |2).

– Finally, we present a linear-time algorithms to find optimal solutions over
trees, which has better running time than that of the O(n2) dynamic pro-
gramming algorithm in [3].

Note that it is straightforward to extend our results to the case in which
each node v requires an arbitrary domination threshold 0 < rv ≤ d(v) instead
of the ρd(v) requirement in PIDS and TPIDS.

Related Work. Domingos and Richardson [5] were the first to study
the propagation of influence and the problem of identification of the most
influential users in networks. Kempe et al. [11, 12] formulated the influence
maximization problem as an optimization problem. Leskovec et al. [13] study
the influence propagation in a different perspective in which they aim to find
a set of nodes in networks to detect the spread of virus as soon as possible.

Influence propagation with a limited number of hops as well as a special
case of TPIDS, when ρ = 1/2 were first considered in Wang et al. [18] in which
they iteratively add (normal) dominating sets until forming a TPIDS. Feng et
al. [19] showed NP-completeness for the PIDS problem, when ρ = 1/2. The
APX-hardness and an O(log n) approximation algorithm for TPIDS problem
were introduced in [21]. Cicalese et al. [3] extends the approximation algorithm
for the TPIDS problem and provideO(log n) inapproximability factors for both
problems.

The multiple-hop version of the PIDS problems are studied in [4,15,20]. In
Unit Disk Graphs, Zhang et al. [20] devised a Polynomial Time Approxima-
tion Scheme (PTAS) for the t-latency bounded information propagation when
the maximum degree is bounded by a constant. The approximability of the
multiple-hop version is studied in [4]. The same paper also provides theoretical
analysis for power-law networks and a scalable algorithm to identify the seed
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set. An another efficient heuristic to identify the seed set, focusing on the case
ρ = 1/2, is presented in [15].

2 Approximability in General Networks

Our tight hardness ratios are obtained by altering the Feige’s reduction for the
inapproximability of the set cover problem. We first give the hardness result for
bounded-degree graphs, which leads to the hardness ln∆−O(ln ln∆). Then,
we present the hardness (1/2 − ε) ln |V |. The combination of two hardness
results gives us the inapproximability (1 − ε) ln max{∆, |V |1/2}. Finally, we
present a unified and simple ln∆ + O(1) approximation algorithm for both
problems. To understand the proofs in this section, we first present briefly
the Feige’s reduction for the lnn approximation threshold for the set cover
problem [6].

2.1 Feige’s Reduction for Set Cover

Feige presented a reduction from a k-prover proof system for a MAX 3SAT-5
instance φ that is a conjunctive normal form formula consists of n variables and
5n
3 clauses of exactly 3 literals. The verifier interacts with k provers, and ask

provers different questions based on a random string r; each question involves
l/2 clauses and l/2 variables. If the formula φ is satisfiable, then the provers
have a strategy that cause the verifier accepts for all random strings. If only a
(1 − ε) fraction of the clauses in φ are simultaneously satisfiable, then for all
strategies of the provers, the probability of having two consistent answers is
at most k2 · 2−cl, where c is a constant that depends only on ε.

The core of the Set cover gadget is a partition system B(m,L, k, d), where
B is a ground set of m points. The partition system is a collection of L = 2l

partitions P1, . . . , PL of B, each partition Pi has exactly k disjoint subsets
pi,1, . . . , pi,k. Any cover of m points in B requires at least d = (1 − 2

2 )k lnm

subsets, where k and m are selected so that k < lnm
3 ln lnm .

Let R = (5n)l denote the number of possible random strings for the verifier.
We make R copies of partition system B. Let Br denote the copy of the
partition associated with the random string r and pri,j the copy of set pi,j in
Br.

We are now ready to describe the instance of Set Cover in the Feige’s

reduction. The universal set U =
⋃
r∈R

Br contains N = |U| = mR points; and

the set system is S = {Sq,a,i}q,a, where i can be deduced from syntax of (q, a).

Each set Sq,a,i corresponds to a question-answer pair (q, a) of the ith prover

and Sq,a,i =
⋃

(q,i)∈r

prar,i where (q, i) ∈ r means on random string r, the ith

prover receives question q, and ar is the assignment of variables extracted from
a.
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As long as k22−cl < 8
k3 ln2m

, we obtain the hardness result (1 − 4
k ) lnm

i.e. if formula φ is satisfiable, then mR points in U can be covered by kQ
subsets, and if only (1−ε) fraction of the clauses are simultaneously satisfiable,
the minimum set cover has size at least (1 − 4

k ) lnm kQ. Here, Q is the set

of all nl (5/3)
l/2

possible questions. The condition can be satisfied with l >
1
c (5 log k + 2 log lnm).

The hardness ratio (1 − f(k)) lnm of the set cover is obtained from the
following key lemma.

Lemma 1 (Lemma 4.1 [6]) If φ is satisfiable, then the above set of N = mR
points can be covered by kQ subsets. If only a (1 − ε) fraction of the clauses
in φ are simultaneously satisfiable, the above set requires (1 − 2f(k))kQ lnm
subsets in order to be covered, where f(k)→ 0 as k →∞.

Note that lnm = (1− ε) lnN by the setting of n, l, and m in the proof. Thus,
the final hardness ratio is (1− ε) lnN , where N = |U|. However, we can choose
different settings of n, l, and m and obtain different hardness ratios.

We finish the present of Feige’s reduction by giving upper bounds for quan-
tities that appear later in our proofs.

– The number of subsets |S| ≤ |Q|22l. Since, for each question q ∈ Q, there
are at most 22l answers of 2l bit length.

– The maximum size of a subset ∆S = max
S∈S
|S| ≤ m3l/2. Since each i and

q ∈ Q there are at most 3l/2 random strings r such that the verifier makes
query q to the ith prover and |prar,i| ≤ m.

– The maximum frequency of a point (element) in U : f ≤ k2l. Because, for a
pair (q, i), each partition prar,i is included at most 2l times, plus each point
in Br appears in exactly k partitions.

We continue with hardness results for the PIDS and TPIDS problems in
bounded degree graphs.

2.2 Hardness Results on Bounded-Degree Graphs

We prove that neither PIDS nor TPIDS can be approximated within ln∆ −
O(ln ln∆) in graphs of maximum degree ∆, unless P=NP. We use a reduction
from an instance of the Bounded Set Cover problem (SCB) to an instance of
PIDS problem whose degrees are also bounded by B′ = B poly log B.

Definition 3 (Bounded Set Cover) Given a set system (U ,S), where U =
{e1, e2, . . . , eN} is a universe and S is a collection of subsets of U . Each subset
in S has at most B elements and each element belongs to at most B subsets,
for a predefined constant B > 0. A cover is a subfamily C ⊆ S of sets whose
union is U . Find a cover which uses the minimum number of subsets.

Recall that ∆S and f stand for the maximum cardinality of sets in S, and
the maximum frequency of elements in U , respectively.
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Fig. 1: Reduction from SCB to PIDS (left) and TPIDS (right)

Lemma 2 There exist constants B0, c0 > 0 such that for every B ≥ B0 it is
NP-hard to approximate the SCB problem within a factor of lnB − c0 ln lnB.

Proof For a sufficient large constant B0 > 0, set cover problem where each
set has at most B > B0 elements is hard to approximate to within a factor of
lnB − O(ln lnB), unless P = NP [17]. The only missing piece is the bound
on the frequency of elements in the set cover.

The proof [17] maps an instance ofGAP−SAT1,γ to an instance F = (U ,S)
of set cover with ∆S ≤ B. Parameters l,m in Feige’s construction [6] are fixed
to θ(ln lnB) and B

poly log(B)
, respectively. The produced instance has the

following properties

– |U| = mnl poly logB, |S| = nl poly log B
– ∆S ≤ B, f ≤ poly log B for sufficient large B.

If we select a sufficient large constant B0, then we have f ≤ poly log(B) ≤ B
for all B ≥ B0. ut

SCB-PIDS reduction. For each instance F = (U ,S) of SCB , we con-
struct a graph H = (V,E) as follows (Fig. 1):

– Construct a bipartite graph with the vertex set U ∪ S and edges between
S and all elements x ∈ S, for each S ∈ S.

– Add a set D consisting of t vertices and a set D′ with same number of
vertices, say D = {x1, x2, . . . , xt} and D′ = {x′1, x′2, . . . , x′t}. The value of
t will be determined later.

– Connect xi to x′i,∀i = 1 . . . t, to force the selection of xi in the optimal
PIDS.

– Connect each vertex ej ∈ U to d ρ
1−ρf(ej)e − 1 and each vertex Sk ∈ S

to d ρ
1−ρ |Sk|e vertices in D, where f(ej) is the frequency of element ej .

Moreover, we keep the degree differences of vertices in D to be at most
one.

Lemma 3 The size difference between the optimal PIDS of H and the optimal
SCB of F is exactly the cardinality of D, i.e., OPTPIDS(H) = OPTSC(F)+t.
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Proof Let P be an optimal PIDS of H. Since either xi or x′i must be selected
into P, and we can always replace x′i ∈ P with xi inside P. Thus, it is safe to
assume that D′ ∩ P = ∅ and D ⊂ P.

By the construction, each vertex Sk ∈ S has enough required neighbors in
P, while each vertex ei ∈ U needs at least one more neighbor in P or it has
to be selected. Since all vertices in U must be adjacent to at least one vertex
in S, we can always replace each vertex ei ∈ P with one of its neighbor in S
without increasing the size of P. We therefore can assume that the optimal
solution contains vertices in S but not in U .

Hence, P \ D must induce a cover for F = (U ,S). In other words, we
have OPTPIDS(H) ≥ OPTSC(F) + t. Besides, given a cover C ⊆ S for (U ,S),
it is easy to check that C ∪ D gives a PIDS for H. Thus, OPTSC(F) + t ≥
OPTPIDS(H) that completes the proof. ut

The key to transfer hardness results of set cover to PIDS problem is to keep
the degree of vertices inH bounded and the gap between the optimal solutions’
sizes small. The following lemma states the existence of a construction with
such properties.

Lemma 4 There exists a construction of H with t ≤ OPTSC
ln2 B

and B′ =
∆(H) = O(B poly log B).

Proof We first compute vol(D), the total degree of vertices in D. For two sets
of vertices A and B, we define φ(A,B) the set of edges crossing between them.

vol(D) = |φ(D,D′)|+ |φ(D,U)|+ |φ(D,S)|

= |D|+
∑
Sk∈S

d ρ

1− ρ
|Sk|e+

∑
ej∈U
d ρ

1− ρ
f(ej)− 1e

≤ 2ρ

1− ρ
|S|B + |S|+ t =

(
2ρ

1− ρ
B + 1

)
|S|+ t (1)

We have used the facts that
∑
Sk∈S

|Sk| =
∑
ej∈U

f(ej) and |Sk| ≤ B, ∀Sk ∈ S.

Select t = |U|
B ln2 B

. Since each set in S can cover at most B elements, it

follows that OPTSC ≥ |U|B , hence, OPTSC
ln2 B

≥ t.
To have a valid construction of H, it is sufficient that t.B′ ≥ vol(D). Since

vol(D)

t
=

1

t

((
2ρ

1− ρ
B + 1

)
|S|+ t

)
≈
(

2ρ

1− ρ
B + 1

)
B ln2B nl poly log B

mnl poly log B
≈ B poly log B (2)

Hence, setting B′ = B poly log B gives us the desired construction of H. ut

Theorem 1 There exist constants B1, c1 such that for every B′ ≥ B1 it is
NP-hard to approximate the PIDS problem in graphs with degrees bounded by
B′ within a factor of lnB′ − c1 ln lnB′.
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Proof We prove by contradiction. Assume we have an algorithm that find a
PIDS of size at most lnB′ − c1 ln lnB′ the optimal size in graph with degrees
bounded by B′. We then show how to approximate the SCB problem with
ratio lnB − c0 ln lnB in polynomial time. Selecting sufficient large B1 is not
difficult and shall be ignored to make the proof simpler.

Let F = (U ,S) be an instance of SCB . Construct an instance H of PIDS
problem using the reduction SCB-PIDS. From (2), there exists constant β > 0
so that B′ ≤ B lnβ B. Using the approximation for PIDS, we obtain a solution
of size at most (lnB′ − c1 ln lnB′)OPTPIDS . We can then convert that to a
solution of SCB by excluding vertices in D (see Lemma 3) and obtain a cover
of size at most

(lnB′ − c1 ln lnB′)(OPTSC + t)− t

≤(lnB′ − c1 ln lnB′)OPTSC + (lnB′ − c1 ln lnB′)
OPTSC

ln2B

≤
(

lnB + β ln lnB − c1 ln(lnB + θ(ln lnB)) +O(
1

lnB
)

)
OPTSC

Select c1 = c0 + β + 1. The solution for SCB problem is then smaller than
lnB − c0 ln lnB times OPTSC which implies P=NP by Lemma 2. ut

Theorem 2 It is NP-hard to approximate TPIDS problem in graphs of bounded
degree B′ > B2 within a factor of lnB′−c2 ln lnB′ for some constants B2, c2 >
0.

Proof We adjust the reduction SCB-PIDS to achieve the same hardness result.
We now need to connect some pairs in D so that they can dominate one
another. Fortunately, we can do so with subtly increasing in the degrees of
nodes in D and the rest of the proof is essentially the same with that in PIDS.

Specifically, from the gadget obtained in the reduction SCB-PIDS, we con-
nect a node xi ∈ D with d ρ

1−ρd(xi)e other nodes in D, balancing nodes’ degrees
in D. Thus, we roughly multiple the degree of each node in D by a constant.

Since t = |U|
B ln2 B

� d ρ
1−ρB

′e, we always have enough vertices in D to connect
xi to. The rest of the proof goes through straightforwardly. ut

By a simple argument, we have the following result.

Theorem 3 Unless P=NP, both PIDS and TPIDS problem cannot be approx-
imated within a factor of ln∆−O(ln ln∆), where ∆ is the maximum degree.

Remark. Instead of using bounded set cover, we can also reduce from the
bounded-degree dominating set problem [2] to the PIDS and TPIDS problems.
However, it will be difficult to tighly bound the size of D in term of the optimal
solutions. As a consequence, the best obtained inapproximability ratios are
only 1

2 (lnB −O(ln lnB)).
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2.3 Inapproximability in Term of the Network Size

In the same fashion, we can alter the parameter setting in Feige’s proof to
obtain the following hardness result.

Theorem 4 PIDS and TPIDS cannot be approximated within
(
1
2 − o(1)

)
ln |V |

where n is the number of vertices, unless NP ⊂ DTIME
(
nO(log logn)

)
.

Proof We use the same gadget in Fig. 1 to prove the hardness for both PIDS
and TPIDS. Since, we no longer need to keep degree of vertices in the gadget
bounded, we form a clique with vertices in D.

The sufficient conditions to make the construction feasible are

– (PIDS): We can connect each v ∈ (S ∪ U) to µv vertices in D. That is

|D| = O( max
v∈(S∪U)µv

θ(
ρ

1− ρ
∆S)) = O(∆S) = O(m3l/2)

– (TPIDS): Vertices inD have to dominate themselves. Since µv = max{d ρ
1−ρd(v)e, x0},

this can be satisified when

|D| − 1 = O(
ρ

1− ρ
1

|D|
∑

v∈(S∪U)

µv).

Or equivalently

|D|2 = O(
∑

v∈(S∪U)

d(v) + x0(|S|+ |U|) = O(2
∑
v∈U

d(v) + |S|+ |U|) = O(mRk 2l)

To summarize, the sufficient condition for both problems is

|D| = O(m2θ(l) + (mRk2l)1/2). (3)

By Lemma 1 and the construction, the hardness ratios of our problems are
given by

(1− 4
k )kQ lnm+ |D|
kQ+ |D|

.

Unfortunately, with the same setting in the Feige’s reduction, |D| = O(∆S) =

O((5n)
2l
ε 2θ(l)), the above hardness ratio gets arbitrary close to 1. Hence we

use a different setting in which m = (5n)cl with a small constant c > 0 to
reduce the maximum degree. The consequence is that the inapproximability
ratio is reduced accordingly.

The optimal setting to get the best inapproximability ratio is to set m =

(5n)l(1−ε) for some ε > 0. Then, N = mR = (5n)l(2−ε), or m = N
1−ε
2−ε . From

(3), it is sufficient that

|D| = nl
2θ(l)

nl
ε
2

= o(Q)
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Hence, the hardness ratio will be

(1− 4
k )kQ lnm+ o(Q)

kQ+ o(Q)
> (1− 5

k
) lnm

The number of vertices in the graph, denoted by nH, is

nH = 2|D|+ |S|+ |U| < θ(m3l/2) + nl22l
(

5

3

)l/2
+ (5n)2l−ε < 2|U| = 2N

Finally, the hardness ratio is at least

(1− 5

k
) ln
(nH

2

)1/2− ε
4−2ε

> (1− 5

k
)
1

2

(
1− ε

2− ε

)
lnnH−θ(1) >

1

2
(1−ε) lnnH.

Here, we assume k is sufficiently large and ε is sufficiently small. ut

2.4 Approximation Algorithm

Approximation algorithms for the PIDS and TPIDS problems have been pro-
posed in [21] by proving the submodularity for the gain functions associated
with the selection of nodes into the dominating set. We show that both studied
problems can be seen as the instances of the Constrained Multiset Multicover
(CMM) problem. Thus, both problems inherit the following approximation
factors for the CMM problem.

Theorem 5 Given a graph G = (V,E), there exist O ((|V |+ |E|) log log |V |)
algorithms that approximate PIDS within H((ρ + 1)∆) and TPIDS within
H(∆).

Proof We first present the Constrained Multiset Multicover problem (CMM).

Definition 4 (Constrained Multiset Multicover) Given a set cover in-
stance (U ,S). Each element e has an integer requirement re and occurs in a
set S with arbitrary multiplicity, denoted by m(S, e). Moreover, we associate
a cost, cS , with each set S ∈ S. The Constrained Multiset Multicover prob-
lem asks for the minimum cost subcollection which fulfils all elements’ cover
requirements.

Notice that in CMM, each multiset is picked at most one.

Lemma 5 [14] There is a natural greedy algorithm that finds a constrained
multiset multicover within an Hk factor of the optimal solution, where k =
maxS

∑
em(S, e).

The PIDS problem on the graph G = (V,E) can be reduced to the following
instance of CMM

– U = {eu : u ∈ V }
– The cover requirement of eu is set to ru = dρd(u)e
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– S = {Sv : v ∈ V }, where Sv contains {eu : u ∈ N(v)} plus rv copies of ev.
That is m(Sv, eu) = 1,∀u ∈ N(v) and m(Sv, ev) = dρd(v)e.

It follows that the PIDS problem can be approximated withinHk = H ((ρ+ 1)∆).

In case of TPIDS, the only difference in the reduction is that each multiset
Sv contains all the neighbors of v, but not a single copy of v. The approxima-
tion ratio is, hence, H(∆). We note that if we replace ru = dρd(u)e with an
arbitrary threshold 0 ≤ r′u ≤ du, we still obtain an H(∆+max

u
ru) = O(log∆)

approximation algorithms. ut

Since, H(n) ≈ lnn + 0.58 and 1 + ρ < 2, we can rewrite the approximation
ratios for PIDS and TPIDS as

(
ln∆+ 4

3

)
and (ln∆+ 1), respectively.

3 Power-law Networks

Many social, biological, and technology networks including OSNs display a
non-trivial topological feature: their degree sequences can be well-approximated
by a power-law distribution [8]. Many optimization problems that are hard on
general graphs, can be solved much more efficiently in power-law graphs [7,9].

We use the well-known P (α, β) model [1] in which there are y vertices of
degree x, where x and y satisfy log y = α− β log x. In other words,

|{v : d(v) = x}| = y =
eα

xβ

Basically, α is the logarithm of the size of the graph and the constant β
is the log-log growth rate of the graph. Without affecting the conclusions, we
will simply use real number instead of rounding down to integers. The error
terms can be easily bounded and are sufficiently small in our proofs.

The maximum degree in a P (α, β) graph is e
α
β . The number of vertices

and edges are

n =

e
α
β∑

x=1

eα

xβ
≈


ζ(β)eα if β > 1
αeα if β > 1
e
α
β

1−β if β < 1

,m = 1
2

e
α
β∑

x=1

x
eα

xβ
≈


1
2ζ(β − 1)eα if β > 2
1
4αe

α if β = 2

1
2
e
2α
β

2−β if β < 2

where ζ(β) =
∑∞
i=1

1
iβ

is the Riemann Zeta function.

Theorem 6 In a power-law graph G ∈ P (α, β), the size of the optimal PIDS

OPTPIDS =

Ω(nβ) if β < 1
Ω(n/ log n) if β = 2
Ω(n) if β > 2



12 Thang N. Dinh et al.

Proof 1. Let k be the size of the optimal PIDS. Note that all nodes of degree
more than k/ρ must be selected (otherwise the number of selected neighbors
will exceed k). The number of nodes with degree larger than k will be

k >

e
α
β∑

x=k/ρ

eα

xβ
>

e
α
β∑

x=k/ρ

eα

x
= eα(ln e

α
β − ln k) (4)

Solving the above relation gives us k > Ω(eα) = Ω(nβ).
2. Similarly, when β = 2, we have k = Ω(eα) = Ω(n/ log n).
3. We use a dual setting approach to obtain the lower bound. Consider the

following linear program and its dual of the PIDS problem

LP: min
∑
v∈V

xv DP: max
∑
u∈V

ruyu −
∑
v∈V

zv

s. t. rvxv +
∑

u∈N(v)

xu ≥ rv s. t. ruyu +
∑

v∈N(u)

yv − zu ≤ 1 (5)

− xu ≥ −1 zv ≥ 0

xu ≥ 0 yv ≥ 0

where ru = ρdu. We note that for the integral versions of LP(5) and DP(5),
both setting ru = ρdu and ru = dρdue yield the same optimal solutions,
however, setting ru = ρdu simplifies the approximation ratio analysis.

Set yu = γ ∀u ∈ V . We solve for value of γ to achieve the tightest lower
bound on the size of the optimal PIDS.

To satisfy constraints in the dual, set zu = max{(ρ + 1)duγ − 1, 0}. Then
the objective value becomes

DP =ργ
∑
u∈V

du −
∑
u∈V

max{(ρ+ 1)duγ − 1, 0} (6)

=ργ
∑
u∈V

du −
∑

du>τ(γ)

((ρ+ 1)duγ − 1) (7)

where τ(γ) denotes (ρ+ 1)−1γ−1.
Substitute γ = 1

(ρ+1)τ into (7), we obtain

DP =
ρ

(ρ+ 1)τ

e
α
β∑

x=1

eα

xβ
x−

∑
x>τ

(
1

τ

eα

xβ
x− eα

xβ
) (8)

=
ρ ζ(β − 1)

(ρ+ 1)τ
eα −

∑
x>τ

(
1

τ

eα

xβ−1
− eα

xβ
) (9)

Except for at most be
α
β c points τ = 1, 2, . . . , be

α
β c, the derivatives of the ob-

jective function, dDPdτ , is defined. Moreover, at those integral points, both one-
sided limits, lim

τ→i−
DP and lim

τ→i+
DP , agree i.e. DP is a continuous function

everywhere with respect to τ .
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Fig. 2: A PIDS(left) may consist of only one node, while a TPIDS(right) must
contain at least O(

√
|V |+ |E|).

Lemma 6 For every τ ∈ (i, i+ 1), i ∈ n+, the derivative dDP
dτ is defined and

satisfies

d

dτ
DP = − 1

τ2

(
ρ ζ(β − 1)

ρ+ 1
eα −

∑
x>τ

eα

xβ−1

)
(10)

By (10), there exists a fixed dividing point x0 ∈ N+ that depends only on
β, satisfying dDP

dτ (τ) ≥ 0, ∀τ < x0 and dDP
dτ (τ) < 0, ∀τ > x0. Since DP is

continuous everywhere, it obtains the global maximum value at τ = x0.
We show that the value of DP at τ = x0 is Ω(n), and since the objective

of the primal is lower bounded by DP, it follows that the size of the minimum
PIDS will be at least Ω(n).

DP (x0) =
1

x0

(
ρ ζ(β − 1)

(ρ+ 1)
eα −

∑
x>x0

eα

xβ−1

)
+
∑
x>x0

eα

xβ

≥
∑
x>x0

eα

xβ
≈ (ζ(β)−

∑
x≤x0

1

xβ
)eα ≈ (1−

∑
x≤x0

1
xβ

ζ(β)
)n = Ω(n) ut

Using the same approach in Theorem 6, we have similar bounds for TPIDS.

Theorem 7 In a power-law graph G ∈ P (α, β), the size of the optimal TPIDS,

OPTTPIDS =

{
Ω(n) if β < 1 or β > 2
Ω(n/ log n) if β = 1

If networks have optimal PIDS/TPIDS of Ω(n) size, clearly, any algorithms
that produce valid PIDS/TPIDS will be constant factor approximation algo-
rithms.

4 Dense Graphs

Lemma 7 If T is a TPIDS of G = (V,E), then |T | ≥ Ω(
√
|V |+ |E|).
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Proof Let k = |T | be the size of an TPIDS. All v ∈ V \T must be adjacent to
at least one vertex in T . Thus, |V | ≤ |T |+

⋃
v∈T |N(v)\T |. Moreover, for each

vertex v ∈ T , |N(v)∩T | ≥ ρ|N(v)| ⇒ |N(v)\T | ≤ 1−ρ
ρ |N(v)∩T | ≤ 1−ρ

ρ (k−1).
Therefore

n ≤ k + k
1− ρ
ρ

(k − 1) =
1− ρ
ρ

k2 +
2ρ− 1

ρ
k (11)

Divide edges in E into three categories: (1) edges whose both ends are in
T , (2) edges whose exact one end is in T , (3) edges whose both ends are not
in T . We have at most

(
k
2

)
edges of type 1. For a vertex v ∈ T , the number of

type 2 edges incident to v is at most 1−ρ
ρ (k− 1) since v is adjacent to at most

k − 1 vertices in T . Hence, the number of type 2 edges is upper bounded by

2k 1−ρ
ρ (k− 1) = 2(1−ρ)

ρ

(
k
2

)
. For each vertex u /∈ T , the number of type 3 edges

incident to u is at most 1−ρ
ρ times the number of type 2 edges incident to u.

Therefore, the number of type 3 edges is at most (1−ρ)2
ρ2

(
k
2

)
.

Adding all three types of edges together, we have

|E| ≤
(

1 +
2(1− ρ)

ρ
+

(1− ρ)2

ρ2

)(
k

2

)
=

1

ρ2

(
k

2

)
(12)

It follows from (11) and (12) that |T | = k = Ω(
√
|V |+ |E|). ut

The bound is tight i.e. we can construct a TPIDS of size Ω(
√
|V |+ |E|). For

example we construct a ‘hairy’ clique of n = k + k · b 1−ρρ (k − 1)c vertices and

m =
(
k
2

)
+ k · b 1−ρρ (k − 1)c edges by connecting each vertex in a clique of size

k to b 1−ρρ (k− 1)c leaf nodes (Fig. 2). The minimum TPIDS will be the clique

itself that is of size k = Ω(
√
n+m).

Theorem 8 For a dense graph G = (V,E) with |E| = Ω(|V |2), there exist
constant approximation algorithms for both PIDS and TPIDS problems.

5 Finding Optimal Solutions in Trees

In trees, it is possible to find optimal PIDS and TPIDS in polynomial time.
However, designing such algorithms in a linear-time fashion is not too obvious.
We present two Depth-first search-based (DFS) algorithms in Algorithms 1 and
2 for PIDS and TPIDS, respectively.
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PIDS-TREE(G)
1: P = ∅
2: PIDS-VISIT(u), for any u ∈ V
3: return P
PIDS-VISIT(u)
1: for each unvisited v ∈ N(u) do
2: PIDS-VISIT(v)
3: if rp(v,P) > 0 then
4: P = P ∪ {u}
5: if rp(u,P) > 1 then
6: P = P ∪ {u}

Algorithm 1: PIDS-TREE(G)

TPIDS-TREE(G)
1: T = ∅
2: TPIDS-VISIT(u, u), for any u ∈ V
3: return T
TPIDS-VISIT(u, pu)
1: for each unvisited v ∈ N(u) do
2: TPIDS-VISIT(v, u)
3: if rt(u, T ) > 0 then
4: T = T ∪ {pu}
5: Select arbitrary rt(u, T ) unselected
neighbors(children) of u into T .

Algorithm 2: TPIDS-TREE(G)

Theorem 9 Optimal PIDS and TPIDS in trees can be found in linear-time.

Proof Assume that the given tree is rooted at some vertex u. For an edge
(u, v), if u is visited before v, then u is the parent of v and v is a child of u.

At a given step, P/T denote the current PIDS/TPIDS. For each v ∈ V ,
define the functions rp(v,P) = dρ ·d(v)e(1−1P(v))−|N(v)∩P| and rt(v, T ) =

dρ · d(v)e − |N(v) ∩ T |, where 1A(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Functions rp(v,P) and rt(v, T ) determine the minimum numbers of v’s
neighbors to appear in a solution. A node u with rp(u,P) > 0 or rt(u, T ) > 0
is called uncovered, otherwise u is called covered.

Correctness. We show by induction that each selection step is optimal.
PIDS : Assume that all the selections made so far are optimal i.e. there

exists an optimal solution that contains the selected vertices. In the steps 3
and 4 of Alg. 1, when node u is selected, the following properties follow from
the condition rp(v,P) > 0.

1. v /∈ P (otherwise rp(v,P) ≤ 0) and
2. rp(v,P) = 1 (otherwise v has already been selected by the end of PIDS-

VISIT(v)).

To cover v, we have to either select v, u or some children of v. However, since
all nodes in the subtree rooted at v have been covered. There will be no extra
benefit in selecting v or its children. Formally, if we have an optimal solution
that selects v or its children, we can always replace the selected vertex with u
and obtain a new optimal PIDS. In case rp(u,P) > 1, we are forced to select
u.

TPIDS : After TPIDS-VISIT(v, pv) finishes, v always becomes covered. As-
sume the selection of vertices into T is optimal so far. During the visit of a
node u, if rt(u, T ) > 0, we select pu, the parent of u, if pu /∈ T . Since pu
might cover other vertices, while selecting children of u will not affect any
uncovered vertices other than u. Finally, we might have select children of u to
fully covered u (but only after pu is selected).
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Time complexity. Since the number of edges |E| = |V | − 1, the values
of rp(v,P) and rt(v, T ) can be maintained in O(|V |) time. Only when a new
vertex is added, we need to update rp(.) and/or rt(.) values of that node and
all its neighbors. Each node is added at most once, hence the total cost has
the same order with the total degree of all vertices i.e. 2|V |. Hence, the overall
time complexities are still O(|V |). ut
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