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ABSTRACT
As an imperative channel for fast information propagation,
Online Social Networks(OSNs) also have their defects. One
of them is the information leakage, i.e., information could
be spread via OSNs to the users whom we are not willing
to share with. Thus the problem of constructing a circle of
trust to share information with as many friends as possible
without further spreading it to unwanted targets has become
a challenging research topic but still remained open.

Our work is the first attempt to study the Maximum Cir-
cle of Trust problem seeking to share the information with
the maximum expected number of poster’s friends such that
the information spread to the unwanted targets is brought
to its knees. First, we consider a special and more practical
case with the two-hop information propagation and a single
unwanted target. In this case, we show that this problem is
NP-hard, which denies the existence of an exact polynomial-
time algorithm. We thus propose a Fully Polynomial-Time
Approximation Scheme (FPTAS), which can not only ad-
just any allowable performance error bound but also run in
polynomial time with both the input size and allowed er-
ror. FPTAS is the best approximation solution one can ever
wish for an NP-hard problem. We next consider the num-
ber of unwanted targets is bounded and prove that there
does not exist an FPTAS in this case. Instead, we design a
Polynomial-Time Approximation Scheme (PTAS) in which
the allowable error can also be controlled. Finally, we con-
sider a general case with many hops information propagation
and further show its #P-hardness and propose an effective
Iterative Circle of Trust Detection (ICTD) algorithm based
on a novel greedy function. An extensive experiment on var-
ious real-word OSNs has validated the effectiveness of our
proposed approximation and ICTD algorithms.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems, Graph algo-
rithms; G.2.1 [Combinatorics]: Counting problems
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1. INTRODUCTION
The rapid growth of Online Social Networks (OSNs), such

as Facebook, Twitters, and LinkedIn, has made them be-
come one of the most important channels for fast informa-
tion propagation and influence [6, 19]. Many individuals and
companies use this popular media to share their messages
with other users or advertise their products by leveraging
the power of others’ influences [6]. However, in spite of its
benefits to information propagation, OSNs also have defects
as a media to leak information, that is, the information can
be spread to the users whom we do not want to share with.

Let us consider the following example in real life. Sup-
pose that Bob is a PhD student and feels very upset with
the progress of papers recently, he then decides to have a
vacation during a business trip of his advisor Chuck. After
coming back, Bob wants to share with his friends the pic-
tures and stories during this vacation in Facebook, yet he
is reluctant to let Chuck know about it. Although Chuck
is not a friend of Bob in Facebook and he cannot see those
pictures directly, Chuck could still see some pictures if they
are marked favorite, replied or mentioned by Bob’s friend
Alice, who is also a friend of Chuck. Thus it raises a prac-
tical question: Is there any mechanism for Bob to share his
pictures and stories to as many friends as possible without
reaching to Chuck?

In an initial attempt to handle this information leakage
problem, Facebook [4] developed a new function to cus-
tomize the privacy for each user when he wants to share
some message. In this function, a user can choose a range
of friends to share with and also hide the message from
some specific users. Later on, Google+ [5] further develope-
d a concept of grouping users into circles such that a user
can select a specific circle to share with whenever he starts
to share a message. Superficially, the information leakage
problem appears to have been overcome in Facebook and
Google+ by tracking the message-ID to hide it from those
whom he does not want to share with. However, Facebook
and Google+ actually neglected an important channel of
information propagation, that is, mentioning the message.
Back to our example, when Bob’s friend Alice posts a new



message and mentions Bob’s pictures and stories, this new
message cannot be hidden from Chuck anymore since its
ID is no longer the same as the original message from Bob.
Consequently, Chuck will still see the message from Alice
and know Bob’s vacation.

Therefore, in our example, Bob needs to construct a circle
of trust, a set of trust friends to share the information with
so that the probability that Chuck will know it is very small.
Meanwhile, one of the main purposes of posting messages on
OSNs is to share the information with as many friends as
possible. Thus, we formulate a new optimization problem,
called Maximum Circle of Trust (MCT), to construct a circle
of trust with the maximum number of visible friends for
a user s so that once s posts a message to this CT, the
probability of such friends in this CT spreading the message
to unwanted users is under some certain threshold, where a
friend of s is said to be visible to a message if the message
appears on his wall, and the unwanted users are referred as
those whom s does not want to share the information with.

According to the discovery by Cha et al. [8] that the infor-
mation can only be propagated within a very limited number
of hops and the number of unwanted users is usually very
small, we first focus our attention on the bounded-2-MCT
problem, a special and more practical case of MCT prob-
lem in which the information is propagated within two hops
and the number of unwanted users is bounded. Even in
this case, we showed that the bounded-2-MCT problem is
NP-hard and thus a major thrust is the development of ap-
proximation algorithms of which one can theoretically prove
the performance bound. In the case of NP-hard problem-
s, the most desirable approximation algorithms are the full
polynomial time approximation scheme (FPTAS) and poly-
nomial time approximation scheme (PTAS) which can not
only control any allowable errors but also run in polynomial
time with the input size (also in polynomial time with error
for FPTAS). FPTAS and PTAS are the best one can hope
for an NP-hard optimization problem, assuming P 6= NP .
Unfortunately, the design of such approximation schemes is
very challenging and it may not exist for certain problems.

Our contributions are summarized as follows:

• This is the first attempt to study the maximum circle
of trust problem tackling the information leakage in
online social networks;

• In a special and more practical case of 2-hop informa-
tion propagation and fixed number of unwanted users,
we first prove the NP-hardness of a single unwanted
user and then design an FPTAS approximation algo-
rithm based on the idea of scaling and dynamic pro-
gramming. For multiple unwanted users, we show that
there is no FPTAS and thus design a PTAS algorithm,
the best solution one can ever wish when the FPTAS
does not exist.

• For the general MCT problem, we prove its #P-hardness
when the information can be propagated more than 2
hops. Due to its #P-hardness, we design an efficient
ICTD algorithm based on a novel greedy function.

• The performance of our proposed approximation and
ICTD algorithms are validated on Facebook, Twitter,
Foursquare and Flickr datasets.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce a novel ISM propagation model and

the formal definition of the MCT problem. Section 3 in-
cludes the complexity results and approximation algorithms
for the bounded-2-MCT problem. For general MCT prob-
lem, its #P-hardness and the ICTD algorithm are provided
in Section 4. The experimental evaluation is illustrated in
Section 5 and related work is presented in Section 6. Section
7 concludes the whole paper.

2. MODEL AND PROBLEM DEFINITION
In this section, we first introduce a novel information

leakage propagation model, namely Independent Sharing-
Mention (ISM) propagation model, in the context of differ-
ent diffusion channels. Based on this model, we introduce
the formal definition of our MCT problem.

2.1 ISM Propagation Model
In our model, we consider two types of information leak-

age propagations in OSNs between two friends u and v as
illustrated in Figure 1:

• Sharing : u shares the message using functions pro-
vided by OSNs. For example, u can use “retweet” or
“reply” to share on Twitter and “share”, “comment” or
“like” to share on Facebook. In this case, the message
will appear on u’s own wall and then be seen by v;

• Mention: u can also propagate the information to v
by mentioning it with the same content (or retyping
using his own words).

Correspondingly, between users u and v, we refer to the
probability of a sharing and mention propagation (Sharing
Probability and Mention Probability) as auv and puv.

User 

User 

Share on 
’s wall

Sharing 
Probability 

auv

Mention 
Probability 

puv

User 

1

2

u mentions the
info in his new post

u knows the 
information

Unwanted Target 

t knows the 
information

Figure 1: ISM Propagation Model

Therefore, each link (u, v) in OSNs has a two-tuple proba-
bilities 〈auv, puv〉. Although auv and puv are not necessarily
to be independent, our ISM model is independent in terms of
the following two aspects: the independence between differ-
ent links; the independence among the current propagation,
the history propagation, and the future propagation.

As can be seen, this model can reflect the information
propagation on a majority of existing OSNs by only choos-
ing different parameters. For example, as Facebook provided
a function in Custom Privacy to hide a certain information
from specific users, which narrows down the sharing prob-
ability to 0 on Facebook if the source user blocks all his
unwanted targets. Thus, the information propagation on



Facebook only depends on mention probabilities. If we take
Twitter as another example, the information propagation-
s are dependent on both sharing probability and mention
probability. That is, we can define puv as an alternative
sharing-mention probability instead of mention probability
for each link (u, v).

2.2 Problem Definition
In OSNs, when a user s posts some message m, his aim

is usually to share it with as many friends as possible, i.e.,
to maximize the visibility of his message to his friends while
preventing it from reaching to some unwanted targets. Con-
sidering that information can be spread at most δ hops, we
study the following δ-Hop-Propagation Maximum Circle Of
Trust (δ-MCT) problem, which constructs a circle of trust
to maximize the expected visible friends of s as well as to
restrict the leakage probability of each unwanted target to a
certain degree so that s can safely post his message to this
CT.

Problem 1 (δ-MCT Problem). Given a di-
rected graph G = (V,E) with |V | users and |E| edges
underlying an OSN, where each edge (u, v) is associ-
ated with a tuple of sharing probability and mention
probability 〈auv, puv〉. Let T = {t1, . . . , tk} be the set
of k = |T | unwanted targets and s be the source user
with |N(s) \ T | = Sn neighbors. The δ-MCT problem
constructs a circle of trust (CT) with the maximum
expected visible friends of s (Size of CT) such that the
probability of each unwanted target ti can see the mes-
sage m posted by s after at most δ hops propagation
is at most its leakage threshold τj, which lies in [0, 1).

In our paper, we assume that the source user s is rational.
That is, he will neither tell the message to his unwanted
targets nor share the message in online social networks with
them. Then we immediately have the following lemma.

Lemma 1. When source user s is rational, all unwanted
targets T must be at least two hops from s.

3. BOUNDED-2-MCT PROBLEM
In this section, we consider the following two special and

more practical factors in information propagations:

• The limited propagation hops: According to Cha et
al. [8], majority of the messages are propagated with-
in 2 hops in OSNs. Moreover, with recent new block
functions of many OSNs, the chance of message being
leaked by more than 2 hops is very limited.

• Once a user wants to post a message, the number of
his unwanted targets is usually very small.

Motivated by these practical observations, we focus on the
Bounded-2-MCT problem in which the message m can be
spread at most 2 hops and the number of unwanted targets
is bounded by some constant κ. We further refer to this
problem as Single-2-MCT when there is only a single un-
wanted target. In this section, we show the NP-hardness
of Single-2-MCT and present an FPTAS approximation al-
gorithm. For multiple unwanted targets k ≥ 2, we further
prove the non-existence of FPTAS algorithms and provide a
PTAS approximation algorithm.

We note that FPTAS and PTAS are the most desirable
solution for a NP-hard problem by trading accuracy for run-
ning time. That is, we can decide how to choose the error
parameter based on the allowed time. For example, we can
allow more errors when the time is limited and less errors
otherwise. In particular, FPTAS is even better since it re-
quires the algorithm to be polynomial in both the problem
size and error parameter. Now we first show the following
lemma, which can be obtained using contradiction method.

Lemma 2. For any user u except the unwanted targets,
its propagation can lead to the information leakage if and
only if it receives m directly from s when δ = 2.

Proof. This is trivial to see by using the contradiction
method. Assume that u receives m from some other users
rather than s, then message m must have be propagated
more than 2 hops from s in order to reach to the unwanted
targets, contradicting to the fact that δ = 2.

3.1 NP-Completeness for Single-2-MCT

Theorem 1. Single-2-MCT is NP-complete.

Proof. In the proof, it is easy to see that the decision
version of Single-2-MCT∈NP. To prove that Single-2-MCT
is NP-hard, we reduce the known NP-hard subset sum prob-
lem to it, which asks if there exists a non-empty subset whose
sum is Z given a set of integers (z1, z2, . . . , zn) and an integer
Z. Let I be an arbitrary instance of subset sum problem,
our construction is as illustrated in Fig. 2. We construct
two terminal nodes s, t and n nodes Ni, i = 1 . . . n for each
item in I. For each node Ni, we construct an edge from s to
it with a sharing probability asi = zi∑

i zi
and mention prob-

ability psi = 1−e−
zi∑
i zi ; and another edge from Ni to t with

mention probability pit = 1. We set the leakage threshold

τ = 1 − e−
Z∑
i zi for the target t. We show that there is a

subset sum of I iff our reduced instance has a Single-2-MCT
with the expected visible users at least Z∑

i zi
.

(as1, p
s1)

(as2, ps2)

(a
s3, p

s3)

1

1

1

...

Figure 2: Single-2-MCT Reduction

First, suppose that R is a yes instance of I. Now let us
consider a set R′ = {Ni | i ∈ R}. If s posts his message
m to R′, then the leakage probability to t is exactly 1 −∏
i∈R asipit = τ and the size of CT is

∑
i∈R

zi∑
i zi

= Z∑
i zi

,

implying R′ is a yes instance of Single-2-MCT.
Conversely, suppose that R′ is a Single-2-MCT instance

in G with respect to s and t with the leakage probability
τ = 1 −

∏
i∈R′ asipit, that is,

∑
i∈R′

zi∑
i zi
≤ Z∑

i zi
. Then

R = {i | Ni ∈ R′} is a subset sum of I. This is because the
expected visible friends of R′ is at least

∑
i∈R′

zi∑
i zi
≥ Z∑

i zi
.

Thus,
∑
i∈R

zi∑
i zi

= Z∑
i zi

.



3.2 FPTAS Algorithm for Single-2-MCT
Since the NP-hardness denies the existence of any poly-

nomial algorithms for Single-2-MCT problem, we then focus
on designing an effective Algorithm to solve it. The analysis
shows that this algorithm is an FPTAS, which is the best
approximation solution for an NP-hard problem.

According to Lemma 1, we only need to consider the case
that t is two hops away from s in G[E\{s, T}] since t cannot
see m if he is at least 3 hops away from s while δ = 2.
In this case, the probability that m will be leaked to t is
1−

∏
i∈N(s)\{t}(1− asipit)

xi , which is implied by Lemma 2.

The basic idea of FPTAS algorithm with k = 1 has t-
wo main phases: (1) the scaling of sharing probability; (2)
dynamic programming to find the minimum leakage proba-
bility w.r.t. the scaled sharing probabilities.

First, since all asi are rational values, we can rewrite each
of them with ansi

adsi
where both ansi and adsi are integers. We

then define Ad be the least common multiple of all denom-

inators adsi. Thus, asi = ansiAd/adsi
Ad

, where the numerator
is clearly an integer. Then, in the first phase, in order to
avoid the case that ansiAd/adsi is exponentially larger than
Sn, we scale the sharing probability asi for each s’s neigh-

bor by the factor A =
εmax

{
ansiAd
adsi

|asipit≤τ
}

Sn
and define its

corresponding scaled sharing probability to be a′si = bansi
A
c.

In the second step, we consider using dynamic program-
ming to solve a complex problem by breaking the problem
down into simpler subproblems in a recursive manner. That
is, to solve the MCT problem w.r.t. the scaled sharing prob-
abilities, we only need to define the recursion function as
follows. Let Li(a) be the minimum leakage probability of
a subset of s’s first i friends with the circle of trust of size
equal to a. Thus, the recursion can be written as

Li(a) =

{
Li−1(a), if a < asi

min
{
Li−1(a), Li−1(a− a′si) + wi

}
, if a ≥ asi

(1)
where wi = − log(1−asipit) corresponding to the neighbor i
of s. The detail of FPTAS Algorithm is shown in Algorithm
1.

Input : Directed graph G with a tuple of probability
〈auv, puv〉 in each edge (u, v), source user s,
unwanted target t and leakage probability τ

Output: Circle of Trust C
1 asi ← ansi/adsi for each i;
2 Ad← the least common multiple of all denominators adsi;

// Phase 1: Scaling

3 For some ε > 0, let A←
εmax

{
ansiAd
adsi

|asipit≤τ
}

Sn
;

4 For each neighbor i ∈ N(s), define a′si =
⌊
ansi
A

⌋
;

// Phase 2: Dynamic Programming

5 Au ←
∑
i∈N(S)\{t} a

′
si;

6 L(a) = Au + 1 for all integers a less than Au;
7 for a← 1 to Sn do
8 Apply dynamic programming to find the CT C using

the recursion (1) to obtain Ca;

9 end
10 C ← arg max1≤a≤Sn{Ca|L(a) ≤ τ};
11 return C ;

Algorithm 1: FPTAS for Single-2-MCT

Now, we prove that Algorithm 1 is indeed an FPTAS al-
gorithm, that is, we need to prove the approximation ratio

(1 − ε) and the time complexity is polynomial in both the
input size and error parameter.

Lemma 3. Algorithm 1 is a (1 − ε)-approximation algo-
rithm of Single-2-MCT.

Proof. Let C∗ be the optimal set of CT, πε1 be the ex-
pected size of CT C obtained by Algorithm 1, and π∗ be the
the optimal solution of Single-2-MCT. Then, we have

πε1 =
∑
i∈C

asi ≥
1

Ad

∑
i∈C

A
⌊asiAd

A

⌋
≥ 1

Ad

∑
i∈C∗

A
⌊asiAd

A

⌋
≥ 1

Ad

∑
i∈C∗

A
(asiAd

A
− 1
)

=
∑
i∈C∗

(
asi −

A

Ad

)
≥ π∗ − ε |C

∗|max{asi|asipit ≤ τ}
Sn

≥ (1− ε)π∗

where the last step holds since max{asi|asipit ≤ τ} ≤ π∗

and |C∗| ≤ Sn.

Lemma 4. Algorithm 1 has the running time of O(S3
n/ε).

Proof. The running time of Algorithm 1 is dependent
on the second phase of dynamic programming, which has its
running time O(SnAu). That is,

SnAu ≤ Sn · Sn
ansi
A
≤ S2

n
Sn
ε

=
S3
n

ε

The proof is complete.

The results of Lemma 3 and 4 imply the following theo-
rem:

Theorem 2. Algorithm 1 is an FPTAS approximation
algorithm for Single-2-MCT.

3.3 No FPTAS for Any k ≥ 2

As 2-MCT is NP-complete, one will question how tight-
ly we can approximate the solution when k ≥ 2. In this
section, we further investigate that there is no FPTAS ap-
proximation algorithm of 2-MCT with any k ≥ 2.

Theorem 3. There is no FPTAS for 2-MCT problem with
any k ≥ 2 unless P=NP.

Proof. We reduce the 2-MCT problem from EQUIPAR-
TITION problem, which asks if there exists a subset of items
R satisfying both |R| = n/2 and

∑
j∈R$j =

∑
j 6∈R$j giv-

en n items with integer weight $j for j = 1, . . . , n and even
n. EQUIPARTITION problem has been proven to be NP-
hard in [10]. Let a set of even number of n items with each
integer weight $j be an arbitrary instance I of EQUIPAR-
TITION. We must construct in polynomial time an instance
of 2-MCT such that if we have a FPTAS to solve the 2-MCT
on this instance, this algorithm can be applied to solve the
EQUIPARTITION problem on I in polynomial time.

Our construction is as follows. Given n items, we con-
struct n + 3 nodes for graph G: node ui for each item; a
source node s and 2 unwanted targets t1 and t2. The men-
tion probability from s to each ui is 1. For each ui, the men-

tion probability from him to t1 and t2 are pi1 = 1− e−
$i∑
i $i

and pi2 = 1− e−
$max−$i

n$max−
∑
i $i respectively. Moreover, we set

τ1, τ2 to be 1−e−1/2 and all sharing probabilities asN(s) = 1.
We first show that there is an EQUIPARTITION of I iff our
reduced instance has 2-MCT of size at least n/2.
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Figure 3: 2-MCT Reduction G from EQUIPARTI-
TION (All edges from s to blue nodes have proba-
bility 1; an edge from Ni to t1 and t2 has probability

pi1 = 1− e−
$i∑
i $i and pi2 = 1− e−

$max−$i
n$max−

∑
i $i )

First, suppose that R is a yes instance of I. Clearly, |R| =
n/2 and

∑
j∈R$j =

∑
j 6∈R$j . Now let us consider a set

R′ = {Ni|i ∈ R}. If s posts his message m to R′, then the
leakage probability to t1 and t2 are

1−
∏
i∈R

(
1− pi1

)
= 1−

∏
i∈R

e
− $i∑

i $i = 1− e−1/2

and

1−
∏
i∈R

(
1− pi2

)
= 1−

∏
i∈R

e
− $max−$i
n$max−

∑
i $i = 1− e−1/2

which are no larger than τ1 and τ2. And the circle of trust
has its size n/2, implying R′ is a yes instance of 2-MCT.

Conversely, suppose that R′ is a 2-MCT instance in G
with respect to s and t. By satisfying

1−
∏
i∈R′

e
− $i∑

i $i ≤ 1− e−1/2

and

1−
∏
i∈R′

e
− $max−$i
n$max−

∑
i $i ≤ 1− e−1/2

we immediately have
∑
i∈R′ $i ≤ 1

2

∑
i∈N(s) $i and∑

i∈R′

(
$max−$i

)
≤ 1

2

(
n$max−

∑
i∈N(s) $i

)
. After sum-

ming these two inequalities up, we obtain |R′| ≤ n/2. Since
the size of CT is at least n/2, i.e., |R′| ≥ n/2, we obtain
|R′| = n/2. Then, substituting |R′| = n/2 into the second
above inequality, we have

∑
i∈R′ $i ≥ 1

2

∑
i∈N(s) $i. Com-

bining with the first one,
∑
i∈R′ $i = 1

2

∑
i∈N(s) $i. Thus,

R = {i|Ni ∈ R′} is a EQUIPARTITION of I.
Then, suppose that there is an FPTAS for 2-MCT, we

show that this polynomial time algorithm can be applied to
solve the NP-complete EQUIPARTITION problem, which
leads to the contradiction. Let A be an FPTAS algorithm
generating an (1 − ε)-approximation algorithm for 2-MCT
for any ε > 0 in polynomial time with respect to both n
and 1/ε. When choosing ε = 1

n+1
, we have the following

relations between the solution of πA and optimal solution
π∗ as

πA ≥ (1− ε)π∗ > π∗ − π∗/n ≥ π∗ − 1

where the last step follows from a trivial observation that
π∗ ≤ n. Due to the equivalence between EQUIPARTITION
and 2-MCT in our above reduction, we can obtain a solution
πA > π∗ − 1 for EQUIPARTITION. However, the integrali-
ty of solution to EQUIPARTITION implies that π∗ = dπAe,

which means that A can solve the EQUIPARTITION prob-
lem in polynomial time. This contradicts the fact that E-
QUIPARTITION is NP-hard.

3.4 PTAS Algorithm for Bounded-2-MCT
Because of the non-existence of FPTAS for the Bounded-

2-MCT problem, we now focus our attention on designing a
PTAS solution, which is the best approximation solution we
can expect. We first formulate the Integer Linear Program-
ming (ILP) formulation for this problem and then propose
the PTAS algorithm based on its relaxed LP formulation.

3.4.1 ILP Formulation
First, let us define an indicator variable xi for each friend

i ∈ N(s) of s as xi = 1 if i is visible to m, and 0 otherwise.
Clearly, we have our objective to maximize the circle of trust,
i.e., the expected number of visible friends of s. Thus, it can
be written as the sum of sharing probabilities of s’s friends
except unwanted targets, that is, max

∑
i∈N(s)\T asixi.

According to Lemma 2, which can be easily proven us-
ing contradiction method, the message will be leaked to tj
iff an s’s neighbor i is informed with probability asi and
i further leaks to tj with probability pitj . Therefore, the
constraint w.r.t. each unwanted target tj can be written as
1 −

∏
i∈N(s)\T (1 − asipitj )xi ≤ τj . After rearranging and

choosing the logarithm of both sides in each constraint and
relaxing xi ∈ {0, 1} to xi ≥ 0, we can obtain the following
linear programming (LP):

max
∑

i∈N(s)\T

asixi

s.t.
∑
i∈N(s)\T wijxi ≤ cj , ∀j ∈ T

xi ≥ 0

(2)

where wij = − log(1− asipitj ) and cj = − log(1− τj).

3.4.2 PTAS Algorithm for Bounded-2-MCT
Our PTAS algorithm for 2-MCT consists of two phases

with respect to a threshold β = min{d k
ε
e−(k−1), |N(s)\T |}

with k unwanted targets: (1) when the number of visible
neighbors of s is less than β, we enumerate the solution
and select a feasible solution π which induces a maximum
visibility; (2) after initializing the current optimal solution
as the one in the first phase, we check each combination of
size β. For each combination Ω, we first use the LP rounding
algorithm (as shown in Algorithm 3) to obtain a bounded
solution πΩ of the subproblem of 2-MCT in terms of the
neighbor set N(s)′ = {i|asi ≤ min i ∈ Ω} and c′j = cj −∑
i∈Ω wij . Then, we update the new optimal solution if∑
i∈Ω asi + πΩ > π. The detail of PTAS algorithm is shown

as Algorithm 2.
The subroutine of LP rounding algorithm, as shown in

Algorithm 3, starts with a basic solution of LP (2) consisting
of k fractional xLPi . Between the sum of asi on integers xLPi
and asj with the maximum fraction value xLPj , the algorithm
returns the larger value as its solution.

Let πε be the expected size of CT C obtained by Algo-
rithm 2, πk be the expected size of intermediate CT CI
obtained by Algorithm 3, and πLP , π∗ be the optimal LP
solution and the optimal solution of 2-MCT. We first show
that Algorithm 3 has an 1/(k+1) approximation guarantee.

Lemma 5. Algorithm 3 is a 1
k+1

approximation algorithm
of Bounded-2-MCT.



Input : Directed graph G with a tuple of probability
〈auv, puv〉 in each edge (u, v), source user s,
unwanted target T and leakage probability τj for
each tj ∈ T

Output: Circle of Trust C
1 β ← min{d kε e − (k + 1), |N(s) \ T |};
2 wij ← − log(1− psipitj );

3 cj ← − log(1− τj);
// Phase 1

4 foreach Λ ⊂ N(s) \ T such that |Λ| < β do
5 if

∑
i∈Λ wij ≤ cj for all j ∈ T then

6 if
∑
i∈Λ asi > πε then

7 C ← Λ;
8 end

9 end

10 end
// Phase 2

11 foreach Ω ⊂ N(s) \ T such that |Ω| = β do
12 if

∑
i∈Ω wij ≤ cj then

13 Obtain the solution CkΩ of the subproblem with

N(s)′ = {j|cj ≤ min{ci|i ∈ Ω}} \ Ω and
c′j =

∑
i∈Ω wij using Algorithm 3 ;

14 if
∑
i∈Ω∪Ck

Ω
asi > πε then

15 C ← Ω ∪ CkΩ;
16 end

17 end

18 end
19 return C;

Algorithm 2: PTAS for Bounded-2-MCT

Input : Directed graph G with a tuple of probability
〈auv, puv〉 in each edge (u, v), source user s,
unwanted target T and leakage probability τj for
each tj ∈ T

Output: Intermediate Circle of Trust CI
1 Obtain an optimal basic solution xLP by solving the LP

(2) with |{i|0 < xLPi < 1}| ≤ k;

2 I ← {i|xLPi = 1};
3 F ← {i|0 < xLPi < 1};
4 if

∑
i∈I asi > max{aj |j ∈ F} then

5 CI ← I;
6 end
7 else
8 CI ← {j};
9 end

10 return CI ;

Algorithm 3: LP Rounding Algorithm

Proof. According to Luenberger [13], each LP formula-
tion with n variables and d constraints has a basic optimal
solution with at most min{d, n} fractional values. We can
obtain such a basic optimal solution x∗ in the first step.
Then

π∗ ≤ πLP ≤
∑
i∈I

asi + kFmax ≤ (k + 1)πk

where the last step follows from Algorithm 3.

Now, we prove that Algorithm 2 is indeed a PTAS al-
gorithm, that is, we need to prove the approximation ratio
(1 − ε) and the time complexity is polynomial in the input
size.

Lemma 6. Algorithm 2 is a (1 − ε)-approximation algo-
rithm of Bounded-2-MCT.

Proof. If π∗ has less than β neighbors, we can obtain
the optimal solution in the first phase by enumerating all
possible combinations. This certainly leads to the optimal

solution. When π∗ > β, after defining Ω∗ to be the β neigh-
bors having the maximum circle of trust in optimal solution,
we consider two cases as follows:
Case 1:

∑
i∈Ω∗ asi ≥

β
β+k+1

π∗

From the last step and the condition of this case, we have

πε ≥
∑
i∈Ω∗

asi + πkΩ ≥
∑
i∈Ω∗

asi +
1

k + 1
π∗Ω (Lemma 5)

≥
∑
i∈Ω∗

asi +
1

k + 1

(
π∗ −

∑
i∈Ω∗

asi
)

(Definition of Ω∗)

≥ 1

k + 1
π∗ +

k

k + 1

β

β + k + 1
π∗ =

β + 1

β + k + 1
π∗

Case 2:
∑
i∈Ω∗ asi <

β
β+k+1

π∗

First, among all these β neighbors of s, there is at least one
having sharing probability less than 1

β+k+1
π∗. According

to the definition of Ω∗, i.e., all neighbors in Ω∗ have higher
sharing probability than others, all neighbors in πkΩ have
asi ≤ 1

β+k+1
π∗.

π∗Ω ≤ πLPΩ ≤ πkΩ +
k

β + k + 1
π∗Ω

where the last step follows from the upper bound of all k
fractional values according to Luenberger [13]. Therefore,

π∗ =
∑
i∈Ω∗

asi + π∗Ω ≤ πε +
k

β + k + 1
π∗Ω

Then, we have

πε ≥ β + 1

β + k + 1
π∗ ≥

d k
ε
e − k
d k
ε
e

π∗ ≥
1
ε
− 1
1
ε

π∗ = (1− ε)π∗

where the second step follows from the fact that β+1
β+k+1

is
monotonously increasing with respect to β.

Lemma 7. Algorithm 2 has the running time of O(S
dκ/εe
n ),

where constant κ is the upper bound of the number of un-
wanted targets k.

Proof. It is easy to see that the first phase has the run-

ning time at most S
d k
ε
e−(k+1)

n . For the second phase, we
need to solve LP (2) Sβn times. According to Megiddo et
al. [14], LP (2) Sβn can be solved in O(Sn) when k is upper
bounded by some constant κ. Hence, the overall running

time of Algorithm 3 is O(S
dκ/εe
n ).

The results of Lemma 6 and 7 imply the following theo-
rem:

Theorem 4. Algorithm 2 is a PTAS approximation al-
gorithm for Bounded-2-MCT.

4. GENERAL δ-MCT PROBLEM
When the message can be propagated more than 2 hops,

i.e., δ > 2, one will be interested to see how hard a general
MCT problem is and how to develop an efficient approach to
solve it. In this section, we first prove that the MCT problem
is #P-hard when δ > 2. Due to its extreme challenge to
design a fully polynomial-time randomized approximation
scheme (FPRAS) for a #P-hard problem, we propose an
effective ICTD algorithm based on a novel greedy function.
The performance of our ICTD algorithm is further evaluated
in the next section.
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Figure 5: An Example of 3-Conn2 Reduction

4.1 #P-Hardness when δ ≥ 3

Theorem 5. δ-MCT problem is #P-hard when δ ≥ 3.

Proof. We will show the reduction from 3-Conn2 prob-
lem, which is defined in Definition 1 and proven to be #P-
hard in Lemma 8. First of all, we notice that 3-Conn2 prob-
lem can be polynomially solved if we can determine that
3-Conn2 ≤ r′/r in a graph G for any integer r′ ≤ r. S-
ince each p(u, v) in G is a rational number which can be
represented by a numerator and a denominator which are
integers, we can define r to be the least common multiple of
all the denominators such that a simple binary search from
1 to r can be finished within a polynomial time with respect
to the input size.

Therefore, let G, s and t be an arbitrary instance of 3-
Conn2, we must construct in a polynomial time a graph
G′ = (V ′, E′), a source user s and a set of unwanted targets
T along with their leakage thresholds τj for each of them
such that if we have a polynomial-time algorithm to solve
the δ-MCT problem on our reduced instance, this algorithm
can be applied to determine the upper bound of 3-Conn2

problem on G.
As shown in Figure 4, our construction is as follows. First,

we choose s′ = s and T = {t}. Then we set the sharing
probability in each edge of G to be 1/|N(s)|+ ε1 where 0 <
ε1 <

1
|N(s)|(|N(s)|−1)

and |N(s)| is the number of neighbors

of s. The mention probability is set to p(i, j) in G for each
edge. Then, we add a two-hop disjoint path between s and t
onto the graph G with the intermediate node u. Both edges
(s, u) and (u, t) have the sharing probability to be 1. And
psu = 1 and put = r′ ≤ r + ε2 for any integer r′ ≤ r and
ε2 < 1/r. Besides, we set T = {t} and its leakage threshold
to r′/r + ε2.

Assume that A is a polynomial algorithm solving δ-MCT
problem in our reduced instance. Let’s consider two cases:

• If A returns the circle of trust with size larger than 1,
we know all neighbors of s in G except u is visible to
the message. That is, the 3-Conn2 in G, s and t is less
than or equal to r′/r;

• If A returns the circle of trust with size equal to 1,
that is, A selected only one neighbor u of s, since

the visibility
(

1
|N(s)| + ε1

)
(|N(s)| − 1) < 1 when ε1 <

1
|N(s)|(|N(s)|−1)

if only selecting N −1 neighbors of s in

G. Clearly, 3-Conn2 in G, s and t is larger than r′/r.

Thus, A can be used to decide if 3-Conn2 is less than r′/r,
implying that our δ-MCT problem is at least as hard as
3-Conn2.

Definition 1 (3-Conn2). Given a directed graph G with
|V | = n nodes and a probability p(u, v) for each pair of n-
odes denoting the probability of u being able to connect to
v. Let s and t be two terminals in G. 3-Conn2 asks for the
probability that there is a path from source s to destination
t in G and the path has its length no larger than 3 hops.

Lemma 8. 3-Conn2 problem is #P-hard.

Proof. In this proof, we reduce the 3-Conn2 problem
from Counting Bipartite Independent Set (CBIS) problem,
which asks for the total number of independent sets in a bi-
partite graph G = (U, V ;E). CBIS has been proven to be
#P-hard by Provan et al. [17]. Let a graph G = (U, V ;E) be
an arbitrary instance of CBIS. We must construct in poly-
nomial time a probabilistic graph G′ and two terminals s, t
such that if we have a polynomial-time algorithm to solve
the 3-Conn2 problem on the reduced instance, this algorithm
can be applied to solve CBIS problem on G.

Our reduction is two phases: First, we construct the prob-
abilistic graph H by adding two terminals s and t onto G.
Between s and each u ∈ U , we add deg(u) number of edges
where deg(u) is the degree of u in G. Similarly, between
each v ∈ U and t, we add deg(v) number of edges. And all
edges in H have probability p with 0 < p < 1. Secondly,
we construct the probabilistic graph G′ on H by replacing
the multi-edges between each pair of nodes (u, v) with an
edge of probability 1 − (1 − p)γ where γ is the number of
multi-edges between u and v. Note that the paths between
s and t in G′ are at most 3-hops. This reduction is depicted
for an example in Figure 5.

Then we first show that CBIS in G is equivalent to count-
ing the minimum cardinality s − t cutsets in H. It is easy
to see that the construction ensures that the s − t cutset-
s contain at least |E| edges. Also, it is clear that if there
are deg(u) > 1 edges between s and u, a minimum cutset
includes either all or none of them. In addition, we note
that (u, v) must not an edge of G if both (s, u) and (v, t) are
included in a minimum cut since we can reduce the size of
cutset by simply replacing the multi-edges in (s, u) and (v, t)
with the edges incident to u and v in G, which contradicts
that the cutset is minimum.

Therefore, suppose that Iu ∪ Iv is an independent set in
G where Iu ⊆ U and Iv ⊆ V , we have the cutset consisting
of (s, u) for all u ∈ Iu, (v, t) ∈ Iv for all v ∈ Iv and all edges
in E not incident to Iu ∪ Iv. Conversely, suppose C is a
minimum cutset in H, according to our above arguments,
the endpoints (except s and t) incident to the edges in C \E
forms an independent set in G.



Furthermore, it is easy to see that the probability that
there is a path from s to t is the same in H and G′ since
only multi-edges in H are replaced in G′ with simple edges
with the same probability. According to Charles [9], if the
3-Conn2 between s and t can be determined in G′ (also H),
this is suffices to obtain the s − t pathset. Thus, the mini-
mum s− t cutsets can be further counted using the pathset,
implying that 3-Conn2 is at least as hard as CBIS.

4.2 ICTD Algorithm
As can be seen in the above proofs, the general MCT

problem with δ ≥ 3 is related to a set of problems in net-
work reliability [9], which is a long standing open problem.
Therefore, it is extremely challenging to design a FPRAS
algorithm, which may not even exist. Instead, we propose
an effective Iterative Circle of Trust Detection (ICTD) algo-
rithm.

The idea of ICTD algorithm is to iteratively eliminate one
of s’s neighbors until each unwanted target tj can see m with
the leakage probability less than τj . Due to the objective of
maximizing the circle of trust, we define the greedy function
f(v) to maximize∑

tj∈T,τj(C)>τj
|τj(C)− τj |

asv +
∑
i∈Cv asi

−
∑
tj∈T,τj(Cv)>τj

|τj(Cv)− τj |∑
i∈Cv asi

where τj(C) is the expected probability that unwanted tar-
get tj knows the information when s only chooses the subset
C to share, and Cv = C \ {v}. Intuitively, we do not want
to remove very close friends of s, whose sharing probabili-
ties with s are relatively high. Therefore, the normalization
factor is to ensure that the removed neighbor does not have
a high sharing probability to s. In addition, it is not hard
to see that this greedy function can reflect the impact on
a user to the leakage by calculating the difference between
before and after removing him from the circle of trust.

To calculate τj(C) in each iteration, we use the Monte
Carlo Sampling method due to its #P-hardness according
to Theorem 5. In the sampling subroutine, according to the
ISM propagation model, the information is propagated via
each edge (u, v) with mention probability puv on G until no
newly informed users can be found or the message has been
propagated δ hops. Then, in order to seek for the subset
of unwanted targets in T knowing the information at the
end propagation, we repeat the sampling 20,000 times and
obtain average leaking probability for each unwanted target
tj ∈ T . The whole ICTD algorithm, shown as Algorithm
4, terminates until the average probability in sampling is
less than τj for each unwanted target tj . Clearly, our ICTD
algorithm runs at most constant times of the multiply of the
maximum sampling time and S2

n.

Input : 2-MCT instance
Output: visible friends Πh and size of CT πh

1 C ← N(s) \ T ;
2 while ∃τj(C) ≥ τj do
3 Find v ∈ C using Monte Carlo Sampling which

maximizes f(v);
4 C ← C \ {v};
5 end

6 Πh ← C;

7 πh ←
∑
i∈Πh

asi;

Algorithm 4: ICTD Algorithm

5. EXPERIMENTAL EVALUATION

5.1 Dataset and Metrics

Table 1: Dataset
Dataset Nodes Edges Density Source
Facebook 63,731 905,565 4.46% Ref [18]
Twitter 88,484 2,364,322 3.02% Sampling in [7]

Foursquare 44,832 1,664,402 8.28% Our data
Flickr 80,513 5,899,882 18.2% DMML [2]

* Facebook and Flickr are undirected networks; Twitter and Foursquare
are directed networks.

We examine the performance of our proposed algorithms
on different real-world OSNs, including Facebook, Twitter,
Foursquare, and Flickr, with different sizes and density as
shown in Table 1. Here we omit the detailed description-
s of Facebook and Flickr datasets, which can be found in
the provided references shown in Table 1. For Twitter, we
used the unbiased sampling approach [11] to sample a por-
tion of Twitter network from the complete Twitter network,
which is provided by Cha et al. [7]. And for Foursquare,
we initially picked a seed set consisting of entrepreneurs and
investors, from whom we used Foursquare API [1] to obtain
the users and links within their two-hop neighbors.

For each dataset, we randomly assign sharing probability
auv and propagation probability puv to each edge respec-
tively, in which both of them lie in the interval [0, 1]. Then
we evaluate the following metrics on these four datasets ac-
cording to the application illustrated in Figure ??:

(1) Size of CT : defined as
∑
j∈CT asj . This is used to

measure the expected visible neighbors of s;

(2) Running Time: the time a user needs to wait for the
construction of CT before he posts a message. An ef-
fective solution should construct a CT within a second.

5.2 Performance of Proposed Algorithms
We compare our proposed PTAS algorithm and ICTD al-

gorithm with the optimal solution in the above four dataset-
s. Due to the impracticability to obtain optimal solution for
an #P-hard problem, we select δ = 2. In addition, since
the leakage threshold is usually small, we set all of them to
0.1, i.e., τj = 0.1 for any unwanted target tj . The allow-
able error ε for PTAS algorithm is set to 0.01, that is, the
result obtained from PTAS should be close to the optimal
solution since the approximation ratio is close to 1. In our
experiments, we test different numbers of unwanted target-
s and different leakage thresholds in each dataset. In each
network, for a specific number of unwanted targets, we ran-
domly choose a source and unwanted targets and perform
the experiments 100 times. The size of CT is then averaged.
To obtain the optimal solution, we solve the IP as in Section
3.4.1 using CPLEX optimization suite from ILOG [3].

As revealed in Figure 6, the solution of our PTAS algo-
rithm is almost identical with the optimal solution when the
allowable error is small. This empirical result once again
claims that Algorithm 2 algorithm is PTAS. Also, in all four
datasets, the expected size of CT obtained from our ICTD
algorithm is at most 1% less than the optimal solution for d-
ifferent number of unwanted targets. It indicates that ICTD
is very effective and our greedy function can actually reflect
the influence of information leakage for each user in every



 0

 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10

Si
ze
 o
f 
CT

Number of Unwanted Users k

Optimal
PTAS Algorithm
ICTD Algorithm

(a) Facebook

 0

 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10

Si
ze
 o
f 
CT

Number of Unwanted Users k

Optimal
PTAS Algorithm
ICTD Algorithm

(b) Twitter

 0

 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10

Si
ze
 o
f 
CT

Number of Unwanted Users k

Optimal
PTAS Algorithm
ICTD Algorithm

(c) Foursquare

 0

 1

 2

 3

 4

 5

 2  3  4  5  6  7  8  9  10

Si
ze
 o
f 
CT

Number of Unwanted Users k

Optimal
PTAS Algorithm
ICTD Algorithm

(d) Flickr

Figure 6: Comparison Among Optimal Solution, PTAS Algorithm and ICTD on k when δ = 2
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Figure 7: Comparison Among Optimal Solution, PTAS Algorithm and ICTD on τ when δ = 2

iteration. When we fix the number of unwanted targets to
be 5, Figure 7 reports the similar results in terms of differ-
ent leakage thresholds τj from 0.05 to 0.3. In addition, as
illustrated in Table 2, the running time of ICTD is very low,
thus it is suitable for the design of this application. Even
in Flickr, whose density is up to 20%, ICTD algorithm can
finish detecting CT within 1 second when δ = 2.

5.3 Findings using ICTD
With the effectiveness of ICTD observed through the above

experiments, we confidently use ICTD to further analyze the
real-world traces and exploit some insight properties with re-
spect to the securities in OSNs. In our experiments, we per-
form the following procedure on each dataset: We randomly
select 40 source users. For each source user, we further ran-
domly select 5 unwanted targets and deploy the ICTD algo-
rithm to obtain the CT while δ is 2 and 3. We repeat this
experiment 100 times and obtain the size of CT by taking
the average value. Since the MCT problem is #P-hard when
δ = 3, calculating the leakage probability is time consum-
ing. Therefore, we use a relatively larger leakage threshold
τj = 0.15 here to alleviate the running time of ICTD.

Propagation Hops and Size of CT: Our first observa-
tion, as revealed in Figure 8, shows that the higher δ is, the
smaller the circle of trust we have. This intuitively agrees
with what we expected since the information is more likely
to leak to unwanted targets when it can propagate further.
In our experiments, the sizes of CT in Facebook and Flickr
are 20%-30% lower than the other two since they are undi-
rected on which the information is easier to propagate than
on directed networks Twitter and Foursquare. Again note
that the size of CT refers to the expected visible friend-
s who can see the message if posted to CT. When δ = 3,
the sizes of CT on Facebook and Flickr drop roughly 20%-
30%, which is less than the decrease percentages on Twitter
and Foursquare, i.e., more than 50%. This can again be
explained due to their undirected properties. In addition,
Facebook has its size of CT larger than Flickr since it has
lower density. Therefore, it is not hard to see that the size of
CT is quite sensitive to the information propagation hops.
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Figure 8: Propagation Hops and Size of CT

Next, we take a look into the impact of information prop-
agation hops on the running time of ICTD. As is shown in
Table 2, although the running time for δ = 3 is about from
20 to 30 times as large as that for δ = 2, the detection of CT
can still be finished around 1 second in Facebook, Twitter
and Foursquare even when δ = 3. In Flickr, our ICTD al-
gorithm spends 25 seconds to construct a CT, which cannot
be avoided due to its #P-hardness as proven in Theorem 5.

Table 2: Time (s) and Propagation Hops
Dataset/Hops 2-Hop 3-Hop Increase Ratio

Facebook 0.03 0.94 30
Twitter 0.04 1.07 27

FourSquare 0.06 1.32 22
Flickr 0.8 25.2 30

Popular Source Users and Their CTs: Consider
popular source users (those who have a lot of friends) and
other source users, we now are interested in finding relations
between them and the size of their CTs. Intuitively, when a
user is more popular, there is a higher chance that his friends
will forward the information further. Thus, to avoid infor-
mation leakage, the CT of popular sources possibly includes
only a small fraction of their friends to CT.

To test our hypothesis, we select a set of source users
with different degrees in each network. For each source, we
choose ten random sets of five unwanted targets and com-
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Figure 9: Total Friends and Percentage of Visible Friends

pute the average size of CT. Figure 9 reports the relations
between Total Visible Friends (

∑
j∈N(s)\T asj) and Visible

Friends(%) (
∑
j∈CT asj∑

j∈N(s)\T asj
). As we can see, the tested users

are differentiated into two groups for each network. The red
users have relatively smaller total friends and smaller per-
centage of CT. These users usually have fewer friends but
some are gossipy. The elimination of each friends helps to
reduce the leakage probability and size of CT as well. The
other set of users, green users, usually have various kinds
of friends such that their percentage of CT is always larger
than 70% no matter whether or not they are popular.

6. RELATED WORK
This work is the first attempt to address the smartly shar-

ing information in OSNs without leaking them to unwanted
targets, thus there is not many related work. The most rel-
evant works are the set of papers studied on the privacy
issues in OSNs [12, 15, 16]. Lam et al. [12] showed that,
in current OSNs, no matter how much efforts a user puts
to protect his personal information, it cannot be prevented
from being revealed by some malicious users by examining
their “public” interactions with friends. Later on, for the
sake of such unintentional information spreading, Ngoc et
al. [15] then presented a new metric to quantify the privacy.
Noting the potential risks by disclosing information to OS-
N companies, Nigusse et al. [16] proposed an information
flow model, which made the existing privacy techniques more
practical. However, these studies only focus on the users’
personal profile, i.e., name, address, etc., but not on the in-
formation sharing and posting. In addition, they neglected
the information leakage led by multi-hops diffusions.

7. CONCLUSION
In this paper, we study the optimization problem of con-

structing circle of trust to maximize the expected visible
friends such that the probability of information leakage is
reduced to some degree. In a special and more practical
case of 2-hop information propagation and fixed number of
unwanted targets, we prove the NP-hardness and design an
FPTAS approximation algorithm for one unwanted target.
Then we show the non-existence of FPTAS and design a
PTAS approximation algorithm for multiple unwanted tar-
gets. In a general case, we further show its #P-hardness
and provide the ICTD algorithm using a novel greedy func-
tion. The experiments on real-world datasets not only show
the effectiveness of our proposed algorithms but also reveal
the relations of information leakage with propagation hop-
s and popular source users, which illustrates some crucial
characteristics of OSNs that one may pay attention when
investigating many security related problems in OSNs, es-

pecially the study of information leakage and tracing the
misbehaving users.
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