Our goals:

• understand principles behind data link layer services:
 – error detection, correction
 – sharing a broadcast channel: multiple access
 – link layer addressing
 – reliable data transfer, flow control

• instantiation and implementation of various link layer technologies
Some terminology:

- hosts and routers are **nodes**
- communication channels that connect adjacent nodes along communication path are **links**
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a **frame**, encapsulates datagram

Data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

Link Layer Services

- **framing, link access:**
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - “MAC” addresses used in frame headers to identify source, dest
 - different from IP address!

- **reliable delivery between adjacent nodes**
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
Link Layer Services (more)

• **flow control:**
 – pacing between adjacent sending and receiving nodes

• **error detection:**
 – errors caused by signal attenuation, noise.
 – receiver detects presence of errors:

• **error correction:**
 – receiver identifies *and corrects* bit error(s) without resorting to retransmission

• **half-duplex and full-duplex**
 – with half duplex, nodes at both ends of link can transmit, but not at same time
Where is the link layer implemented?

- in each and every host
- link layer implemented in “adaptor” (aka network interface card NIC)
 - Ethernet card, PCMCI card, 802.11 card
 - implements link, physical layer
- attaches into host’s system buses
- combination of hardware, software, firmware
Two types of “links”:

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host

- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)
shared RF (e.g., 802.11 WiFi)
shared RF (satellite)
humans at a cocktail party (shared air, acoustical)
Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination
Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. when one node wants to transmit, it can send at rate R.

2. when M nodes want to transmit, each can send at average rate R/M.

3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots

4. simple
MAC Protocols: a taxonomy

Three broad classes:

• **Channel Partitioning**
 - divide channel into smaller “pieces” (time slots, frequency, code)
 - allocate piece to node for exclusive use

• **Random Access**
 - channel not divided, allow collisions
 - “recover” from collisions

• **“Taking turns”**
 - nodes take turns, but nodes with more to send can take longer turns
TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle
FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1, 3, 4 have pkt, frequency bands 2, 5, 6 idle
Random Access Protocols

• When node has packet to send
 – transmit at full channel data rate R.
 – no *a priori* coordination among nodes

• two or more transmitting nodes → “collision”,

• **random access MAC protocol** specifies:
 – how to detect collisions
 – how to recover from collisions (e.g., via delayed retransmissions)

• Examples of random access MAC protocols:
 – slotted ALOHA
 – ALOHA
 – CSMA, CSMA/CD, CSMA/CA