Identifying Relations for open Information Extraction

Anthony Fader
Stephen Soderland
Oren Etzioni

Presented by:
Sindhura Tokala
Refresher

- Sentence: "Hampstead is a suburb of London"
- \((\text{arg1, relation, arg2}) = (\text{Hampstead, is a suburb of, London})\)
OPEN Information Extraction

- Does not require pre-specified vocabulary
Why do we need open IE?

- Traditional closed IE systems: learn an extractor for each target relation from labeled training examples.

- Drawbacks:
 - does not scale
 - cannot be used where target relations cannot be used in advance
How does Open IE address these drawbacks?

- automatically identifies "relation phrases"
- this enables the extraction of arbitrary relations
- no need pre-specify vocabulary!
Contributions

- Identified problems with existing Open IE systems.
- Established constraints on relation phrase extractions
- ReVerb Open IE system.
Existing Open IE systems:

- TextRunner
- WOE
Problems with existing Open IE systems:

- Incoherent extractions
- Uninformative extractions
Incoherent extractions:

- Relation phrase has no meaningful interpretation

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Incoherent Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The guide contains dead links and omits sites.</td>
<td>contains omits</td>
</tr>
<tr>
<td>The Mark 14 was central to the torpedo scandal of the fleet.</td>
<td>was central torpedo</td>
</tr>
<tr>
<td>They recalled that Nungesser began his career as a precinct leader.</td>
<td>recalled began</td>
</tr>
</tbody>
</table>
Uninformative Extractions

- Omit critical information.

<table>
<thead>
<tr>
<th>is</th>
<th>is an album by, is the author of, is a city in</th>
</tr>
</thead>
<tbody>
<tr>
<td>has</td>
<td>has a population of, has a Ph.D. in, has a cameo in</td>
</tr>
<tr>
<td>made</td>
<td>made a deal with, made a promise to</td>
</tr>
<tr>
<td>took</td>
<td>took place in, took control over, took advantage of</td>
</tr>
<tr>
<td>gave</td>
<td>gave birth to, gave a talk at, gave new meaning to</td>
</tr>
<tr>
<td>got</td>
<td>got tickets to, got a deal on, got funding from</td>
</tr>
</tbody>
</table>
Traditional Open IE systems:

- Three step method to extract binary relations of the form (arg1, relation phrase, arg2).
- Label: Automatically label using heuristics or distant supervision
- Learn: Extractor is learned using a graphical model
- Extract:
 1. extracts a pair of arguments
 2. labels each word between the arguments as part of the relation or not.
Problems with this approach:

- Needs large amount of training data.
- Hueristic labelling leads to noisy data
- Extraction step is sequential
- Extractor cannot backtrack.
Example

- Input sentence: "Faust made a deal with the devil"
- Possibility 1:
 - (Argument 1, Relation, Argument 2) = (Faust, made, a deal)
- Possibility 2: [More desirable]
 - (Argument 1, Relation, Argument 2) = (Faust, made a deal with, the devil)
Paper Contributions:

- Impose constraints on Relation Phrases to avoid Incoherent and Uniformative extractions.
- Syntactic Constraint
- Lexical constraint
Syntactic Constraint:

- Every multi-word relation phrase must:
 - Begin with a verb
 - End with a preposition
 - Be a contiguous sequence of words
 - Occur between its two arguments
Syntactic Constraint:

\[V \mid VP \mid VW^*P \]

\[V = \text{verb particle? adv?} \]
\[W = (\text{noun} \mid \text{adj} \mid \text{adv} \mid \text{pron} \mid \text{det}) \]
\[P = (\text{prep} \mid \text{particle} \mid \text{inf. marker}) \]
Lexical constraint

- "The Obama administration is offering only modest greenhouse gas reduction targets at the conference"
- Syntactic Constraint will match: "is offering only modest greenhouse gas reduction targets at"
Lexical Constraint:

- Avoids overspecification.
- Imposes a minimal number of distinct argument pairs.
Limitations:

- How much recall is lost due to the constraints?

<table>
<thead>
<tr>
<th>Binary Verbal Relation Phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>85% Satisfy Constraints</td>
</tr>
<tr>
<td>8% Non-Contiguous Phrase Structure</td>
</tr>
<tr>
<td>Coordination: X is produced and maintained by Y</td>
</tr>
<tr>
<td>Multiple Args: X was founded in 1995 by Y</td>
</tr>
<tr>
<td>Phrasal Verbs: X turned Y off</td>
</tr>
<tr>
<td>4% Relation Phrase Not Between Arguments</td>
</tr>
<tr>
<td>Intro. Phrases: Discovered by Y, X ...</td>
</tr>
<tr>
<td>Relative Clauses: ...the Y that X discovered</td>
</tr>
<tr>
<td>3% Do Not Match POS Pattern</td>
</tr>
<tr>
<td>Interrupting Modifiers: X has a lot of faith in Y</td>
</tr>
<tr>
<td>Infinitives: X to attack Y</td>
</tr>
</tbody>
</table>
ReVerb

- phrases are identified holistically
- filtered based on statistics
- "Relation first", instead of "Argument First"
Extraction Algorithm:

- Step 1: Identifies Relation Phrases
- Step 2: Finds pair of NP arguments for each relation
- Step 3: Assign confidence score using logistic regression
Extraction Algorithm:

- Input: POS-tagged and NP-chunked sentence
- Output: set of (x, y, z) tuples
Relation Extraction

For each verb \(v \) in \(s \), find the longest sequence of words \(r_v \) such that

- \(r_v \) starts at \(v \)
- \(r_v \) satisfies the syntactic constraint
- \(r_v \) satisfies the lexical constraint
- If any pair of matches are adjacent or overlap in \(s \), merge them into a single match.
Argument Extraction

- For each relation phrase r identified, find the nearest noun phrase x to the left of r in s such that x is
 - not a relative pronoun, WHO-adverb, or existential “there”
- Find the nearest noun phrase y to the right of r in s.
Example

- Input: "Hudson was born in Hampstead, which is a suburb of London"
- Step 1:
 - "was", "born in", "is a suburb of" are identified
 - "was" and "born in" are merged
- Step 2:
 - (Hudson, Hampstead) and (Hampstead, London) are selected respectively
- Output:
 - e1: (Hudson, was born in, Hampstead)
 - e2: (Hampstead, is a suburb of, London)
Confidence Function

- Extraction algorithm has high recall, low precision.
- Trade recall for precision
- Logistic regression classifier to assign confidence score to each extraction
Experiments:

ReVerb versus:

- ReVerb \ lex: ReVerb without the lexical constraint
- TextRunner:
 - Uses a second order linear-chain CRF
 - Trained on the Penn Treebank
 - Same POS tagger and NP-chunker as ReVerb
TextRunner – R:
 - Similar to TextRunner
 - Trained on ReVerb extractions

WOE-pos: TextRunner with relations learned from Wikipedia

WOE-parse:
 - uses a dictionary of dependency path patterns
 - extracted from wikipedia
Experiments
Experiments
Experiments
Experiments
ReVerb Error analysis

ReVerb - Incorrect Extractions

<table>
<thead>
<tr>
<th>%</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>65%</td>
<td>Correct relation phrase, incorrect arguments</td>
</tr>
<tr>
<td>16%</td>
<td>N-ary relation</td>
</tr>
<tr>
<td>8%</td>
<td>Non-contiguous relation phrase</td>
</tr>
<tr>
<td>2%</td>
<td>Imperative verb</td>
</tr>
<tr>
<td>2%</td>
<td>Overspecified relation phrase</td>
</tr>
<tr>
<td>7%</td>
<td>Other, including POS/chunking errors</td>
</tr>
</tbody>
</table>

ReVerb - Missed Extractions

<table>
<thead>
<tr>
<th>%</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52%</td>
<td>Could not identify correct arguments</td>
</tr>
<tr>
<td>23%</td>
<td>Relation filtered out by lexical constraint</td>
</tr>
<tr>
<td>17%</td>
<td>Identified a more specific relation</td>
</tr>
<tr>
<td>8%</td>
<td>POS/chunking error</td>
</tr>
</tbody>
</table>
ReVerb Evaluation at Scale

- ReVerb's performs better at all frequency thresholds.
- ReVerb's frequency 1 extractions :: TextRunner frequency 10 extractions.
- ReVerb returns with greater precision even when redundancy is taken into consideration
Future work

- Uses Syntactic and Lexical constraints to improve learned CRF models
- Improved methods for argument extraction