Construction of a Neuroanatomical Shape Complex
Atlas from 3D MRI Brain Structures

Ting Chen®, Anand Rangarajan®*, Stephan J. Eisenschenk?, Baba C.
Vemuri®**

@Department of CISE, University of Florida, Gainesville, FL 32611-6120,USA
b Department of Neurology, University of Florida, Gainesville, FL 32611, USA

Abstract

Brain atlas construction has attracted significant attention lately in the
neuroimaging community due to its application to the characterization of
neuroanatomical shape abnormalities associated with various neurodegener-
ative diseases or neuropsychiatric disorders. Existing shape atlas construc-
tion techniques usually focus on the analysis of a single anatomical structure
in which the important inter-structural information is lost. This paper pro-
poses a novel technique for constructing a neuroanatomical shape complex
atlas based on an information geometry framework. A shape complex is
a collection of neighboring shapes—for example, the thalamus, amygdala
and the hippocampus circuit—which may exhibit changes in shape across
multiple structures during the progression of a disease. In this paper, we
represent the boundaries of the entire shape complex using the zero level set
of a distance transform function S(x). We then re-derive the relationship
between the stationary state wave function ¢(x) of the Schrodinger equation
—h*V?%) + 1 = 0 and the eikonal equation |[VS|| = 1 satisfied by any dis-
tance function. This leads to a one-to-one map (up to scale) between ) (x)
and S(x) via an explicit relationship. We further exploit this relationship
by mapping ¥ (x) to a unit hypersphere whose Riemannian structure is fully
known, thus effectively turn ¢ (x) into the square-root of a probability density
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function. This allows us to make comparisons—using elegant, closed-form
analytic expressions—between shape complexes represented as square-root
densities. A shape complex atlas is constructed by computing the Karcher
mean 9(x) in the space of square-root densities and then inversely mapping
it back to the space of distance transforms in order to realize the atlas shape.
We demonstrate the shape complex atlas computation technique via a set
of experiments on a population of brain MRI scans including controls and
epilepsy patients with either right anterior medial temporal or left anterior
medial temporal lobectomies.

Keywords: brain MRI, shape complex atlas, epilepsy, lobectomy, distance
transform, Schrodinger equation, Karcher mean, level set, square-root
density

1. Introduction

Human brain MRI analysis is an important problem due to its applica-
tion in the diagnosis and treatment of neurological diseases. In this context,
the construction of neuroanatomical atlases of the human brain is of partic-
ular interest and its importance has been emphasized in a number of recent
studies (Yeo et al. (2008); Aljabar et al. (2009); Sabuncu et al. (2009); Shat-
tuck et al. (2008)). In brief, an atlas provides a reference for a population
of shapes/images which is useful in numerous applications: (i) statistical
analysis of volumetric changes in control and patient populations, (ii) atlas-
guided segmentation of structures of interest which is needed in further di-
agnostic procedures, and (iii) automated detection of disease regions based
on shape variations between the atlas and individual subjects. Most exist-
ing shape atlases are based on isolated, single anatomical shapes (Liu et al.
(2008); Fletcher et al. (2004); Wang et al. (2006)) which do not contain any
inter-structural information. For example, the spatial relationships among
different neighboring structures may change due to the effect of non-uniform
volume shrinkage or expansion of neighborhood structures. Furthermore,
many neurological disorders are diagnosed by the structural abnormalities
(e.g. volume change) ascribed to several brain structures rather than a single
structure. Alzheimer’s disease is an example of such a neurological disorder—
a morphological marker for which is the enlargement of ventricles and the
shrinkage of the entorhinal cortex, amygdala and hippocampi (Brice (2009)).
Mania, which is most often associated with bipolar disorder serves as another



example. In Strakowski et al. (1999), all the brain structures associated with
the neural pathways were examined and the authors claimed that patients
with mania have a significant overall volume difference in the regions includ-
ing the thalamus, hippocampi and the amygdala. In Seidman et al. (1999),
the authors concluded that the structural abnormalities in the thalamus and
the amygdala-hippocampus regions represent remarkable anatomical vulner-
abilities in schizophrenia subjects. Therefore, a neuroanatomical shape com-
plex atlas which captures anatomical connectivity as well as inter-structural
relationships is of primary clinical importance.

2. Previous Work

In the context of atlas construction for multiple brain structures, most of
the efforts in the past were focused on building the full brain image proba-
bilistic atlases. For instance, in Joshi et al. (2004); Avants and Gee (2004);
Shi et al. (2010); Xie et al. (2010), several image atlas construction methods
for the entire brain were proposed based on the acquisition of 3D brain MR
scans. The traditional techniques for image atlas construction usually focus
on developing effective image deformation methods to register a population
of brain images. Subsequently (or in tandem), the atlas image is estimated
as an average over the registered image population. More recent works are
based on developing specific techniques for mean computation. For exam-
ple, in the multi-regional atlas (Shi et al. (2010)), the region specific mean
is estimated whereas in Xie et al. (2010), the geodesic mean of a population
of brain images is computed via an intrinsic averaging method. The brain
image atlas has its advantage in general brain analysis. The variations of
the entire brain due to aging can be studied (Sabuncu et al. (2009)) and
the segmentation of brain structures (via registration of the atlas) achieved
(Joshi et al. (2004)) with the aid of the whole brain image atlas. However,
image registration (and hence the analysis based on it) may not be accurate
for particular structures of interest due to the misalignment caused by the
overall deformation of the convoluted cortex with its gyrencephalic details.
Furthermore, it is a non trivial task to extend these techniques to shape atlas
construction. Consequently, we will forgo further discussion of image based
atlases in this paper and restrict our focus to shape based atlas construction.
A shape atlas is of great importance when the analysis is focused on a cer-
tain structure or a neural pathway containing several related structures in the
brain: examples are the diseases associated with hippocampi and amygdala.



Feature point-sets (or landmarks when specific identities are ascribed to
the features) are one of the most common shape representations in the litera-
ture. Unbiased atlas construction of hippocampi via groupwise point-set reg-
istration of mixture model probability density functions is described in Chen
et al. (2010b); Wang et al. (2008); Chui et al. (2004). While explicit point
to point correspondences are recovered in Chui et al. (2004), information-
theoretic methodologies are adopted in Chen et al. (2010b); Wang et al.
(2008) resulting in implicit correspondence. In Cootes et al. (2008), a statis-
tical shape model is directly constructed on diffeomorphic deformation fields.
Other methods that represent shapes in 2D using parametric curves and in
3D using parametric surfaces have also received considerable attention in
the literature (Klassen et al. (2004); Sebastian et al. (2003)). Since intrinsic
statistical shape analysis in the space of curves/surfaces is in general a non
trivial task, methods using this representation have traditionally resorted to
computing means etc. of spline parameters. In Styner et al. (2003), a charac-
teristic 3D shape model dubbed the M-rep was proposed, and based on this
representation, a mathematical characterization of the space of M-reps was
developed. An atlas was then constructed in this space via computation of
the geodesic mean of a population of shapes represented by M-reps (Fletcher
et al. (2004)). Recent work in Liu et al. (2008) describes an interesting model
using continuous spherical shapes to analyze the anatomical shape differences
in the hippocampus of a control group and blind subjects.

To summarize, in all the techniques discussed thus far, the shape atlas
is developed only for an isolated anatomical structure and it is difficult to
generalize these methods to multiple connected anatomical structures in a
neighborhood. A shape complex analysis algorithm was proposed in Cates
et al. (2008), where the shapes are represented by point sets and the cor-
respondences across the shape complexes are optimized via minimizing an
entropy based cost function. Although this model leads to straightforward
statistical shape analyses, it has to resort to a gradient descent strategy for
the optimization. In Gorczowski et al. (2007); Qiu and Miller (2008) multi-
object shape analysis frameworks were presented where each shape of the
“multi-object” had an independent representation, and hence extra informa-
tion on the structural relationships between different shapes needed to be
maintained. In Litvin and Karl (2005), a multi-object shape distribution
was used as a prior for 2D image segmentation, wherein the distribution of
a set of shapes is defined as the average of the distribution corresponding to
the individual shapes in the group. This method does extract features from
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a shape complex but this shape information is lost after averaging.

Before we turn to the actual approach in this work, we briefly describe
the role of the correspondence problem in atlas estimation. Groupwise non-
rigid registration is used in previous work Chen et al. (2010b); Wang et al.
(2008); Chui et al. (2004) for atlas computation. If explicit point-to-point
correspondences can be recovered from groupwise non-rigid registration, then
an atlas can be subsequently computed by averaging over corresponding point
locations. In contrast, in this work we quotient out an appropriate transfor-
mation (rigid, similarity, affine) prior to atlas computation in the space of
distance transforms. Consequently, our approach avoids the correspondence
problem but the computed atlas now depends on the spatial mapping that is
quotiented out. Since distance transforms represent shapes implicitly (rather
than explicitly), our approach can be used even in situations where topological
differences exist—a common situation in shapes extracted from brain MRI—
whereas correspondence-based approaches are notoriously problematic when
topological differences are present.

In this paper, we propose a novel technique for constructing the atlas
of a neuroanatomical shape complex consisting of multiple neuroanatomical
structures where the inter-structural relationships are captured implicitly
without any loss of information of any of the constituent structures. In our
framework, we first use the zero level set of the distance transform function
to represent the boundaries of the entire shape complex and based on the
mathematical relationship derived in Section 3, we then map the distance
transform functions to the space of square-root densities where a geodesic
mean (atlas) is computed. Finally, the actual shape complex atlas is realized
via the inverse map back to the space of distance transforms.

The key contributions of this paper are as follows: (i) We derive a novel re-
lationship between the stationary state wave function ¢(x) of the Schrédinger
equation and the eikonal equation ||V.S|| = 1 for the Euclidean distance trans-
form problem, which serves as a “bridge” that connects the distance trans-
form representation of the shape to the space of square-root-densities. (ii)
The inter-structural relationships are well captured in our distance transform
representation of the shape complex, which is of great clinical importance for
studying the shape variations across multiple structures in both ontogenesis
and in various neurological diseases. (iii) We represent shape complexes using
square-root densities. Since the manifold of square-root density functions is
a unit Hilbertian sphere and its geometry is well understood, it allows us to
use intrinsic geometry to compare shape complexes and carry out a statistical
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Figure 1: The flow chart of our framework. Here, we visualize the distance transform and
square-root density in 2D case. Each sample data is represented by a blue point on the
high dimensional sphere and the red point is the Karcher mean.
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analysis of them.

The rest of the paper is organized as follows: In Section 3, we present the
details of our shape complex atlas construction methodology. We demon-
strate our technique in Section 4 on a 2D shape complex data set comprising
the corpus callosum, brainstem and the cerebellum (taken from the mid-
sagittal plane) and 3D brain structures including left/right hippocampus,
entorhinal cortex, amygdala and thalamus. The data are from a population
of 46 3D brain MR scans with all the neuroanatomical structures labeled by
an expert neurologist.

3. Shape Complex Atlas

In this section, we derive the relationship between distance transform
function and the square-root density representation, which allows us to model
the shape complex in the square-root density space, perform the statistical
analysis of the shapes and recover the mean shape back in the distance trans-
form function space.

3.1. From Distance Transforms to Square-Root Density Functions

The distance transform is a well established technique for shape represen-
tation and has its advantage in capturing the details of complicated shapes.



In our model, each shape complex data sample is represented by a distance
transform function, the zero level set of which gives the individual bound-
aries of the various shapes constituting the shape complex. At least two
decades of effort have gone into level set and distance function representa-
tions of shapes (Malladi et al. (1995); Sethian (1999); Osher and Fedkiw
(2002); Sapiro (2001))—the principal advantage being the ability to combine
different shapes into a single scalar field representation. However, since varia-
tional and partial differential equation methods are at the foundation of level
sets, it is a non-trivial task to employ statistical methods on scalar field dis-
tance function representations. Alternatively, there exists a class of methods
that perform shape analysis by representing single shapes using probability
density functions (Chen et al. (2010b); Litvin and Karl (2005); Squire and
Caelli (2000)), and obtaining interesting and practical results. For instance,
despite sacrificing the ability to represent a set of shapes or a shape com-
plex, in this framework, the mean, variance and principal modes of the shape
population are all easily computed. One of the main contributions of this
paper is to successfully bridge the two disparate domains - variational and
level set methods on the one hand and probabilistic methods on the other -
and directly obtain the density function of a shape complex from a distance
transform function representation.

More recently, Pohl et al. (2007) embed signed distance functions into
the linear space of LogOdds, where addition and scalar multiplication are in
closed form. This manipulation allows the averaging and other operations of
SDFs, however a monotonic function is needed to impose the SDF into the
probability space of [0,1]. In this paper, we present a technique that is differ-
ent from the aforementioned framework and provides an explicit function that
maps the SDFs to the space of square-root densities. In Gurumoorthy and
Rangarajan (2009), the authors begin by expressing the Euclidean distance
function problem in a Schrédinger wave equation representation. They solve
the Schrodinger wave equation instead of the corresponding static Hamilton-
Jacobi equation to obtain the distance transform. While they emphasize that
the main advantage of their approach is the linearity of the Schrodinger equa-
tion (as opposed to the non-linearity of the Hamilton-Jacobi equation), we
wish to draw upon the obvious, historical precedent in quantum mechanics
of motivating the Schrodinger wave function as a square-root density (Born
(1926)). Inspired by this voluminous previous work, we adopt the interpre-
tation of the stationary state Schrodinger wave function for the FEuclidean
distance transform as a square-root density.
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Generally speaking, our shape complex atlas construction technique con-
stitutes the stages depicted in Fig. 1. We first represent the shape complex
using a distance transform S(x). Then, we derive a one-to-one map (up to
scale) between S(x) and the square-root representation 1(x) as in Eqn. (7)
and convert the shape into the square-root density space, where statistical
analysis can be easily performed. Finally, the atlas is computed by mapping
the mean square-root density 1)(x) back into the distance transform space
S(x) via Eqn. (8) followed by the extraction of the zero level set. In this
procedure, the relationships in Eqn. (7) and Eqn. (8) play a key role.

We provide the derivation of the relationship between S(x) and ¥(x)
below. Let 1(x) be the stationary state wave function (which is interpreted
as square-root density) and let A—Planck’s constant—be a free parameter
in this model. The static wave equation for the Euclidean distance function
problem is

RV (x) = 1 (x). (1)
Please see Gurumoorthy and Rangarajan (2009) for a more detailed deriva-
tion.

Proposition 1. When ¥(xz) = aexp(%(m)) and satisfies Eqn. (1), S(x)

asymptotically satisfies the eikonal equation ||[VS|| =1 as h — 0. Here « is a

normalization constant such that () is a square-root density , [, | (x)[*dx =
1 where Q is a bounded domain in R? or R3.

Proof. From the definition of a square-root density, o? = 1

which is a constant for each S(x). Taking the 2D case as an example, when

P(x1,m9) = avexp(—2E12)) e have for the first partials of 1(z, 75):
P (D &)
e (3)
and the second partials [required for the Laplacian in Eqn. (1)]:
S e G - S5, ()
%’ _ 2 exp(%sxg_f?)z _ %exp(_—;)gixg. (5)
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From Eqn. (1), we have (86—51)2 + (5—3)2 - h(%? + ‘327?) = 1 which implies
[VS|*> — AVZS = 1. (6)
Since V2S is bounded, we obtain |V S| =1 as i — 0. O

The proposition above allows us to recover the distance transform func-
tion from the square-root density representation by computing the inverse
map of

v() = aexp( ) )
which is
S(x) = log(a) — hlog(u:(x). )

Note that Eqn. (7) is a surjective function, where at least two distance
transforms are mapped to the same square-root density function. However,
these distance transform functions only differ by a shift. Simple algebra will
lead to the following: S'(x) = S(x) + co, where ¢( is a constant and S’, S
are mapped to the same . This shifting effect is removed when we affine
register all the shape complexes in the initialization process.

This important relationship builds a direct connection between the two
realms, i.e. the level set framework and probability density functions. Hence,
a shape complex of any complex topology can be represented using a single
distance transform function and further statistical analysis of the shape pop-
ulation can be accomplished in the space of square-root densities—namely,
the unit hypersphere—as a result of the transformation from the distance
function to the square-root density representation.

3.2. The Space of Square-Root Densities

The square-root density has been widely used in the areas of computer
vision and medical image analysis, see for example Peter et al. (2008); Goh
et al. (2009); Srivastava et al. (2007). This is due to the fact that the resulting
manifold is a unit sphere in Hilbert space, wherein both the inner products
of the tangent vectors and the elements in the space are well defined. Hence,
a variety of Riemannian operations are in closed-form since the space is a
convex subset of a sphere in L.

Note that Eqn. (1) does not yield a solution that is a square-root den-
sity. However, it does build the relationship between exponentiated distance
functions and the Schrédinger equation. Since the Schrodinger wave function



has the property of being a square-root density (Born (1926)), we further re-
strict the solution to be in the square-root density space. The reasons for
us to focus on the square-root density space rather than the exponentiated
function space are as follows. Probability density functions are very use-
ful shape representations as shown by several researchers in the literature.
For instance, one can compute moments of the density and get global/local
shape descriptors (Ho et al. (2009)) which cannot be achieved with an un-
normalized exponentiated distance function. One can also match either the
densities or their moments for the purpose of registration. Also, probabil-
ity density functions allow us to relate our unknown smoothing parameter
(Planck’s constant) A to uncertainty. Furthermore, computing averages of
un-normalized exponentiated functions is theoretically a difficult problem.
The space of exponentiated functions is positive semidefinite whereas the
square-root density space is the hypersphere which leads to a closed-form
metric (and geodesic) that is efficient to compute.

For convenience, we reproduce the following well-known operations in the
space of the high dimensional sphere. Let 1;,7 = 1,...,n be a set of square-
root densities in the space of such functions. Define v € T;,7) as a vector in
the tangent space of ;.

e Geodesic Distance: d(v;, 1) = cos™ {1y, 1)

e Exponential Map: ¢, = exp,, (v) = cos(|v|)y; + sin(|v|)ﬁ

e Log Map: v = log,, (12) = ucos™ (1, ¥2)/\/(u, u), where u = tp —
(W, Y1)

e Karcher Mean: ¢ = argmingey >, d*(¥, ¥;)

Equipped with these basic tools, we are now able to construct an atlas for the
shape complex by computing the Karcher mean of the given shape complex
population in the space of the Hilbert sphere. We illustrate the idea of our
framework on a simple example in Fig. 1. Note that the notion of atlas here
corresponds to the mean computed using the L? norm. However, any norm
is applicable in our framework. For example, we can envisage estimating the
median of the population via the L' norm. Finally, with the square-root
density representation, we can perform complete statistical analysis when
required.
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3.3. From Square-Root Density Functions to Distance Transforms

In Section 3.1, we discussed the technique for mapping the shape com-
plex represented by distance transform to the space of square-root density
functions. The geodesic mean 1 (x) on the sphere of square-root densities is

therefore computed from a population of shape complexes. Since each shape
complex is finally represented by 1;(x) = «; exp(%(x)),i =1,...,n, it is
valid to assume that their mean shape 1)(x) has the same representation as

each shape complex data sample, i.e. 1(x) = o‘zexp(_sh(x)). Therefore, the
distance transform function of the mean shape (atlas) is given by

S(x) = hlog(a) — hlog(i(x)). (9)

Since Planck’s constant A—a smoothing parameter in our framework—is set
to a fixed value during the whole procedure, & is the only parameter we need
to estimate in order to recover S(x).

For each shape complex sample represented by 1);, a; is the normalization
parameter that imposes the square-root density property on ;. Hence «; is
always greater than 0, i.e. a; € RT. We denote the high dimensional Hilbert
sphere by ®. Now, let P = Rt x ® be the product manifold, and Eqn. (9)
map the elements in P to the space of distance transform functions. We
evaluate ¢ by computing the Karcher mean of {t;} on the unit Hilbert
sphere and estimate @ via the Karcher mean of {«;} in RT. The geodesic
mean of {¢;} has been investigated in the previous section and here we discuss
how to compute & in RT. It is known that the corresponding Riemannian
distance between two elements x,y € RT is |logz — logy| (Moakher (2005);
Barmpoutis and Vemuri (2009)). Therefore, the geodesic mean of {a;} is
simply the exponential of the average of logay, ..., loga,, i.e.

n

a= exp(% Z log ;). (10)

=1

4. Experiments

In this section, we present several experiments demonstrating the perfor-
mance of our algorithm on a population of real (shape complex) data. The
images are a priori affine registered using an ITK-based mutual information
registration algorithm (Thevenaz and Unser (2000)). Note that for visualiza-
tion purposes, we transfer the labels of each structure in the shape complex
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by mapping the label image to our atlas. The transformation parameters of
the mapping are computed by a non-rigid warping from a binary image of
the shape complex template to the binary image estimated from the shape
complex atlas.

4.1. 2D Shape Complex Atlas

To illustrate our technique, we begin with a 2D shape complex data set
with the steps of our approach following the flowchart in Fig. 1. The 2D
MR images are taken from the midsagittal plane of the 3D brain MRI with 3
structures (corpus callosum, brainstem and cerebellum) labeled by an expert
neurologist. The flowchart contains the following major steps.

1. We estimate the distance transform function from each binary labeled
image of the shape complex segmented by the expert neurologist (Dr.
Eisenschenk). The zero level set of the distance transform captures the
boundary contours of the shape complex.

2. From the distance transform representation of the shape complex, we
compute its square-root density representation via Eqn. (7).

3. Each square-root density representation of the shape complex corre-
sponds to a single point on the high dimensional sphere. In this Hilber-
tian sphere, the Karcher mean is directly computed. As a by prod-
uct, statistical analysis such as the principal geodesic analysis (PGA)
(Fletcher et al. (2004)), is performed.

4. The distance transform representation of the atlas is recovered from the
geodesic mean (which is a square-root density function on the sphere)
via Eqn. (8).

5. Finally, the shape contours are recovered from the a-level set of the
distance transform function, where a is estimated from Eqn. (9) and
Eqn. (10). The need for this step is explained below.

In Fig. 2, we demonstrate the 2D shape complex atlas constructed from our
algorithm with 8 given samples. The first row shows the distance transforms
(step 4) of the atlas computed at different values of h. The results of step
5 are illustrated in the second row. We can see that as h is increased, the
smoothness of the recovered atlas shape contours increases.

Note that the signed distance transform was used in this experiment. Our
algorithm is valid for both signed and unsigned distance transform functions.
As shown in Fig. 3, whereas the square-root density of the unsigned distance
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Figure 2: This figure depicts the Euclidean distance transforms and the exact shape
contours of the 2D shape complex (corpus callosum, brainstem and cerebellum) atlas
corresponding to different & values. As 7 increases, the atlas becomes more smooth.

transform has peaks on the shape boundary, its signed distance counterpart
captures the skeleton of the shape complex. However, the signed distance
transform representation is more robust in practice since we take the a-level
set of the distance transform to recover the atlas shape contours. Due to
numerical issues, we can not guarantee that the distance transform function
generated from the inverse mapping has all the local minima on the same
level set. Hence, the boundaries we extract from the a-level set might be
noisy. We have not observed this to be a problem in the case of the signed
distance transform.

4.2. 8D Shape Complex Atlas

Next, we apply our framework to a 3D shape complex data set (Fig.
4). This data set contains the 3D brain MRI from 32 controls and 14 pa-
tients with epilepsy (7 right and 7 left anterior medial temporal lobe epilepsy
cases respectively). Epilepsy refers to a group of related neurological dis-
orders characterized by recurrent seizures. In temporal lobe epilepsy, the
hippocampus, amygdala, and parahippocampal regions are considered to be
the epileptogenic focused structures. In this data set, we have the following
8 related structures labeled by the expert: left/right hippocampus, entorhi-
nal cortex, amygdala and thalamus. The first experiment is to construct
the shape complex atlas using our technique. We show the atlas constructed
from the controls as the mean shape in three different angles of view in Fig. 5.
The free parameter A acts as a smoothing/regularization term for atlas con-
struction and is expected to act as an uncertainty control—similar to the
role played by Planck’s constant in quantum mechanics. We demonstrate
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Figure 3: The first row of the figure shows the unsigned distance transform of the mean
shape complex (atlas) on the left and its square-root density representation on the right.
The second row shows the signed distance transform and its corresponding square-root
density for the same data.
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Figure 4: Two views of the 3D shape complex comprising 8 brain structures: the left/right
hippocampus, entorhinal cortex, amygdala and thalamus.

the variation of the atlas when different h values are used. As h increases,
the atlas becomes more smooth.

Since there is no analytical solution for computing the Karcher mean, we
use a gradient-based approach (Srivastava et al. (2007)) to iteratively com-
pute the geodesic mean of the square-root density functions. To demonstrate
the convergence of Karcher mean computation, we estimate the error at each
iteration as the Lo norm of the difference between the current mean value
and the one evaluated at the previous iteration. We show the errors w.r.t.
the iteration number for different A values in Fig. 6. The algorithm converges
within 50 integrations for each setting, which is very efficient.

As the shape complex is represented using a square-root density, we are
capable of performing a set of statistical analyses of the shapes. Applying
principal geodesic analysis (PGA) (Fletcher et al. (2004)) to our data set,
we recover the modes of deformation and the shape variation along the first
and second principal directions as shown in Fig. 7.

4.8. Shape Variation Analysis

In statistical analysis of shape variation, such as the study of structural
deformations occurring in the epilepsy process, volume based analysis has
been popular for decades (Gerig et al. (2001); Csernansky et al. (1998)).
It has been shown that brain structure volume shrinkage occurs in epilepsy
patients (Marsh et al. (1997)). Therefore, to investigate epileptic brain struc-
ture shape variations, we designed the following experiments. We randomly
take 7 of the control subjects and use them for testing. The remaining 25
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Figure 5: This figure shows the three views of the 3D shape complex atlas corresponding
to different A values in each row. As 7 increases, the atlas becomes more smooth.
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Figure 6: Error of the Karcher mean iteration for different A values.

Figure 7: The shape variations along the first and second principal directions. Here
h=0.6.
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samples (data) are used to construct the atlas. The test data then contains
7 control, 7 LATL and 7 RATL samples. We compute the shape variations
between the testing data and the atlas as follows:

Volume(subject)

1 Index = 11
Volume Index Volume(atlas) ’ (11)
Volume(subject N atlas)

Volume(subject) + Volume(atlas)’

Similarity Index = 2 and (12)

2| Volume(subject) — Volume(atlas)|
Volume(subject) + Volume(atlas)

where the Volume Index (also known as the Dice Coefficient) denotes the
entire volume change between the test subject w.r.t. the atlas, the Similarity
Index indicates the region of overlap between the subject and the atlas, and
the Difference Index shows the difference of the two in terms of volume size.
The results are listed in Tables 1, 2 and 3. Note that large brain volume
shrinkage is observed for the epilepsy patients compared to the controls. To
better illustrate these results, we plot the overlaps of the testing shape com-
plexes (in gray) and the atlas (in colored mesh) in Fig. 9. Studies have shown
that distinguishing between LATL and RATL in epilepsy is a hard problem
and that we need sophisticated features in order to automatically classify
them (Kodipaka et al. (2007)). Tables 2 and 3 indicate that the indices for
both LATL and RATL are similar hence the left and right anterior medial
temporal lobe focuses are indistinguishable w.r.t. volume based analysis. A
promising immediate avenue for future research (following Kodipaka et al.
(2007)) is to utilize the histogram of the deformation field between the shape
complex of the subject and the atlas for further analysis.

In our approach, a single distance transform is used to represent a shape
complex. Consequently, despite going against the grain of our philosophy, we
can build atlases for the individual brain structures in the shape complex.
To demonstrate this “by-product" of our algorithm and the effect of epilepsy
on each brain structure, we build the atlas of each structure separately and
compute the Volume Index between the atlas and the test data for each
structure. The results are shown in Fig. 8. For LATL, we observe larger
volume shrinkage for the structures in left brain than in the right brain while
for RATL, right brain structures experience larger atrophy. This is obviously
anecdotal but indicates the need for more detailed empirical analyses on
larger data set.

Difference Index = : (13)
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Figure 8: The average Volume Index for each structure and for the test data set.

Our atlas construction algorithm was implemented in Matlab® on a 2.80GHZ
Intel Core(TM) i7 CPU PC. It takes less than 2 seconds to construct an atlas
from 25 labeled brain MRI with the dimensions of the ROI being 71 x 65 x 79.
This serves to “loosely" illustrate the computational time involved.

5. Conclusions

The raison d’étre for our new approach is the premise that atlases of
nearby 3D MRI brain structures should use an integrated representation
in which individual structures are not compromised. To this end, we de-
signed a neuroanatomical atlas construction framework (and algorithm) for
shape complex data. We derived and utilized the relationships between the
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’ Shape Complex \ Control ‘
subject ID Volume Index | Similarity Index | Difference Index
1 1.0882 0.8055 0.0845
2 1.0435 0.8348 0.0426
3 0.9130 0.8385 0.0910
4 0.9178 0.8349 0.0857
5 0.9479 0.8186 0.0535
6 0.9262 0.8087 0.0767
7 0.8853 0.7955 0.1217
mean 0.9603 0.8195 0.0794
std. 0.0756 0.0169 0.0259

Table 1: Shape variations for the control subjects compared to the atlas.

’ Shape Complex \ LATL ‘
subject ID Volume Index | Similarity Index | Difference Index
1 0.9337 0.7478 0.0686
2 0.8465 0.7280 0.1662
3 0.8983 0.7403 0.1072
4 0.8250 0.7254 0.1918
5 0.8854 0.7975 0.1216
6 0.5716 0.6465 0.5451
7 0.8985 0.7824 0.1070
mean 0.8370 0.7383 0.1868
std. 0.1224 0.0487 0.1632

Table 2: Shape variations for the LATL subjects compared to the atlas.
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Figure 9: The overlap between the atlas and 2 examples from the control, LATL and
RATL data set respectively. The atlas is depicted using a colored mesh and the test data
is shown in gray.
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’ Shape Complex ‘ RATL ‘

subject 1D Volume Index | Similarity Index | Difference Index

1 0.8614 0.7819 0.1489

2 0.7559 0.7154 0.2781

3 0.8434 0.7501 0.1699

4 0.8816 0.7899 0.1258

5 0.9062 0.7680 0.0984

6 0.8865 0.8057 0.1203

7 0.7628 0.7582 0.2691
mean 0.8426 0.7696 0.1729
std. 0.0602 0.0305 0.0724

Table 3: Shape variations for the RATL subjects compared to the atlas.

Euclidean distance transform and the square-root density Schrédinger wave
function representation and this successfully builds on a connection between
the realms of the level set framework and probability density functions. Our
model is not only capable of preserving the spatial relationships among the
different structures in the shape complex but also of carrying out a variety
of statistical analyses of the shape complex population. We experimentally
demonstrate the shape complex atlas computation algorithm on a population
of brain MRI scans. We also present modes of variation from the computed
atlas (from both the shape complex and individual structures) for the control
population and for LATL and RATL patients.

Most existing atlas construction methods are based on registering shapes/images
to a common space and estimating the mean. Topology preserving deforma-
tion techniques (Wang et al. (2003); Yanovsky et al. (2007)) can be used to
register the data, however, the mean shape/image evaluation cannot guaran-
tee the final topology. That is, the boundaries of adjacent structures will be
blurred and merged during the averaging. Since the atlas construction pro-
cess in our algorithm is also based on mean computation, the atlas topology is
therefore not guaranteed. Recently, several techniques have been proposed to
construct a topologically meaningful atlas from nearby data samples (Gerber
et al. (2009); Xie et al. (2010); Hamm et al. (2010)). While these methods ob-
tain good empirical results w.r.t. shape topology, there is no guarantee that
topology is preserved (when multiple shapes are present). This is clearly a
good avenue for future research.
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